Low-Frequency Electrical Conductivity of Trabecular Bone: Insights from In Silico Modeling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation for Building Model Geometries
2.2. Modeling and Computer Simulations
2.2.1. Governing Equations and Boundary Conditions
2.2.2. Estimation of Electrical Conductivities
2.2.3. Mixing Theory
2.3. Tissue Characteristics
3. Results
3.1. Microstructure Parameters
3.2. Estimation of Effective Electrical Conductivity Using FEM
3.3. Mixture Models
3.4. Prediction of Potential Sources of Measurement Errors
3.4.1. Anisotropy
3.4.2. Influence of Washing the Samples
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferretti, J.L.; Cointry, G.R.; Capozza, R.F.; Frost, H.M. Bone mass, bone strength, muscle–bone interactions, osteopenias and osteoporoses. Mech. Ageing Dev. 2003, 124, 269–279. [Google Scholar] [CrossRef]
- Shi, X.; Liu, X.S.; Wang, X.; Guo, X.E.; Niebur, G.L. Effects of trabecular type and orientation on microdamage susceptibility in trabecular bone. Bone 2010, 46, 1260–1266. [Google Scholar] [CrossRef] [PubMed]
- Katscher, U.; van den Berg, C.A. Electric properties tomography: Biochemical, physical and technical background, evaluation and clinical applications. NMR Biomed. 2017, 30, e3729. [Google Scholar] [CrossRef]
- Kimel-Naor, S.; Abboud, S.; Arad, M. Parametric electrical impedance tomography for measuring bone mineral density in the pelvis using a computational model. Med. Eng. Phys. 2016, 38, 701–707. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.C.; Hu, D.; Marmor, M.; Herfat, S.T.; Bahney, C.S.; Maharbiz, M.M. Smart bone plates can monitor fracture healing. Sci. Rep. 2019, 9, 2122. [Google Scholar] [CrossRef] [PubMed]
- Khalifeh, J.M.; Zohny, Z.; MacEwan, M.; Stephen, M.; Johnston, W.; Gamble, P.; Zeng, Y.; Yan, Y.; Ray, W.Z. Electrical stimulation and bone healing: A review of current technology and clinical applications. IEEE Rev. Biomed. Eng. 2018, 11, 217–232. [Google Scholar] [CrossRef]
- Ramos, A.; Dos Santos, M.P.S. Capacitive stimulation-sensing system for instrumented bone implants: Finite element model to predict the electric stimuli delivered to the interface. Comput. Biol. Med. 2023, 154, 106542. [Google Scholar] [CrossRef]
- Dixon, D.T.; Gomillion, C.T. Conductive scaffolds for bone tissue engineering: Current state and future outlook. J. Funct. Biomater. 2021, 13, 1. [Google Scholar] [CrossRef] [PubMed]
- Balint, R.; Cassidy, N.J.; Cartmell, S.H. Conductive polymers: Towards a smart biomaterial for tissue engineering. Acta Biomater. 2014, 10, 2341–2353. [Google Scholar] [CrossRef]
- Balmer, T.W.; Vesztergom, S.; Broekmann, P.; Stahel, A.; Büchler, P. Characterization of the electrical conductivity of bone and its correlation to osseous structure. Sci. Rep. 2018, 8, 8601. [Google Scholar] [CrossRef]
- Sierpowska, J.; Lammi, M.; Hakulinen, M.; Jurvelin, J.; Lappalainen, R.; Töyräs, J. Effect of human trabecular bone composition on its electrical properties. Med. Eng. Phys. 2007, 29, 845–852. [Google Scholar] [CrossRef]
- Rho, J.Y.; Kuhn-Spearing, L.; Zioupos, P. Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 1998, 20, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Ron, A.; Abboud, S.; Arad, M. Home monitoring of bone density in the wrist—a parametric EIT computer modeling study. Biomed. Phys. Eng. Express 2016, 2, 035002. [Google Scholar] [CrossRef]
- Wong, P.; George, S.; Tran, P.; Sue, A.; Carter, P.; Li, Q. Development and validation of a high-fidelity finite-element model of monopolar stimulation in the implanted guinea pig cochlea. IEEE Trans. Biomed. Eng. 2015, 63, 188–198. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, U.; Ebner, C.; Su, Y.; Bender, T.; Bansod, Y.D.; Mittelmeier, W.; Bader, R.; van Rienen, U. Numerical simulation of electric field distribution around an instrumented total hip stem. Appl. Sci. 2021, 11, 6677. [Google Scholar] [CrossRef]
- Feng, C.; Yao, J.; Wang, L.; Zhang, X.; Fan, Y. Idealized conductance: A new method to evaluate stiffness of trabecular bone. Int. J. Numer. Methods Biomed. Eng. 2021, 37, e3425. [Google Scholar] [CrossRef] [PubMed]
- Blaszczyk, M.; Hackl, K. Multiscale modeling of cancellous bone considering full coupling of mechanical, electric and magnetic effects. Biomech. Model. Mechanobiol. 2022, 21, 163–187. [Google Scholar] [CrossRef]
- Wei, W.; Shi, F.; Kolb, J. Impedimetric Analysis of Trabecular Bone Based on Cole and Linear Discriminant Analysis. Front. Phys. 2020, 8, 662. [Google Scholar] [CrossRef]
- Wei, W.; Shi, F.; Zhuang, J.; Kolb, J.F. Comprehensive characterization of osseous tissues from impedance measurements by effective medium approximation. AIP Adv. 2021, 11, 105316. [Google Scholar] [CrossRef]
- Ciuchi, I.V.; Olariu, C.S.; Mitoseriu, L. Determination of bone mineral volume fraction using impedance analysis and Bruggeman model. Mater. Sci. Eng. B 2013, 178, 1296–1302. [Google Scholar] [CrossRef]
- Sierpowska, J.; Hakulinen, M.; Töyräs, J.; Day, J.; Weinans, H.; Kiviranta, I.; Jurvelin, J.; Lappalainen, R. Interrelationships between electrical properties and microstructure of human trabecular bone. Phys. Med. Biol. 2006, 51, 5289. [Google Scholar] [CrossRef]
- Sierpowska, J.; Töyräs, J.; Hakulinen, M.; Saarakkala, S.; Jurvelin, J.; Lappalainen, R. Electrical and dielectric properties of bovine trabecular Bone—Relationships with mechanical properties and mineral density. Phys. Med. Biol. 2003, 48, 775. [Google Scholar] [CrossRef] [PubMed]
- Sihvola, A.H. Electromagnetic Mixing Formulas and Applications; Number 47; The Institution of Engineering and Technology: London, UK, 1999. [Google Scholar]
- Smith, S.R.; Foster, K.R. Dielectric properties of low-water-content tissues. Phys. Med. Biol. 1985, 30, 965. [Google Scholar] [CrossRef] [PubMed]
- Kosterich, J.D.; Foster, K.R.; Pollack, S.R. Dielectric permittivity and electrical conductivity of fluid saturated bone. IEEE Trans. Biomed. Eng. 1983, 30, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Fajardo, J.E.; Carlevaro, C.M.; Vericat, F.; Berjano, E.; Irastorza, R.M. Effect of the trabecular bone microstructure on measuring its thermal conductivity: A computer modeling-based study. J. Therm. Biol. 2018, 77, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Domander, R.; Felder, A.; Doube, M. BoneJ2—Refactoring established research software. Wellcome Open Res. 2021, 6, 37, version 2. peer review: 3 approved. [Google Scholar] [CrossRef]
- Fedorov, A.; Beichel, R.; Kalpathy-Cramer, J.; Finet, J.; Fillion-Robin, J.C.; Pujol, S.; Bauer, C.; Jennings, D.; Fennessy, F.; Sonka, M.; et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging 2012, 30, 1323–1341. [Google Scholar] [CrossRef]
- van der Walt, S.; Schönberger, J.L.; Nunez-Iglesias, J.; Boulogne, F.; Warner, J.D.; Yager, N.; Gouillart, E.; Yu, T.; the scikit-image contributors. scikit-image: Image processing in Python. PeerJ 2014, 2, e453. [Google Scholar] [CrossRef]
- Cignoni, P.; Callieri, M.; Corsini, M.; Dellepiane, M.; Ganovelli, F.; Ranzuglia, G. MeshLab: An Open-Source Mesh Processing Tool. In Eurographics Italian Chapter Conference; Scarano, V., Chiara, R.D., Erra, U., Eds.; The Eurographics Association: Lugano, Switzerland, 2008. [Google Scholar] [CrossRef]
- Geuzaine, C.; Remacle, J.F. Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities. Int. J. Numer. Methods Eng. 2009, 79, 1309–1331. [Google Scholar] [CrossRef]
- Langtangen, H.P.; Logg, A. Solving PDEs in Python; Springer: Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Irastorza, R.M.; Gonzalez-Suarez, A.; Pérez, J.J.; Berjano, E. Differences in applied electrical power between full thorax models and limited-domain models for RF cardiac ablation. Int. J. Hyperth. 2020, 37, 677–687. [Google Scholar] [CrossRef]
- Irastorza, R.M.; Blangino, E.; Carlevaro, C.M.; Vericat, F. Modeling of the dielectric properties of trabecular bone samples at microwave frequency. Med. Biol. Eng. Comput. 2014, 52, 439–447. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Kameo, Y.; Ootao, Y.; Ishihara, M. Poroelastic analysis of interstitial fluid flow in a single lamellar trabecula subjected to cyclic loading. Biomech. Model. Mechanobiol. 2016, 15, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Unal, M.; Cingoz, F.; Bagcioglu, C.; Sozer, Y.; Akkus, O. Interrelationships between electrical, mechanical and hydration properties of cortical bone. J. Mech. Behav. Biomed. Mater. 2018, 77, 12–23. [Google Scholar] [CrossRef]
- Amin, B.; Elahi, M.A.; Shahzad, A.; Porter, E.; O’Halloran, M. A review of the dielectric properties of the bone for low frequency medical technologies. Biomed. Phys. Eng. Express 2019, 5, 022001. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, C.; Peyman, A. Dielectric properties of biological tissues; variation with age. Conn’s Handb. Models Hum. Aging 2018, 939–952. [Google Scholar] [CrossRef]
- Hasgall, P.; Di Gennaro, F.; Baumgartner, C.; Neufeld, E.; Gosselin, M.; Payne, D.; Klingenböck, A.; Kuster, N. It’is Database for Thermal and Electromagnetic Parameters of Biological Tissues, Version 3.0; 2015. Available online: https://itis.swiss/virtual-population/tissue-properties/downloads/database-v4-1/ (accessed on 1 March 2023).
- Gabriel, C. Compilation of the Dielectric Properties of Body Tissues at RF and Microwave Frequencies; Technical Report; King’s Coll London (United Kingdom) Dept. of Physics: London, UK, 1996. [Google Scholar]
- Surowiec, R.K.; Allen, M.R.; Wallace, J.M. Bone hydration: How we can evaluate it, what can it tell us, and is it an effective therapeutic target? Bone Rep. 2022, 16, 101161. [Google Scholar] [CrossRef]
- Abbasi-Rad, S.; Akbari, A.; Malekzadeh, M.; Shahgholi, M.; Arabalibeik, H.; Rad, H.S. Quantifying cortical bone free water using short echo time (STE-MRI) at 1.5 T. Magn. Reson. Imaging 2020, 71, 17–24. [Google Scholar] [CrossRef]
- Saha, S.; Williams, P. Effect of various storage methods on the dielectric properties of compact bone. Med. Biol. Eng. Comput. 1988, 26, 199–202. [Google Scholar] [CrossRef]
- Saberi, A.; Jabbari, F.; Zarrintaj, P.; Saeb, M.R.; Mozafari, M. Electrically conductive materials: Opportunities and challenges in tissue engineering. Biomolecules 2019, 9, 448. [Google Scholar] [CrossRef] [PubMed]
- Hammond, M.A.; Wallace, J.M.; Allen, M.R.; Siegmund, T. Incorporating tissue anisotropy and heterogeneity in finite element models of trabecular bone altered predicted local stress distributions. Biomech. Model. Mechanobiol. 2018, 17, 605–614. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ural, A. A finite element study evaluating the influence of mineralization distribution and content on the tensile mechanical response of mineralized collagen fibril networks. J. Mech. Behav. Biomed. Mater. 2019, 100, 103361. [Google Scholar] [CrossRef] [PubMed]
Sample | BV/TV | DA | FD |
---|---|---|---|
# 1 A | 0.348 | 0.536 | 2.651 |
# 2 A | 0.339 | 0.549 | 2.651 |
# 3 A | 0.419 | 0.553 | 2.651 |
# 1 B | 0.473 | 0.679 | 2.859 |
# 2 B | 0.515 | 0.572 | 2.853 |
# 3 B | 0.485 | 0.681 | 2.699 |
# 4 B | 0.460 | 0.702 | 2.692 |
# 5 B | 0.447 | 0.667 | 2.697 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cervantes, M.J.; Basiuk, L.O.; González-Suárez, A.; Carlevaro, C.M.; Irastorza, R.M. Low-Frequency Electrical Conductivity of Trabecular Bone: Insights from In Silico Modeling. Mathematics 2023, 11, 4038. https://doi.org/10.3390/math11194038
Cervantes MJ, Basiuk LO, González-Suárez A, Carlevaro CM, Irastorza RM. Low-Frequency Electrical Conductivity of Trabecular Bone: Insights from In Silico Modeling. Mathematics. 2023; 11(19):4038. https://doi.org/10.3390/math11194038
Chicago/Turabian StyleCervantes, María José, Lucas O. Basiuk, Ana González-Suárez, C. Manuel Carlevaro, and Ramiro M. Irastorza. 2023. "Low-Frequency Electrical Conductivity of Trabecular Bone: Insights from In Silico Modeling" Mathematics 11, no. 19: 4038. https://doi.org/10.3390/math11194038
APA StyleCervantes, M. J., Basiuk, L. O., González-Suárez, A., Carlevaro, C. M., & Irastorza, R. M. (2023). Low-Frequency Electrical Conductivity of Trabecular Bone: Insights from In Silico Modeling. Mathematics, 11(19), 4038. https://doi.org/10.3390/math11194038