Nonlinear Dynamic Model-Based Position Control Parameter Optimization Method of Planar Switched Reluctance Motors
Abstract
:1. Introduction
2. Dynamic Model
2.1. Linear Dynamic Model
2.2. Nolinear Dynamic Model
2.2.1. Hammerstein–Wiener Model
2.2.2. Parameter Identification
3. Position Control Parameter Optimization Method
3.1. Parameter Optimization System
3.2. Objective Function
3.3. Simulated Annealing Adaptive Particle Swarm Optimization Algorithm
Algorithm 1 The developed SAAPSO. |
0: Initialize , , , , , , q, Emin, and Emax |
1: For i = 1 to N |
2: Initialize the velocity Vi and position Xi for particle i |
3: Calculate the fitness value Ji of particle i |
4: Set Xipb = Xi |
5: End for |
6: Find the best fitness Jgbest and set the corresponding individual position as Xsb |
7: While the number of iterations t is less than the total number of iterations |
8: Update Je, si, , , according to (21) to (25) |
9: For i = 1 to N |
10: Update the velocity Vi and position Xi for particle i according to (17) and (18) |
11: Calculate the particle fitness value Ji |
12: Calculate the control temperature Tt according to (20) |
13: Calculate the updated probability Pt according to (19) |
14: Generate a random number |
15: If < Pt, then |
16: Xipb = Xi |
17: End if |
18: If Jipb < Jgbest, then |
19: Xsb = Xipb |
20: End if |
21: End for |
22: t = t + 1 |
23: End while |
24: Output the best particle Xsb |
4. Experimental Validation
4.1. Experimental Setup
4.2. Results of the Nonlinear Dynamic Model
4.3. Results of Position Control Parameter Optimization
4.4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Symbol | Description | Symbol | Description |
Fe | thrust force | m | mass of moving platform |
x | position of moving platform | Fn | external disturbance |
ui(k) | input signal of i-th input network at time k | B | damping coefficient |
xi(k) | i-th intermediate output signals at time k | yi(k) | output signal of i-th output network at time k |
fi(·) | i-th group input and output nonlinear module | ri(k) | i-th intermediate input signals at time k |
X(k) | input matrix dynamic linear module at time k | G(z) | discrete transfer function of dynamic linear module |
aij | weight of output layer from the j-th node in i-th input nonlinear module | R(k) | output matrix of dynamic linear module at time k |
cij | numerator coefficient of dynamic linear module | dij | weight of output layer from the j-th node in i-th output nonlinear module |
g(z) | numerator denominator polynomial least common multiple polynomial | bij | denominator coefficient of dynamic linear module |
mG | order of numerator in dynamic linear module | C(z) | discrete transfer function after being sorted |
L1 | hidden layers of the input module neural network | nG | order of denominator in dynamic linear module |
L2 | hidden layers of the output module neural network | w | weight between hidden and output layers |
E | error energy of gradient descent method | α | momentum factor of gradient descent method |
P* | reference position of PSRM control system | Fcommand | control action of PSRM control system |
P | position response of PSRM control system | J | objective function |
Q | position controller parameter | Mrmax | maximum overshoot in transition process |
φr | attenuation ratio in transition process | xc | control quantity of the controller |
vr | output speed of actual system | vex | reference speed |
e | position error | weight of objective function | |
learning factors of SAAPSO | random numbers within [0, 1] | ||
N | population size of SAAPSO | Vi | velocity of particle in SAAPSO |
Xi | position of particle in SAAPSO | Pt | updated probability of SAAPSO |
Xipb | individual optimal position | Xsb | global optimal location |
Tt | control temperature of SAAPSO | q | temperature rise control parameter of SAAPSO |
Jgbest | global best fitness of SAAPSO | Jpbest | individual optimal fitness of SAAPSO |
si | similarity of SAAPSO | Emin, Emin | constants in particle similarity formula of SAAPSO |
Parameters | Values |
---|---|
Range of base plate | 600 mm (X) × 600 mm (Y) |
Air-gap length | 0.3 mm |
Phase resistance | 0.5 Ω |
Mass of X-axis moving platform | 5.9 kg |
Mass of Y-axis moving platform | 13.9 kg |
X-axis damping coefficient | 48.2689 Ns/m |
Y-axis damping coefficient | 153.7560 Ns/m |
Hidden Layer Nodes | Zero Order of Linear Module | Pole Order of Linear Module | RMSE |
---|---|---|---|
3 | 2 | 2 | 0.395 |
4 | 2 | 2 | 0.218 |
5 | 2 | 2 | 0.116 |
6 | 2 | 2 | 0.107 |
7 | 2 | 2 | 0.104 |
Dynamic Model | Linear Model | Nonlinear Model | Reduction Rate (%) |
---|---|---|---|
of X-axis (mm) | 0.0500 | 0.0275 | 44.801 |
of Y-axis (mm) | 0.0691 | 0.0374 | 45.876 |
SMAPE of X-axis (%) | 0.341 | 0.045 | 86.804 |
SMAPE of Y-axis (%) | 1.014 | 0.142 | 85.996 |
Reference Trajectory | Direction | Tracking Error for EMBMD (mm) | Tracking Error for Proposed Method (mm) | Tracking Error in [9] (mm) | |||
---|---|---|---|---|---|---|---|
Circular trajectory | X-axis | 0.0323 | 0.0156 | 0.0187 | 0.0083 | 0.0280 | 0.0112 |
Y-axis | 0.0557 | 0.0217 | 0.0248 | 0.0109 | 0.0293 | 0.0096 | |
Diamond trajectory | X-axis | 0.0311 | 0.0131 | 0.0249 | 0.0085 | 0.0275 | 0.0111 |
Y-axis | 0.0296 | 0.0115 | 0.0255 | 0.0079 | 0.0290 | 0.0092 |
References
- Wang, Z.; Cao, X.; Deng, Z.; Li, K. Modeling and Characteristic Investigation of Axial Reluctance Force for Bearingless Switched Reluctance Motor. IEEE Trans. Ind. Appl. 2021, 57, 5215–5226. [Google Scholar] [CrossRef]
- Chen, N.; Cao, G.; Huang, S.; Sun, J. Sensorless Control of Planar Switched Reluctance Motors Based on Voltage Injection Combined with Core-Loss Calculation. IEEE Trans. Ind. Electron. 2020, 67, 6031–6042. [Google Scholar] [CrossRef]
- Takayama, K.; Takasaki, Y.; Ueda, R. A new type switched reluctance motor. In Proceedings of the 1988 IEEE Industry Applications Society Annual Meeting, Pittsburgh, PA, USA, 2–7 October 1988; pp. 71–78. [Google Scholar]
- Pan, J.; Cheung, N.; Yang, J. High-precision position control of a novel planar switched reluctance motor. IEEE Trans. Ind. Electron. 2005, 52, 1644–1652. [Google Scholar] [CrossRef]
- Huang, S.D.; Cao, G.Z.; Peng, Y.; Wu, C.; Liang, D.; He, J. Design and analysis of a long-stroke planar switched reluctance motor for positioning applications. IEEE Access 2019, 7, 22976–22987. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, H.; Galea, M.; Li, J.; Gerada, C. Multiobjective optimization of a magnetically levitated planar motor with multilayer windings. IEEE Trans. Ind. Electron. 2016, 63, 3522–3532. [Google Scholar] [CrossRef]
- Ou, T.; Hu, C.; Zhu, Y.; Zhang, M.; Zhu, L. Intelligent feedforward compensation motion control of maglev planar motor with precise reference modification prediction. IEEE Trans. Ind. Electron. 2020, 68, 7768–7777. [Google Scholar] [CrossRef]
- Huang, S.; Chen, L.; Cao, G.; Wu, C.; Xu, J.; He, Z. Predictive position control of planar motors using trajectory gradient soft constraint with attenuation coefficients in the weighting matrix. IEEE Trans. Ind. Electron. 2021, 68, 821–837. [Google Scholar] [CrossRef]
- Huang, S.; Cao, G.; Xu, J.; Cui, Y.; Wu, C.; He, J. Predictive position control of long-stroke planar motors for high-precision positioning applications. IEEE Trans. Ind. Electron. 2021, 68, 796–811. [Google Scholar] [CrossRef]
- San-Miguel, A.; Alenyà, G.; Puig, V. Automated Off-Line Generation of Stable Variable Impedance Controllers According to Performance Specifications. IEEE Robot. Autom. Lett. 2022, 7, 5874–5881. [Google Scholar] [CrossRef]
- Xu, W.; Ismail, M.M.; Liu, Y.; Islam, M.R. Parameter Optimization of Adaptive Flux-Weakening Strategy for Permanent-Magnet Synchronous Motor Drives Based on Particle Swarm Algorithm. IEEE Trans. Power Electron. 2019, 34, 12128–12140. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, H.; Zhu, P. Identification of nonlinear state-space time-delay system. Assem. Autom. 2020, 40, 22–30. [Google Scholar] [CrossRef]
- Vujicic, V.; Vukosavic, S.N. A simple nonlinear model of the switched reluctance motor. IEEE Trans. Energy Convers. 2000, 15, 395–400. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Hu, Z.; Cao, G. Input-Constrained-Nonlinear-Dynamic-Model-Based Predictive Position Control of Planar Motors. IEEE Trans. Ind. Electron. 2021, 68, 7294–7308. [Google Scholar] [CrossRef]
- Sjöberg, J.; Zhang, Q.; Ljung, L. Nonlinear black-box modeling in system identification: A unified overview. Automatica 1995, 31, 1691–1724. [Google Scholar] [CrossRef]
- Andonovski, G.; Lughofer, E.; Škrjanc, I. Evolving Fuzzy Model Identification of Nonlinear Wiener-Hammerstein Processes. IEEE Access 2021, 9, 158470–158480. [Google Scholar] [CrossRef]
- Dong, J. Robust Data-Driven Iterative Learning Control for Linear-Time-Invariant and Hammerstein–Wiener Systems. IEEE Trans. Cybern. 2023, 53, 1144–1157. [Google Scholar] [CrossRef] [PubMed]
- Kayedpour, N.; Samani, A.E.; Kooning, J.D.; Vandevelde, L.; Crevecoeur, G. Model Predictive Control with a Cascaded Hammerstein Neural Network of a Wind Turbine Providing Frequency Containment Reserve. IEEE Trans. Energy Convers. 2022, 37, 198–209. [Google Scholar] [CrossRef]
- Zambrano, J.; Sanchis, J.; Herrero, J.M.; Martínez, M. A Unified Approach for the Identification of Wiener, Hammerstein, and Wiener–Hammerstein Models by Using WH-EA and Multistep Signals. Complexity 2020, 2020, 7132349. [Google Scholar] [CrossRef]
- Zong, T.; Li, J.; Lu, G. Auxiliary model-based multi-innovation PSO identification for Wiener–Hammerstein systems with scarce measurements. Eng. Appl. Artif. Intell. 2021, 106, 104470. [Google Scholar] [CrossRef]
- Khalifa, T.R.; El-Nagar, A.M.; El-Brawany, M.A.; El-Araby, E.A.; El-Bardini, M. A Novel Hammerstein Model for Nonlinear Networked Systems Based on an Interval Type-2 Fuzzy Takagi–Sugeno–Kang System. IEEE Trans. Fuzzy Syst. 2021, 29, 275–285. [Google Scholar] [CrossRef]
- Kothari, K.; Mehta, U.; Prasad, V.; Vanualailai, J. Identification scheme for fractional Hammerstein models with the delayed Haar wavelet. IEEE/CAA J. Autom. Sin. 2020, 7, 882–891. [Google Scholar] [CrossRef]
- Zhang, J. Disturbance-Encoding-Based Neural Hammerstein–Wiener Model for Industrial Process Predictive Control. IEEE Trans. Syst. Man Cybern. 2022, 52, 606–617. [Google Scholar] [CrossRef]
- Han, R.; Wang, R.; Zeng, G. Identification of dynamical systems using a broad neural network and particle swarm optimization. IEEE Access 2020, 8, 132592–132602. [Google Scholar] [CrossRef]
- Son, S.; Lee, H.; Jeong, D.; Oh, K.; Sun, K. A novel physics-informed neural network for modeling electromagnetism of a permanent magnet synchronous motor. Adv. Eng. Inform. 2023, 57, 102035. [Google Scholar] [CrossRef]
- Pham, T.D.; Lee, Y.W.; Park, C.; Park, K.R. Deep Learning-Based Detection of Fake Multinational Banknotes in a Cross-Dataset Environment Utilizing Smartphone Cameras for Assisting Visually Impaired Individuals. Mathematics 2022, 10, 1616. [Google Scholar] [CrossRef]
- Zheng, Y.; Huang, Z.; Tao, J.; Sun, H.; Sun, Q.; Sun, M.; Dehmer, M.; Chen, Z. A Novel Chaotic Fractional-Order Beetle Swarm Optimization Algorithm and Its Application for Load-Frequency Active Disturbance Rejection Control. IEEE Trans. Circuits Syst. II-Express Briefs. 2022, 69, 1267–1271. [Google Scholar] [CrossRef]
- Feng, L.; Sun, X.; Tian, X.; Diao, K. Direct Torque Control with Variable Flux for an SRM Based on Hybrid Optimization Algorithm. IEEE Trans. Power Electron. 2022, 37, 6688–6697. [Google Scholar] [CrossRef]
- Tian, M.; Gao, Y.; He, X.; Zhang, Q.; Meng, Y. Differential Evolution with Group-Based Competitive Control Parameter Setting for Numerical Optimization. Mathematics 2023, 11, 3355. [Google Scholar] [CrossRef]
- Jin, Z.; Sun, X.; Lei, G.; Guo, Y.; Zhu, J. Sliding Mode Direct Torque Control of SPMSMs Based on a Hybrid Wolf Optimization Algorithm. IEEE Trans. Ind. Electron. 2022, 69, 4534–4544. [Google Scholar] [CrossRef]
- Qiang, Z.; Li, C. Two-stage multi-swarm particle swarm optimizer for unconstrained and constrained global optimization. IEEE Access 2020, 8, 124905–124927. [Google Scholar]
- Zhang, W.; Ma, J.; Wang, L.; Jiang, F. Particle-Swarm-Optimization-Based 2D Output Feedback Robust Constraint Model Predictive Control for Batch Processes. IEEE Access 2022, 10, 8409–8423. [Google Scholar] [CrossRef]
- Xia, X.; Song, H.; Zhang, Y.; Gui, L.; Xu, X.; Li, K.; Li, Y. A Particle Swarm Optimization with Adaptive Learning Weights Tuned by a Multiple-Input Multiple-Output Fuzzy Logic Controller. IEEE Trans. Fuzzy Syst. 2023, 31, 2464–2478. [Google Scholar] [CrossRef]
- Yang, X.; Li, H. An adaptive dynamic multi-swarm particle swarm optimization with stagnation detection and spatial exclusion for solving continuous optimization problems. Swarm Intell. 2023, 1, 33–57. [Google Scholar] [CrossRef]
- Bonyadi, M.R. A Theoretical Guideline for Designing an Effective Adaptive Particle Swarm. IEEE Trans. Evol. Comput. 2020, 24, 57–68. [Google Scholar] [CrossRef]
- Pozna, C.; Precup, R.E.; Horváth, E.; Petriu, E.M. Hybrid Particle Filter–Particle Swarm Optimization Algorithm and Application to Fuzzy Controlled Servo Systems. IEEE Trans. Fuzzy Syst. 2022, 30, 4286–4297. [Google Scholar] [CrossRef]
- Li, J.; Guo, L.; Zuo, Y.; Liu, W. A Design Method for Wideband Chaff Element Using Simulated Annealing Algorithm. IEEE Antennas Wirel. Propag. Lett. 2022, 21, 1208–1212. [Google Scholar] [CrossRef]
- Zhang, P.; Song, S.; Niu, S.; Zhang, R. A Hybrid Artificial Immune-Simulated Annealing Algorithm for Multiroute Job Shop Scheduling Problem with Continuous Limited Output Buffers. IEEE Trans. Cybern. 2022, 52, 12112–12125. [Google Scholar] [CrossRef]
- Lee, S.; Kim, S.B. Parallel Simulated Annealing with a Greedy Algorithm for Bayesian Network Structure Learning. IEEE Trans. Knowl. Data Eng. 2020, 32, 1157–1166. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.-D.; Lin, Z.; Cao, G.-Z.; Liu, N.; Mou, H.; Xu, J. Nonlinear Dynamic Model-Based Position Control Parameter Optimization Method of Planar Switched Reluctance Motors. Mathematics 2023, 11, 4067. https://doi.org/10.3390/math11194067
Huang S-D, Lin Z, Cao G-Z, Liu N, Mou H, Xu J. Nonlinear Dynamic Model-Based Position Control Parameter Optimization Method of Planar Switched Reluctance Motors. Mathematics. 2023; 11(19):4067. https://doi.org/10.3390/math11194067
Chicago/Turabian StyleHuang, Su-Dan, Zhixiang Lin, Guang-Zhong Cao, Ningpeng Liu, Hongda Mou, and Junqi Xu. 2023. "Nonlinear Dynamic Model-Based Position Control Parameter Optimization Method of Planar Switched Reluctance Motors" Mathematics 11, no. 19: 4067. https://doi.org/10.3390/math11194067
APA StyleHuang, S. -D., Lin, Z., Cao, G. -Z., Liu, N., Mou, H., & Xu, J. (2023). Nonlinear Dynamic Model-Based Position Control Parameter Optimization Method of Planar Switched Reluctance Motors. Mathematics, 11(19), 4067. https://doi.org/10.3390/math11194067