q-Analogs of and Their Applications
Abstract
:1. Introduction
2. -Analogue of and Their Applications
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Euler, L. Meditationes circa singulare serierum genus. Novi Comment. Acad. Sci. Petropolitanae 1776, 20, 140–186. [Google Scholar]
- Zhao, J. Multiple q-zeta functions and multiple q-polylogarithms. Ramanujan J. 2007, 14, 189–221. [Google Scholar] [CrossRef]
- Boyadzhiev, K.N. Power series with skew-harmonic numbers, dilogarithms, and double integrals. Tatra Mt. Math. Publ. 2013, 56, 93–108. [Google Scholar] [CrossRef]
- Dattoli, G.; Licciardi, S.; Sabia, E.; Srivastava, H.M. Some properties and generating functions of generalized harmonic numbers. Mathematics 2019, 7, 577. [Google Scholar] [CrossRef]
- Munarini, E. Riordan matrices and sums of harmonic numbers. Appl. Anal. Discret. Math. 2011, 5, 176–200. [Google Scholar] [CrossRef]
- Spieß, J. Some identities involving harmonic numbers. Math. Comput. 1990, 55, 839–863. [Google Scholar] [CrossRef]
- Cereceda, J.L. An introduction to hyperharmonic numbers (classroom note). Int. J. Math. Educ. Sci. Tech. 2015, 46, 461–469. [Google Scholar] [CrossRef]
- Chen, Z.; Ömür, N.; Koparal, S.; Khan, W.A. Some identities with multi-generalized q-hyperharmonic numbers of order r. Symmetry 2023, 15, 917. [Google Scholar] [CrossRef]
- Choi, J.; Srivastava, H.M. Some summation formulas involving harmonic numbers and generalized harmonic numbers. Math. Comput. Model. 2011, 54, 2220–2234. [Google Scholar] [CrossRef]
- Jackson, H.F. On q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Koparal, S.; Ömür, N.; Çolak, C.D. Sum applications on q-analog of the generalized hyperharmonic numbers of order r, . Hacet. J. Math. Stat. 2020, 49, 2094–2103. [Google Scholar] [CrossRef]
- Ömür, N.; Koparal, S. On the matrices with the generalized hyperharmonic numbers of order r. Asian-Eur. J. Math. 2018, 11, 1850045. [Google Scholar] [CrossRef]
- Ömür, N.; Bilgin, G. Some applications of the generalized hyperharmonic numbers of order r, . Adv. Appl. Math. Sci. 2018, 17, 617–627. [Google Scholar]
- WolframMathWorld. Available online: https://mathworld.wolfram.com/HarmonicNumber.html (accessed on 28 September 2023).
- Guo, D.; Chu, W. Summation formulae involving multiple harmonic numbers. Appl. Anal. Discret. Math. 2021, 15, 201–212. [Google Scholar] [CrossRef]
- Jackson, H.F. On q-definite integrals on q-functions and a certain difference operator. Trans. R. Soc. Edinb. 1908, 46, 253–281. [Google Scholar] [CrossRef]
- Ernst, T. A Method for q-calculus. J. Nonlinear Math. Phys. 2003, 10, 487–525. [Google Scholar] [CrossRef]
- Exton, H. q-Hypergeometric Functions and Applications; Halstead Press: New York, NY, USA; Ellis Horwood: Chichester, UK, 1983; ISBN 0853124914. [Google Scholar]
- Mansour, T.; Shattuck, M. A q-analog of the hyperharmonic numbers. Afr. Mat. 2014, 25, 147–160. [Google Scholar] [CrossRef]
- Rahman, M. An addition theorem and some product formulas for q-Bessel functions. Canad. J. Math. 1988, 40, 1203–1221. [Google Scholar] [CrossRef]
- Vaksman, L.L.; Korogodskii, L.I. An algebra of bounded functions on the quantum group of the motions of the plane and q-analogues of Bessel functions. Soviet Math. Dokl. 1989, 39, 173–177. [Google Scholar]
- Yener, G.; Emiroğlu, I. A q-analogue of the multiplicative calculus: q-multiplicative calculus. Discret. Contin. Dyn. Syst. Ser. S 2015, 8, 1435–1450. [Google Scholar] [CrossRef]
- Bayad, A.; Hamahata, Y. Polylogarithms and poly-Bernoulli polynomials. Kyushu. J. Math. 2011, 65, 15–24. [Google Scholar] [CrossRef]
- Mansour, T. Identities for sums of a q-analogue of polylogarithm functions. Lett. Math. Phys. 2009, 87, 1–18. [Google Scholar] [CrossRef]
- Andrews, G.E.; Askey, R.; Roy, R. Special Functions; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Kim, T. A note on q-Zeta Functions. In Proceedings of the 15th International Conference of the Jangjeon Mathematical Society, Seoul, Republic of Korea, 5–7 August 2004; pp. 110–114. [Google Scholar]
- Koornwinder, B.A. Special functions and q-commuting variables. Fields Inst. Commun. 1997, 14, 131–166. [Google Scholar]
- Kim, T.; Kim, D.S.; Kim, H.K. On q-derangement numbers and polynomials. Fractals 2022, 30, 2240200. [Google Scholar] [CrossRef]
- Jackson, H.F. q-difference equations. Am. J. Math. 1910, 32, 305–314. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, N.; Khan, S.; Ahmad, Q.Z.; Khan, B. A class of k-symmetric harmonic functions involving a certain q-derivative operator. Mathematics 2021, 9, 1812. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, H.; Koparal, S.; Ömür, N.; Khan, W.A.
q-Analogs of
Guan H, Koparal S, Ömür N, Khan WA.
q-Analogs of
Guan, Hao, Sibel Koparal, Neşe Ömür, and Waseem Ahmad Khan.
2023. "q-Analogs of
Guan, H., Koparal, S., Ömür, N., & Khan, W. A.
(2023). q-Analogs of