A Boundary-Element Analysis of Crack Problems in Multilayered Elastic Media: A Review
Abstract
:1. Introduction
2. Statement of Problem
3. Displacement Discontinuity Method (DDM)
3.1. Homogeneous Medium
3.2. The Higher-Order Tip-Element Approach
3.3. Two Bonded Half-Planes
3.4. Summary
4. Direct Method (DM)
4.1. Transfer Stiffness Method (TSM)
- (1)
- It requires elements on the top and bottom interfaces in pair;
- (2)
- It categorizes the elements according to the type of unknown (displacement or traction). In practical applications, however, the displacement in mm and traction in kPa or MPa differs in magnitude of several orders. Therefore, an extra scaling that makes displacement and traction in the same order is necessary in case of ill-conditioning, undermining the efficiency of the method;
- (3)
- It results in a highly ill-conditioned matrix H when dealing with a thick layer.
4.2. Successive Stiffness Method (SSM)
4.3. Summary
5. Consecutive Stiffness Method (CSM)
5.1. Pre-Treatment
5.2. Formulations and Algorithm
5.3. Numerical Examples
5.4. Summary
6. Combined Boundary-Element Method
6.1. Formulations and Algorithm
6.2. Numerical Examples
6.2.1. Two Bonded Half-Planes
6.2.2. General Multilayered Media
6.2.3. Approximation of Thin-Layer Scaling
6.3. Summary
7. Summary and Outlook
- The DDM is an ideal method for crack problems due to its high efficiency. The limited applicability, however, restricts its application severely. The attempts to extend it for general multilayered media by exploiting the method of images with a superposition scheme turn out to be first-order approximates. As a result, new approaches are encouraged for a full solution to extend the DDM.
- Initiation and propagation of a fatigue crack make notable contribution to failure in industry. Computation of such phenomena in multilayered material continues posing challenges for modeling and simulation. In addition, it gets even more complicated when material becomes brittle or quasi-brittle. As a result, it may be interesting to address such issues with the BEM.
- It is getting popular to implement the PFM with the FEM for the analysis of complicated crack patterns in the latest decade. The former derives partial differential governing equations, which are then solved with the latter numerically. On the other hand, few studies have been conducted to incorporate the PFM into the BEM. Thus, it will be quite encouraging to combine the PFM with the BEM for a more efficient and more accurate analysis of more complex crack problems in multilayered media.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Xiao, H.; Yue, Z. Elastic fields in two joined transversely isotropic media of infinite extent as a result of rectangular loading. Int. J. Numer. Anal. Methods Geomech. 2013, 37, 247–277. [Google Scholar] [CrossRef]
- Xie, Y.; Xiao, H.; Yue, Z. The behavior of vertically non-homogeneous elastic solids under internal rectangular loads. Eur. J. Environ. Civ. Eng. 2022, 26, 1936–1961. [Google Scholar] [CrossRef]
- Xiao, B.; Fang, J.; Long, G.; Tao, Y.; Huang, Z. Analysis of thermal conductivity of damaged tree-like bifurcation network withfractal roughened surfaces. Fractals 2022, 30, 2250104. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, B.; Tu, B.; Zhang, G.; Wang, Y.; Long, G. Fractal analysis for thermal conductivity of dual porous media embedded with asymmetric tree-like bifurcation networks. Fractals 2023, 31, 2350046. [Google Scholar] [CrossRef]
- Hamzah, K.; Long, N.; Senu, N.; Eshkuvatov, K. Numerical solution for crack phenomenon in dissimilar materials under various mechanical loadings. Symmetry 2021, 13, 235. [Google Scholar] [CrossRef]
- Liang, M.; Liu, Y.; Xiao, B.; Yang, S.; Wang, Z. An analytical model for the transverse permeability of gas diffusion layer with electrical double layer effects in proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2018, 43, 17880–17888. [Google Scholar] [CrossRef]
- Xiao, B.; Huang, Q.; Chen, H.; Chen, X.; Long, G. A fractal model for capillary flow through a single tortuous capillary with roughened surfaces in fibrous porous media. Fractals 2021, 29, 2150017. [Google Scholar] [CrossRef]
- An, S.; Zou, H.; Li, W.; Deng, Z. Experimental investigation on the vibration attenuation of tensegrity prisms integrated with particle dampers. Acta Mech. Solida Sin. 2022, 35, 672–681. [Google Scholar] [CrossRef]
- Gao, J.; Xiao, B.; Tu, B.; Chen, F.; Liu, Y. A fractal model for gas diffusion in dry and wet fibrous media with tortuous converging-diverging capillary bundle. Fractals 2022, 30, 2250176. [Google Scholar] [CrossRef]
- Liu, S.; Valko, P.; McKetta, S.; Liu, X. Microseismic closure window characterizes hydraulic-fracture geometry better. SPE Reserv. Eval. Eng. 2017, 20, 423–445. [Google Scholar] [CrossRef]
- Adachi, J.; Siebrits, E.; Peirce, A.; Desroches, J. Computer simulation of hydraulic fractures. Int. J. Rock Mech. Min. Sci. 2007, 44, 739–757. [Google Scholar] [CrossRef]
- Long, G.; Liu, S.; Xu, G.; Wong, S.; Chen, H.; Xiao, B. A perforation-erosion model for hydraulic-fracturing applications. SPE Prod. Oper. 2018, 33, 770–783. [Google Scholar] [CrossRef]
- Shen, B.; Stephansson, O.; Rinne, M. Modelling Rock Fracturing Processes: A Fracture Mechanics Approach Using FRACOD; Springer: London, UK, 2014. [Google Scholar]
- Cui, C.; Zhang, Q.; Banerjee, U.; Babuška, I. Stable generalized finite element method (SGFEM) for three-dimensional crack problems. Numer. Math. 2022, 152, 475–509. [Google Scholar] [CrossRef]
- Liu, S.; Valko, P. A rigorous hydraulic-fracture equilibrium-height model for multilayer formations. SPE Prod. Oper. 2018, 33, 214–234. [Google Scholar] [CrossRef]
- Xiao, B.; Zhu, H.; Chen, F.; Long, G.; Li, Y. A fractal analytical model for Kozeny-Carman constant and permeability of roughened porous media composed of particles and converging-diverging capillaries. Powder Technol. 2023, 420, 118256. [Google Scholar] [CrossRef]
- Cheng, W.; Jiang, G.; Xie, J.; Wei, Z.; Zhou, Z.; Li, X. A simulation study comparing the Texas two-step and the multistage consecutive fracturing method. Pet. Sci. 2019, 16, 1121–1133. [Google Scholar] [CrossRef]
- Xiao, H.; Yue, Z.; Zhao, X. A generalized Kelvin solution based method for analyzing elastic fields in heterogeneous rocks due to reservoir water impoundment. Comput. Geosci. 2012, 43, 126–136. [Google Scholar] [CrossRef]
- Xiao, H.; Yue, Z. A three-dimensional displacement discontinuity method for crack problems in layered rocks. Int. J. Rock Mech. Min. Sci. 2011, 48, 412–420. [Google Scholar] [CrossRef]
- Hirose, S.; Sharma, M. Numerical Modelling of Fractures in Multilayered Rock Formations Using a Displacement Discontinuity Method. In In Proceedings of the 52nd U.S. Rock Mechanics/Geomechanics Symposium, Seattle, WA, USA, 17–20 June 2018. [Google Scholar]
- Zeng, Q.; Bo, L.; Liu, W.; Huang, Z.; Yao, J. An investigation of hydraulic fracture propagation in multi-layered formation via the phase field method. Comput. Geotech. 2023, 156, 105258. [Google Scholar] [CrossRef]
- Zhu, D.; Zhang, L.; Song, X.; Lian, H.; Niu, D. Propagation mechanism of the hydraulic fracture in layered-fractured-plastic formations. Int. J. Fract. 2023, 241, 189–210. [Google Scholar] [CrossRef]
- Xiao, B.; Wang, P.; Wu, J.; Zhu, H.; Liu, M.; Liu, Y.; Long, G. A novel fractal model for gas diffusion coefficient in dry porous media embedded with a damaged tree-like branching network. Fractals 2022, 30, 2250150. [Google Scholar] [CrossRef]
- Alizadeh, R.; Marji, M.; Abdollahipour, A.; Sagand, M. Numerical simulation of fatigue crack propagation in heterogeneous geomaterials under varied loads using displacement discontinuity method. J. Rock Mech. Geotech. Eng. 2023, 15, 702–716. [Google Scholar] [CrossRef]
- Zhuang, X.; Li, X.; Zhou, S. Transverse penny-shaped hydraulic fracture propagation in naturally-layered rocks under stress boundaries: A 3D phase field modeling. Comput. Geotech. 2023, 155, 105205. [Google Scholar] [CrossRef]
- Zhang, G.; Guo, T.; Elkhodary, K.; Tang, S.; Guo, X. Mixed Graph-FEM phase field modeling of fracture in plates and shells with nonlinearly elastic solids. Comput. Methods Appl. Mech. Eng. 2022, 389, 114282. [Google Scholar] [CrossRef]
- Li, P.; Li, W.; Li, B.; Yang, S.; Shen, Y.; Wang, Q.; Zhou, K. A review on phase field models for fracture and fatigue. Eng. Fract. Mech. 2023, 289, 109419. [Google Scholar] [CrossRef]
- Zhang, G.; Qiu, H.; Elkhodary, K.; Tang, S.; Peng, D. Modeling tunable fracture in hydrogel shell structures for biomedical applications. Gels 2022, 8, 515. [Google Scholar] [CrossRef] [PubMed]
- Chen, L. Phase-Field Modelling of Material Microstructure. Multiscale Materials Modelling Fundamentals and Applications; Woodhead Publishing: Sawston, UK, 2007; pp. 62–83. [Google Scholar]
- Zhang, G.; Guo, T.; Guo, X.; Tang, S.; Flemming, M.; Liu, W. Fracture in tension-compression-asymmetry solids via phase field modeling. Comput. Methods Appl. Mech. Eng. 2019, 357, 112573. [Google Scholar] [CrossRef]
- Zhang, G.; Tang, C.; Chen, P.; Long, G.; Cao, J.; Tang, S. Advancements in phase-field modeling for fracture in nonlinear elastic solids under finite deformations. Mathematics 2023, 11, 3366. [Google Scholar] [CrossRef]
- Zhang, Q.; Cui, C.; Banerjee, U.; Babuška, I. A condensed generalized finite element method (CGFEM) for interface problems. Comput. Methods Appl. Mech. Eng. 2022, 391, 114537. [Google Scholar] [CrossRef]
- Ambati, M.; Gerasimov, T.; De Lorenzis, L. A review on phase-field models of brittle fracture and a new fast hybrid formulation. Comput. Mech. 2015, 55, 383–405. [Google Scholar] [CrossRef]
- Cheng, W.; Jin, Y.; Chen, M.; Jiang, G. Numerical stress analysis for the multi-casing structure inside a wellbore in the formation using the boundary element method. Pet. Sci. 2017, 14, 126–137. [Google Scholar] [CrossRef]
- Wang, P.; Xiao, B.; Gao, J.; Zhu, H.; Liu, M.; Long, G.; Li, P. A novel fractal model for spontaneous imbibition in damaged tree-like branching networks. Fractals 2023, 31, 2350010. [Google Scholar] [CrossRef]
- Cheng, W.; Lu, C.; Feng, G.; Xiao, B. Ball sealer tracking and seating of temporary plugging fracturing technology in the perforated casing of a horizontal well. Energy Explor. Exploit. 2021, 39, 2045–2061. [Google Scholar] [CrossRef]
- Peirce, A.; Siebrits, E. Uniform asymptotic approximations for accurate modeling of cracks in layered elastic media. Int. J. Fract. 2001, 110, 205–239. [Google Scholar] [CrossRef]
- Blandford, G.; Ingraffea, A.; Liggett, J. Two-dimensional stress intensity factor computations using the boundary element method. Int. J. Numer. Methods Eng. 1981, 17, 387–404. [Google Scholar] [CrossRef]
- Detournay, E.; Gordeliy, E. Displacement discontinuity method for modeling axisymmetric cracks in an elastic half-space. Int. J. Solids Struct. 2011, 48, 2614–2629. [Google Scholar]
- Yue, Z.; Xiao, H. Generalized Kelvin solution based boundary element method for crack problems in multilayered solids. Eng. Anal. Bound. Elem. 2002, 26, 691–705. [Google Scholar] [CrossRef]
- Crouch, S.; Starfield, A. Boundary Element Methods in Solid Mechanics; George Allen & Unwein: London, UK, 1983. [Google Scholar]
- Thompson, W. Transmission of elastic waves through a stratified medium. J. Appl. Phys. 1950, 21, 89–93. [Google Scholar] [CrossRef]
- Gilbert, F.; Backus, G. Propagator matrices in elastic wave and vibration problems. Geophysics 1966, 31, 326–332. [Google Scholar] [CrossRef]
- Buffler, H. Theory of elasticity of a multilayered medium. J. Elast. 1971, 1, 125–143. [Google Scholar] [CrossRef]
- Peirce, A.; Siebrits, E. The scaled flexibility matrix method for the efficient solution of boundary value problems in 2D and 3D layered elastic media. Comput. Methods Appl. Mech. Eng. 2001, 190, 5935–5956. [Google Scholar] [CrossRef]
- Benitez, F.; Rosakis, A. Three-dimensional elastostatics of a layer and a layered medium. J. Elast. 1987, 18, 3–50. [Google Scholar] [CrossRef]
- Shou, K.; Napier, J. A two-dimensional linear variation displacement discontinuity method for three-layered elastic media. Int. J. Rock Mech. Min. Sci. 1999, 36, 719–729. [Google Scholar] [CrossRef]
- Shou, K. A superposition scheme to obtain fundamental boundary element solutions in multi-layered elastic media. Int. J. Numer. Anal. Methods Geomech. 2000, 24, 795–814. [Google Scholar] [CrossRef]
- Crouch, S. Solution of plane elasticity problems by the displacement discontinuity method. Int. J. Numer. Methods Eng. 1976, 10, 301–343. [Google Scholar] [CrossRef]
- Cheng, W.; Lu, C.; Xiao, B. Perforation optimization of intensive-stage fracturing in a horizontal well using a coupled 3D-DDM fracture model. Energies 2021, 14, 2393. [Google Scholar] [CrossRef]
- Long, G.; Xu, G. The effects of perforation erosion on practical hydraulic-fracturing applications. SPE J. 2017, 22, 645–659. [Google Scholar] [CrossRef]
- Cheng, W.; Lu, C.; Zhou, Z. Modeling of borehole hydraulic fracture initiation and propagation with pre-existing cracks using the displacement discontinuity method. Geotech. Geol. Eng. 2020, 38, 2903–2912. [Google Scholar] [CrossRef]
- Maier, G.; Novati, G. On boundary element-transfer matrix analysis of layered elastic systems. Eng. Anal. 1986, 3, 208–216. [Google Scholar] [CrossRef]
- Maier, G.; Novati, G. Boundary element elastic analysis of layered soils by a successive stiffness method. Int. J. Numer. Anal. Methods Geomech. 1987, 11, 435–447. [Google Scholar] [CrossRef]
- Asaro, R.; Lubarda, V. Mechanics of Solids and Materials; Cambridge University Press: New York, NY, USA, 2006. [Google Scholar]
- Yan, X. An effective boundary element method for analysis of crack problems in a plane elastic plate. Appl. Math. Mech. 2005, 26, 814–822. [Google Scholar]
- Shou, K.; Crouch, S. A higher order displacement discontinuity method for analysis of crack problems. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1995, 32, 49–55. [Google Scholar] [CrossRef]
- Shou, K.; Siebrits, E.; Crouch, S. A higher-order displacement discontinuity method for three-dimensional elastostatic problems. Int. J. Rock Mech. Min. Sci. 1997, 34, 317–322. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Wu, K. A new higher-order displacement discontinuity method based on the joint element for analysis of close-spacing planar fractures. SPE J. 2022, 27, 1123–1139. [Google Scholar] [CrossRef]
- Dundurs, J. Elastic Interactions of Dislocations with Inhomogeneities; ASME: New York, NY, USA, 1969; pp. 70–115. [Google Scholar]
- Erdogan, F.; Biricikoglu, V. Two bonded half planes with a crack going through the interface. Int. J. Eng. Sci. 1973, 11, 745–766. [Google Scholar] [CrossRef]
- Cook, L.; Erdogan, F. Stresses in bonded materials with a crack perpendicular to the interface. Int. J. Eng. Sci. 1972, 10, 677–697. [Google Scholar] [CrossRef]
- Siebrits, E.; Crouch, S. On the paper “A two-dimensional linear variation displacement discontinuity method for three-layered elastic media” by Keh-Jian Shou and J.A.L. Napier, International Journal of Rock Mechanics and Mining Sciences, Vol. 36(6), 719-729, 1999. Int. J. Rock Mech. Min. Sci. 2000, 37, 873–875. [Google Scholar] [CrossRef]
- Shou, K.; Napier, J. Author’s reply to discussion by E. Siebrits and S. L. Crouch regarding the paper ‘A two-dimensional linear variation displacement discontinuity method for three-layered elastic media’, Keh-Jian Shou and J.A.L. Napier, International Journal of Rock Mechanics and Mining Sciences, Vol. 36(6), 719–729, 1999. Int. J. Rock Mech. Min. Sci. 2000, 37, 877–878. [Google Scholar]
- Nowak, P.; Hall, J. Direct boundary element method for dynamics in a half-space. Bull. Seismol. Soc. Am. 1993, 83, 1373–1390. [Google Scholar] [CrossRef]
- Segond, D.; Tafreshi, A. Stress analysis of three-dimensional contact problems using the boundary element method. Eng. Anal. Bound. Elem. 1998, 22, 199–214. [Google Scholar] [CrossRef]
- Tsinopoulos, S.; Kattis, S.; Polyzos, D.; Beskos, D. An advanced boundary element method for axisymmetric elastodynamic analysis. Comput. Methods Appl. Mech. Eng. 1999, 175, 53–70. [Google Scholar] [CrossRef]
- Oliveria, M.; Dumont, N.; Selvadurai, A. Boundary element formulation of axisymmetric problems for an elastic halfspace. Eng. Anal. Bound. Elem. 2012, 36, 1478–1492. [Google Scholar] [CrossRef]
- Hattori, G.; Alatawi, I.; Trevelyan, J. An extended boundary element method for formulation for the direct calculation of the stress intensity factors in fully anisotropic materials. Int. J. Numer. Anal. Methods Geomech. 2017, 109, 965–981. [Google Scholar] [CrossRef]
- Linkov, A.; Fillipov, N. Difference equations approach to the analysis of layered systems. Meccanica 1991, 26, 195–209. [Google Scholar] [CrossRef]
- Siebrits, E.; Peirce, A. An efficient multi-layer planar 3D fracture growth algorithm using a fixed mesh approach. Int. J. Numer. Methods Eng. 2002, 53, 691–717. [Google Scholar] [CrossRef]
- Long, G.; Liu, Y.; Xu, W.; Zhou, P.; Zhou, J.; Xu, G.; Xiao, B. Analysis of crack problems in multilayered elastic medium by a consecutive stiffness method. Mathematics 2022, 10, 4403. [Google Scholar] [CrossRef]
- Cheng, W.; Jiang, G.; Zhou, Z.; Wei, Z.; Li, X. Numerical simulation for the dynamic breakout of a borehole using boundary element method. Geotech. Geol. Eng. 2019, 38, 2873–2881. [Google Scholar] [CrossRef]
- Al Hameli, F.; Suboyin, A.; Al Kobaisi, M.; Rahman, M.; Haroun, M. Modeling fracture propagation in a dual-porosity system: Pseudo-3D-carter-dual-porosity model. Energies 2022, 15, 6779. [Google Scholar] [CrossRef]
- Donstov, E. Analysis of a constant height hydraulic fracture driven by a power-law fluid. Rock Mech. Bull. 2022, 1, 100003. [Google Scholar]
- Luo, T.; Liu, S.; Liu, S. A productivity model for vertical wells with horizontal multi-fractures. Int. J. Oil Gas Coal Technol. 2022, 31, 225–241. [Google Scholar] [CrossRef]
- Cheng, H.; Detournay, A. A direct boundary element method for plane strain poroelasticity. Int. J. Numer. Anal. Methods Geomech. 1988, 12, 551–572. [Google Scholar] [CrossRef]
- Zhai, Z.; Fonseca, E.; Azad, A.; Cox, B. A new tool for multi-cluster & multi-well hydraulic fracture modeling. In Proceedings of the SPE Hydraulic Fracturing Technology Conference, Woodlands, TX, USA, 3–5 February 2015. [Google Scholar]
- Munoz, L.; Mejia, C.; Rueda, J.; Roehl, D. Pseudo-coupled hydraulic fracturing analysis with displacement discontinuity and finite element methods. Eng. Fract. Mech. 2022, 274, 108774. [Google Scholar] [CrossRef]
- Long, G.; Xu, G. A combined boundary integral method for analysis of crack problems in multilayered elastic media. Int. J. Appl. Mech. 2016, 8, 1650070. [Google Scholar] [CrossRef]
Method | Duration for 5 Elements (s) | Duration for 100 Elements (s) |
---|---|---|
DDM | 0.0050 | 0.0068 |
DDM with tip element | 0.0051 | 0.0071 |
DM | 0.0650 | 1.2066 |
Method | Duration (s) | ||
---|---|---|---|
b1/b2 = 1/25 | b1/b2 = 1/1 | b1/b2 = 2/1 | |
DDM | 0.052 | 0.010 | 0.015 |
CSM | 6.050 | 0.042 | 0.311 |
DM | 70.24 | 0.153 | 1.914 |
Method | Duration (s) | ||
---|---|---|---|
b1/b2 = 1/25 | b1/b2 = 1/1 | b1/b2 = 2/1 | |
DDM | 0.052 | 0.010 | 0.015 |
Combined method | 0.723 | 0.023 | 0.073 |
CSM | 6.050 | 0.042 | 0.311 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lan, L.; Zhou, J.; Xu, W.; Long, G.; Xiao, B.; Xu, G. A Boundary-Element Analysis of Crack Problems in Multilayered Elastic Media: A Review. Mathematics 2023, 11, 4125. https://doi.org/10.3390/math11194125
Lan L, Zhou J, Xu W, Long G, Xiao B, Xu G. A Boundary-Element Analysis of Crack Problems in Multilayered Elastic Media: A Review. Mathematics. 2023; 11(19):4125. https://doi.org/10.3390/math11194125
Chicago/Turabian StyleLan, Lei, Jiaqi Zhou, Wanrong Xu, Gongbo Long, Boqi Xiao, and Guanshui Xu. 2023. "A Boundary-Element Analysis of Crack Problems in Multilayered Elastic Media: A Review" Mathematics 11, no. 19: 4125. https://doi.org/10.3390/math11194125
APA StyleLan, L., Zhou, J., Xu, W., Long, G., Xiao, B., & Xu, G. (2023). A Boundary-Element Analysis of Crack Problems in Multilayered Elastic Media: A Review. Mathematics, 11(19), 4125. https://doi.org/10.3390/math11194125