Urban Traffic Flow Congestion Prediction Based on a Data-Driven Model
Abstract
:1. Introduction
1.1. Literature Review
1.2. Objective and Contribution
- (1)
- the discrete snapshot set is proposed to store the spatial and temporal features of traffic flow over a continuous period;
- (2)
- the evolution of traffic flow is analyzed in various time dimensions (weekly days, weekend days, and one week);
- (3)
- the data-driven model was constructed to predict urban traffic congestion, combining ConvLSTM, batch normalization (BN) and CNN network to study the traffic flow’s spatial and temporal features;
- (4)
- the numerical experiments are conducted on two Chinese cities’ transportation networks, and the proposed model’s performance outperforms traditional statistical and machine learning methods.
2. Methods Description
2.1. Clustering the Congested Regions
2.2. Partitioning Traffic Zones
3. Traffic Congested Flow Prediction Data-Driven Model
3.1. Prediction Data-Driven Model
3.2. The Process of Prediction Model
- Step1:
- Input data.
- Step 2:
- Four ConvLSTM-BN layers.
- Step 3:
- CNN layer.
- Step 4:
- Output the future short-term traffic flow.
3.3. Model Parameters and Experimental Platform
4. Numerical Experiments
4.1. Data Description
4.2. Analysis the Evolutionary Process of Urban Road Congestion
4.2.1. Analysis of the Most Congested Main Road in Xi’an City
4.2.2. The Impact of Residents’ Travel on the Second Ring Road of Xi’an on Weekdays and Weekends
4.3. Model Prediction Results and Analysis
4.3.1. Sensitivity Analysis
4.3.2. Models Comparison
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, S. On feature selection for traffic congestion prediction. Transp. Res. Part C 2013, 26, 160–169. [Google Scholar] [CrossRef]
- Xing, J.; Liu, R.; Zhang, Y.; Choudhury, C.F.; Fu, X.; Cheng, Q. Urban network-wide traffic volume estimation under sparse deployment of detectors. Transp. A 2023, 2197511. [Google Scholar] [CrossRef]
- Jafari, S.; Shahbazi, Z.; Byun, Y. Improving the road and traffic control prediction based on fuzzy logic approach in multiple intersections. Mathematics 2022, 10, 2832. [Google Scholar] [CrossRef]
- Cheng, Q.; Lin, Y.; Zhou, X.S.; Liu, Z. Analytical formulation for explaining the variations in traffic states: A fundamental diagram modeling perspective with stochastic parameters. Eur. J. Oper. Res. 2023, 1, 182–197. [Google Scholar] [CrossRef]
- Jiang, M.; Liu, Z. Traffic flow prediction based on dynamic graph spatial-temporal neural network. Mathematics 2023, 11, 2528. [Google Scholar] [CrossRef]
- Huang, D.; Wang, Y.; Jia, S.; Liu, Z.; Wang, S. A lagrangian relaxation approach for the electric bus charging scheduling optimisation problem. Transp. A 2022, 19, 2023690. [Google Scholar] [CrossRef]
- Wang, Z.; Shi, Y.; Tong, W.; Gu, Z.; Cheng, Q. Car-following models for human-driven vehicles and autonomous vehicles: A systematic review. J. Transp. Eng. Part A 2023, 149, 04023075. [Google Scholar] [CrossRef]
- Gomes, B.; Coelho, J.; Aidos, H. A survey on traffic flow prediction and classification. Intel. Sys. Appl. 2023, 20, 200268. [Google Scholar] [CrossRef]
- Li, L.; Jiang, R.; He, Z.; Chen, X.M.; Zhou, X. Trajectory data-based traffic flow studies: A revisit. Transp. Res. Part C 2020, 114, 225–240. [Google Scholar] [CrossRef]
- Chai, W.; Zheng, Y.; Tian, L.; Qin, J.; Zhou, T. GA-KELM: Genetic-algorithm-improved kernel extreme learning machine for traffic flow forecasting. Mathematics 2023, 11, 3574. [Google Scholar] [CrossRef]
- Bogaerts, T.; Masegosa, A.D.; Angarita-Zapata, J.S.; Onieva, E.; Hellinckx, P. A graph CNN-LSTM neural network for short and long-term traffic forecasting based on trajectory data. Transp. Res. Part C 2020, 112, 62–77. [Google Scholar] [CrossRef]
- Zhou, J.; Qin, X.; Ding, Y.; Ma, H. Spatial-temporal dynamic graph differential equation network for traffic flow forecasting. Mathematics 2023, 11, 2867. [Google Scholar] [CrossRef]
- Kim, T.; Sharda, S.; Zhou, X.; Pendyala, R.M. A stepwise interpretable machine learning framework using linear regression (LR) and long short-term memory (LSTM): City-wide demand-side prediction of yellow taxi and for-hire vehicle (FHV) service. Transp. Res. Part C 2020, 120, 102786. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, Y.; Qi, D. Deep spatio-temporal residual networks for citywide crowd flows prediction. In Proceedings of the AAAI Conference on Artificial Intellgence, Phoenix, AZ, USA, 12–17 February 2016. [Google Scholar]
- Williams, B.M.; Durvasula, P.K.; Brown, D.E. Urban freeway traffic flow prediction: Application of seasonal autoregressive integrated moving average and exponential smoothing models. Transp. Res. Rec. 1998, 1644, 132–141. [Google Scholar] [CrossRef]
- Ding, Q.; Wang, X.F.; Zhang, X.Y.; Sun, Z. Forecasting traffic volume with space-time ARIMA model. Adv. Mater. Res. 2010, 156–157, 979–983. [Google Scholar] [CrossRef]
- Li, L.; He, S.; Zhang, J.; Ran, B. Short—Term highway traffic flow prediction based on a hybrid strategy considering temporal—Spatial information. J. Adv. Transp. 2016, 50, 2029–2040. [Google Scholar] [CrossRef]
- Xia, D.; Wang, B.; Li, H.; Li, Y.; Zhang, Z. A distributed spatial-temporal weighted model on mapreduce for short-term traffic flow forecasting. Neurocomputing 2016, 179, 246–263. [Google Scholar] [CrossRef]
- Chang, H.; Lee, Y.; Yoon, B.; Baek, S. Dynamic near-term traffic flow prediction: System-oriented approach based on past experiences. IET Intell. Transp. Syst. 2012, 6, 292–305. [Google Scholar] [CrossRef]
- Kumar, K.; Parida, M.; Katiyar, V.K. Short term traffic flow prediction for a non urban highway using artificial neural network. Procedia Social Behavioral Sci. 2013, 104, 755–764. [Google Scholar] [CrossRef]
- Lv, Y.; Duan, Y.; Kang, W.; Li, Z.X.; Wang, F. Traffic flow prediction with big data: A deep learning approach. IEEE Trans. Intell. Transp. Syst. 2015, 16, 865–873. [Google Scholar] [CrossRef]
- Ma, X.; Tao, Z.; Wang, Y.; Yu, H.; Wang, Y. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transp. Res. Part C 2015, 54, 187–197. [Google Scholar] [CrossRef]
- Luo, W.; Dong, B.; Wang, Z. Short-term traffic flow prediction based on CNN-SVR hybrid deep learning model. J. Transp. Syst. Eng. Inf. Tech. 2017, 17, 68–74. [Google Scholar]
- Zhu, Z.; Peng, B.; Xiong, C.; Zhang, L. Short-term traffic flow prediction with linear conditional gaussian Bayesian network. J. Adv. Transp. 2016, 50, 1111–1123. [Google Scholar] [CrossRef]
- Wu, Y.; Tan, H. Short-term traffic flow forecasting with spatial-temporal correlation in a hybrid deep learning framework. arXiv 2016. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, W.; Wu, X.; Chen, P.C.Y.; Liu, J. LSTM network: A deep learning approach for short-term traffic forecast. IET Intell. Transp. Syst. 2017, 11, 68–75. [Google Scholar] [CrossRef]
- Duan, Z.; Zhang, K.; Chen, Z.; Liu, Z.; Tang, L.; Yang, Y.; Ni, Y. Prediction of city-scale dynamic taxi origin-destination flows using a hybrid deep neural network combined with travel time. IEEE Access 2019, 7, 127816–127832. [Google Scholar] [CrossRef]
- Jia, J.S.; Lu, X.; Yuan, Y.; Xu, G.; Christakis, N.A. Population flow drives spatio-temporal distribution of COVID-19 in China. Nature 2020, 582, 389–394. [Google Scholar] [CrossRef]
- Islam, M.Z.; Islam, M.M.; Asraf, A. A combined deep CNN-LSTM network for the detection of novel coronavirus (COVID-19) using X-ray images. Inform. Med. Unlocked 2020, 20, 100412. [Google Scholar] [CrossRef]
- Koller, O.; Camgoz, N.C.; Ney, H.; Bowden, R. Weakly supervised learning with multi-stream CNN-LSTM-HMMS to discover sequential parallelism in sign language videos. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 2306–2320. [Google Scholar] [CrossRef]
- Chen, D.; Zheng, X.; Chen, C.; Zhao, W. Remaining useful life prediction of the lithium-ion battery based on CNN-LSTM fusion model and grey relational analysis. Electron. Res. Arch. 2022, 31, 633–655. [Google Scholar] [CrossRef]
- Nigam, A.; Srivastava, S. Hybrid deep learning models for traffic stream variables prediction during rainfall. Multimodal Transp. 2023, 2, 100052. [Google Scholar] [CrossRef]
- Su, F.; Dong, H.; Jia, L.; Sun, X. On urban road traffic state evaluation index system and method. Mod. Phys. Lett. B 2017, 31, 1650428. [Google Scholar] [CrossRef]
- Lv, Y.; Lv, Z.; Cheng, Z.; Zhu, Z.; Rashidi, T.H. TS-STNN: Spatial-temporal neural network based on tree structure for traffic flow prediction. Transp. Res. Part E 2023, 177, 103251. [Google Scholar] [CrossRef]
- Xia, Z.; Li, H.; Chen, Y.; Liao, W. Identify and delimitate urban hotspot areas using a network-based spatiotemporal field clustering method. ISPRS Int. J. Geo-Inf. 2019, 8, 344. [Google Scholar] [CrossRef]
- Huang, D.; Xing, J.; Liu, Z.; An, Q. A multi-stage stochastic optimization approach to the stop-skipping and bus lane reservation schemes. Transp. A 2020, 17, 1272–1304. [Google Scholar] [CrossRef]
- Kumar, K.M.; Reddy, A.R.M. A fast DBSCAN clustering algorithm by accelerating neighbor searching using groups method. Pattern Recognit. 2016, 58, 39–48. [Google Scholar] [CrossRef]
- Yang, H.; Du, L.; Zhang, G.; Ma, T. A traffic flow dependency and dynamics based deep learning aided approach for network-wide traffic speed propagation prediction. Transp. Res. Part B 2023, 167, 99–117. [Google Scholar] [CrossRef]
- Shi, X.; Gao, Z.; Lausen, L.; Wang, H.; Yeung, D.Y.; Wong, W.; Woo, W. Deep learning for precipitation nowcasting: A benchmark and a new model. In Proceedings of the NIPS, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Floating Vehicles Data in Shenzhen City. 2018. Available online: http://www.m2ct.org/view-page.jsp?editId=12&uri=0D00168&gobackUrl=modular-list.jsp&pageType=smxly&menuType=flowUp1 (accessed on 15 April 2018).
- Schönhof, M.; Helbing, D. Empirical features of congested traffic states and their implications for traffic modeling. Transp. Sci. 2007, 41, 135–166. [Google Scholar] [CrossRef]
- Ma, X.; Dai, Z.; He, Z.; Ma, J.; Wang, Y. Learning traffic as images: A deep convolutional neural network for large-scale transportation network speed prediction. Sensors 2017, 17, 818. [Google Scholar] [CrossRef]
- Liu, Z.; Lv, C.; Wang, S.; Liu, P.; Meng, Q. A gaussian-process-based data-driven traffic flow model and its application in road capacity analysis. IEEE Trans. Intell. Transp. Syst. 2023, 24, 1544–1563. [Google Scholar] [CrossRef]
- Huo, J.; Liu, Z.; Chen, J.; Cheng, Q.; Meng, Q. Bayesian optimization for congestion pricing problems: A general framework and its instability. Transp. Res. Part B 2023, 169, 1–28. [Google Scholar] [CrossRef]
- Fall, A.N. Analysis of social acceptability in the implementation of a congestion pricing area in senegal. Multimodal Transp. 2022, 1, 100036. [Google Scholar] [CrossRef]
Speed (km/h) | Traffic Status | Congestion Level |
---|---|---|
Very smooth | 0 | |
unblocked | 1 | |
Light congestion | 2 | |
Moderate congestion | 3 | |
Severe congestion | 4 |
Dataset | Data Scale | Study Area | Data Type | Storage Scale |
---|---|---|---|---|
Xi’an city, China | Three months (1 September to 30 November 2016) | 396.23 km2 | float vehicles’ GPS trajectory | 80.8 GB |
Shenzhen city, China | One week (25–31 March 2018) | 16.2 km2 | float vehicles’ GPS trajectory | 199.2 MB |
Vehicles ID | Timestamp | Longitude | Latitude | Speed (Km/h) | Direction Angle |
---|---|---|---|---|---|
*AXXXXX | 20160901 15:12:01 | 34.094 640 | 108.089 270 | 45 | 106 |
*AXXXXX | 20160901 15:14:01 | 34.094 630 | 108.082 270 | 50 | 106 |
*BXXXXX | 20180325 16:08:00 | 22.544 380 | 114.003 635 | 48 | 75 |
*BXXXXX | 20180325 16:10:0 | 22.544 390 | 114.003 632 | 50 | 78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Chu, Z.; Xing, J.; Zhang, H.; Cheng, Q. Urban Traffic Flow Congestion Prediction Based on a Data-Driven Model. Mathematics 2023, 11, 4075. https://doi.org/10.3390/math11194075
Zhang K, Chu Z, Xing J, Zhang H, Cheng Q. Urban Traffic Flow Congestion Prediction Based on a Data-Driven Model. Mathematics. 2023; 11(19):4075. https://doi.org/10.3390/math11194075
Chicago/Turabian StyleZhang, Kai, Zixuan Chu, Jiping Xing, Honggang Zhang, and Qixiu Cheng. 2023. "Urban Traffic Flow Congestion Prediction Based on a Data-Driven Model" Mathematics 11, no. 19: 4075. https://doi.org/10.3390/math11194075
APA StyleZhang, K., Chu, Z., Xing, J., Zhang, H., & Cheng, Q. (2023). Urban Traffic Flow Congestion Prediction Based on a Data-Driven Model. Mathematics, 11(19), 4075. https://doi.org/10.3390/math11194075