LRFID-Net: A Local-Region-Based Fake-Iris Detection Network for Fake Iris Images Synthesized by a Generative Adversarial Network
Abstract
:1. Introduction
- In this study, to generate more high-resolution fake images than the fake iris images generated using RaSGANs in prior studies, a CycleGAN was used; Gaussian blur was used to remove the GAN fingerprint to make it possible to generate more high-quality fake iris images.
- Unlike most previous studies that used the global iris region for PAD, a local-region-based fake-iris detection network (LRFID-Net) was developed that performs PAD based on a segmented local region with reference to the detected iris region.
- In LRFID-Net, three feature maps are obtained using the iris region and the upper and lower eyelash regions as inputs to the dense block. By performing channel-wise concatenation of the feature maps thus obtained and using the results as inputs to the shallow model, classification into live or fake iris images is performed.
- We release the proposed models with algorithms and synthetic iris images generated using the GAN via Github site [9] for objective performance evaluation.
2. Related Works
2.1. PAD Using Fabricated Artifacts
2.2. PAD Using Generated Fake Image
3. Proposed Method
3.1. Overall Process of Proposed Method
3.2. Generating Training Dataset of Fake Images using CycleGAN
3.3. Iris Detection and Definitions of Iris, Upper Eyelash, and Lower Eyelash Regions
3.4. Proposed LRFID-Net Model
4. Experimental Results
4.1. Experimental Databases and Setups
4.2. Training
4.2.1. Training of CycleGAN for Generating Fake Images
4.2.2. Training of LRFID-Net for PAD
4.3. Testing of Proposed Method
4.3.1. Evaluation Metric
4.3.2. Performance Evaluation of Image Quality
4.3.3. Performance Evaluation of PAD with LiveDet-Iris-2017-Warsaw
Ablation Study
Comparisons with the State-of-the-Art Methods
4.3.4. Performance Evaluation of PAD with LiveDet-Iris-2017-ND
Ablation Study
Comparisons with the State-of-the-Art Methods
4.4. Statistical Analysis
4.5. Processing Time
4.6. Comparisons of Processing Complexity Using Our Method and the State-of-the-Art Methods
4.7. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, K.; Xu, Z.; Fei, J. DualSANet: Dual Spatial Attention Network for Iris Recognition. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–8 January 2021; pp. 888–896. [Google Scholar]
- Luo, Z.; Wang, Y.; Wang, Z.; Sun, Z.; Tan, T. FedIris: Towards More Accurate and Privacy-Preserving Iris Recognition via Federated Template Communication. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, New Orleans, LA, USA, 19–20 June 2022; pp. 3357–3366. [Google Scholar]
- Agarwal, A.; Noore, A.; Vatsa, M.; Singh, R. Generalized Contact Lens Iris Presentation Attack Detection. IEEE Trans. Biom. Behav. Identity Sci. 2022, 4, 373–385. [Google Scholar] [CrossRef]
- Fang, M.; Damer, N.; Boutros, F.; Kirchbuchner, F.; Kuijper, A. Iris Presentation Attack Detection by Attention-Based and Deep Pixel-Wise Binary Supervision Network. In Proceedings of the IEEE International Joint Conference on Biometrics, Shenzhen, China, 4–7 August 2021; pp. 1–8. [Google Scholar]
- Fang, Z.; Czajka, A.; Bowyer, K.W. Robust Iris Presentation Attack Detection Fusing 2D and 3D Information. IEEE Trans. Inform. Forensic Secur. 2021, 16, 510–520. [Google Scholar] [CrossRef]
- Jolicoeur-Martineau, A. The Relativistic Discriminator: A Key Element Missing from Standard GAN. arXiv 2018, arXiv:1807.00734. [Google Scholar]
- Mirza, M.; Osindero, S. Conditional Generative Adversarial Nets. arXiv 2014, arXiv:1411.1784. [Google Scholar]
- Zhu, J.-Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks. In Proceedings of IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2242–2251. [Google Scholar]
- Iris Spoof Detection Model with Synthetic Iris Images. Available online: https://github.com/dmdm2002/Iris-Spoof-Detection (accessed on 27 June 2022).
- Raghavendra, R.; Raja, K.B.; Busch, C. ContlensNet: Robust Iris Contact Lens Detection Using Deep Convolutional Neural Networks. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision, Santa Rosa, CA, USA, 24–31 March 2017; pp. 1160–1167. [Google Scholar]
- He, L.; Li, H.; Liu, F.; Liu, N.; Sun, Z.; He, Z. Multi-Patch Convolution Neural Network for Iris Liveness Detection. In Proceedings of the IEEE 8th International Conference on Biometrics Theory, Applications and Systems, Niagara Falls, NY, USA, 2–9 September 2016; pp. 1–7. [Google Scholar]
- Sharma, R.; Ross, A. D-NetPAD: An Explainable and Interpretable Iris Presentation Attack Detector. In Proceedings of the IEEE International Joint Conference on Biometrics, Houston, TX, USA, 28 September–1 October 2020; pp. 1–10. [Google Scholar]
- Hoffman, S.; Sharma, R.; Ross, A. Convolutional Neural Networks for Iris Presentation Attack Detection: Toward Cross-Dataset and Cross-Sensor Generalization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, USA, 18–22 June 2018; pp. 1701–17018. [Google Scholar]
- Pala, F.; Bhanu, B. Iris Liveness Detection by Relative Distance Comparisons. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 664–671. [Google Scholar]
- Choudhary, M.; Tiwari, V.; U., V. An Approach for Iris Contact Lens Detection and Classification Using Ensemble of Customized DenseNet and SVM. Futur. Gener. Comp. Syst. 2019, 101, 1259–1270. [Google Scholar] [CrossRef]
- Choudhary, M.; Tiwari, V.; U., V. Iris Anti-Spoofing through Score-Level Fusion of Handcrafted and Data-Driven Features. Appl. Soft. Comput. 2020, 91, 106206. [Google Scholar] [CrossRef]
- Jaswal, G.; Verma, A.; Roy, S.D.; Ramachandra, R. DFCANet: Dense Feature Calibration-Attention Guided Network for Cross Domain Iris Presentation Attack Detection. arXiv 2021, arXiv:2111.00919. [Google Scholar]
- Nguyen, D.; Pham, T.; Lee, Y.; Park, K. Deep Learning-Based Enhanced Presentation Attack Detection for Iris Recognition by Combining Features from Local and Global Regions Based on NIR Camera Sensor. Sensors 2018, 18, 2601. [Google Scholar] [CrossRef]
- Chen, C.; Ross, A. Exploring the Use of IrisCodes for Presentation Attack Detection. In Proceedings of the IEEE 9th International Conference on Biometrics Theory, Applications and Systems, Redondo Beach, CA, USA, 22–25 October 2018; pp. 1–9. [Google Scholar]
- Kohli, N.; Yadav, D.; Vatsa, M.; Singh, R.; Noore, A. Synthetic Iris Presentation Attack Using iDCGAN. arXiv 2017, arXiv:1710.10565. [Google Scholar]
- Yadav, D.; Kohli, N.; Agarwal, A.; Vatsa, M.; Singh, R.; Noore, A. Fusion of Handcrafted and Deep Learning Features for Large-Scale Multiple Iris Presentation Attack Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, USA, 18–22 June 2018; pp. 685–6857. [Google Scholar]
- Yadav, S.; Chen, C.; Ross, A. Synthesizing Iris Images Using RaSGAN with Application in Presentation Attack Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, CA, USA, 16–17 June 2019; pp. 2422–2430. [Google Scholar]
- Yadav, S.; Chen, C.; Ross, A. Relativistic Discriminator: A One-Class Classifier for Generalized Iris Presentation Attack Detection. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision, Snowmass Village, CO, USA, 1–5 March 2020; pp. 2624–2633. [Google Scholar]
- Yadav, S.; Ross, A. CIT-GAN: Cyclic Image Translation Generative Adversarial Network with Application in Iris Presentation Attack Detection. arXiv 2020, arXiv:2012.02374. [Google Scholar]
- Chen, C.; Ross, A. Attention-Guided Network for Iris Presentation Attack Detection. arXiv 2020, arXiv:2010.12631. [Google Scholar]
- Zou, H.; Zhang, H.; Li, X.; Liu, J.; He, Z. Generation Textured Contact Lenses Iris Images Based on 4DCycle-GAN. In Proceedings of the 24th International Conference on Pattern Recognition, Beijing, China, 20–24 August 2018; pp. 3561–3566. [Google Scholar]
- Mao, X.; Li, Q.; Xie, H.; Lau, R.Y.; Wang, Z.; Paul Smolley, S. Least Squares Generative Adversarial Networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2794–2802. [Google Scholar]
- Neves, J.C.; Tolosana, R.; Vera-Rodriguez, R.; Lopes, V.; Proença, H.; Fierrez, J. GANprintR: Improved Fakes and Evaluation of the State of the Art in Face Manipulation Detection. arXiv 2020, arXiv:1911.05351. [Google Scholar] [CrossRef]
- Daugman, J. How Iris Recognition Works. IEEE Trans. Circuits Syst. Video Technol. 2004, 14, 21–30. [Google Scholar] [CrossRef]
- Camus, T.A.; Wildes, R. Reliable and Fast Eye Finding in Close-up Images. In Proceedings of International Conference on Pattern Recognition, Quebec City, QC, Canada, 11–15 August 2002; pp. 389–394. [Google Scholar]
- Lee, Y.W.; Kim, K.W.; Hoang, T.M.; Arsalan, M.; Park, K.R. Deep Residual CNN-Based Ocular Recognition Based on Rough Pupil Detection in the Images by NIR Camera Sensor. Sensors 2019, 19, 842. [Google Scholar] [CrossRef] [PubMed]
- Viola, P.; Jones, M.J. Robust Real-time Face Detection. Int. J. Comput. Vis. 2004, 57, 137–154. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. arXiv 2018, arXiv:1608.06993. [Google Scholar]
- Zhang, X.; Zhou, X.; Lin, M.; Sun, J. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. arXiv 2017, arXiv:1707.01083. [Google Scholar]
- Yambay, D.; Becker, B.; Kohli, N.; Yadav, D.; Czajka, A.; Bowyer, K.W.; Schuckers, S.; Singh, R.; Vatsa, M.; Noore, A.; et al. LivDet iris 2017—Iris liveness detection competition 2017. In Proceedings of the International Conference on Biometrics, Denver, CO, USA, 1–4 October 2017; pp. 733–741. [Google Scholar]
- Tensorflow. Available online: https://www.tensorflow.org/ (accessed on 12 September 2023).
- OpenCV. Available online: https://docs.opencv.org/4.5.3/index.html (accessed on 12 September 2023).
- NVIDIA CUDA Deep Neural Network Library. Available online: https://developer.nvidia.com/cudnn (accessed on 12 September 2023).
- NVIDIA GeForce GTX 1070. Available online: https://www.geforce.com/hardware/desktop-gpus/geforce-gtx-1070/specifications (accessed on 12 September 2023).
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Networks. arXiv 2014, arXiv:1406.2661. [Google Scholar] [CrossRef]
- Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; Hochreiter, S. GANs Trained by a Two Time-scale Update Rule Converge to a Local Nash Equilibrium. In Proceedings of the Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 1–12. [Google Scholar]
- Hong, J.S.; Choi, J.; Kim, S.G.; Owais, M.; Park, K.R. INF-GAN: Generative Adversarial Network for Illumination Normalization of Finger-Vein Images. Mathematics 2021, 9, 2613. [Google Scholar] [CrossRef]
- ISO/IEC JTC1 SC37; Biometrics-ISO/IEC WD 30107–3: 2014 Information Technology—Presentation Attack Detection-Part 3: Testing and Reporting and Classification of Attacks. International Organization for Standardization: Geneva, Switzerland, 2014.
- Karras, T.; Aila, T.; Laine, S.; Lehtinen, J. Progressive growing of GANs for improved quality, stability, and variation. In Proceeding of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018; pp. 1–26. [Google Scholar]
- Isola, P.; Zhu, J.-Y.; Zhou, T.; Efros, A.A. Image-to-Image Translation with Conditional Adversarial Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5967–5976. [Google Scholar]
- Zhao, Y.; Wu, R.; Dong, H. Unpaired Image-to-Image Translation Using Adversarial Consistency Loss. In Proceedings of European Conference on Computer Vision, Online, 23–28 August 2020; pp. 800–815. [Google Scholar]
- Liu, B.; Zhu, Y.; Song, K.; Elgammal, A. Towards Faster and Stabilized GAN Training for High-Fidelity Few-Shot Image Synthesis. In Proceeding of the International Conference on Learning Representations, Vienna, Austria, 3–7 May 2021; pp. 1–22. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556. [Google Scholar]
- Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1800–1807. [Google Scholar]
- Mateo, J.R.S.C. Weighted Sum Method and Weighted Product Method. In Multi Criteria Analysis in the Renewable Energy Industry; Springer Science & Business Media: London, UK, 2012; pp. 19–22. [Google Scholar]
- Vapnik, V. Statistical Learning Theory; Wiley: Hoboken City, NJ, USA, 1998. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image is Worth 16 × 16 Words: Transformers for Image Recognition at Scale. In Proceedings of the International Conference on Learning Representations, Vienna, Austria, 3–7 May 2020; pp. 1–21. [Google Scholar]
- Tu, Z.; Talebi, H.; Zhang, H.; Yang, F.; Milanfar, P.; Bovik, A.; Li, Y. MaxViT: Multi-Axis Vision Transformer. arXiv 2022, arXiv:2204.01697. [Google Scholar]
- Mishra, P.; Singh, U.; Pandey, C.M.; Mishra, P.; Pandey, G. Application of student’s t-test, analysis of variance, and covariance. Ann. Card. Anaesth. 2019, 22, 407–411. [Google Scholar] [CrossRef]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155. [Google Scholar] [CrossRef]
- Hore, A.; Ziou, D. Image Quality Metrics: PSNR vs. In SSIM. In Proceedings of the 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 2366–2369. [Google Scholar]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. In Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar]
Category | Method | Advantage | Disadvantage | ||
---|---|---|---|---|---|
Using fabricated artifacts | Using normalized iris region | ContlensNet [10] | Only iris patterns are used for PAD, resulting in high processing speed | Using fabricated artifacts Using unnormalized iris region | |
MCNN with logistic regression [11] | |||||
Using unnormalized iris region | Not using attention module | D-NetPAD [12] | Since no process of iris region normalization is required, the algorithm has low complexity and high processing speed | ||
CNN with 25 overlapping patches [13] | |||||
TripletNet [14] | |||||
DCLNet + SVM [15] | |||||
Score fusion of DCCNet features and handcrafted features [16] | |||||
Using attention module | DFCANet [17] | Enhancing PAD performance by using attention module to give weights to more-important features | |||
Using normalized and unnormalized iris regions | Feature fusion or score fusion obtained from iris, inner, and outer region, and classification using SVM [18] | PAD training can be performed for various regions | |||
Gabor filter and CNN using binary iris code image and score level fusion [19] | |||||
Using generated image | Using unnormalized iris region | Using attention module | CNN using channel attention and position attention module [25] | Using generated image | Using unnormalized iris region |
Not using attention module | Multilevel Haralick and VGG Fusion [21] | Various features can be used for PAD | Limitations in improvement of PAD accuracy due to the use of handcrafted features | ||
RaSGAN relativistic discriminator [23] | High PAD accuracy by using a discriminator used in training of RaSGAN | Training of RaSGAN is time consuming and the performance result of training is unstable when the number of training samples for the classes is small | |||
4DCycleGAN + LLC [26] | PAD for images generated by CycleGAN | Low PAD accuracy | |||
LRFID-Net (proposed method) | High PAD accuracy by considering all features in the local iris region | Requires preprocessing for segmentation into local iris regions |
Layer | Output Channel | Filter Size | Output Size | |
---|---|---|---|---|
Input | - | - | 224 × 224 × 3 | |
Padding | - | 3 × 3 | 230 × 230 × 3 | |
Encoder 1 | Convolution Instance Normalization | 64 | 7 × 7 | 224 × 224 × 64 |
Encoder 2 | Convolution Instance Normalization | 128 | 3 × 3 | 112 × 112 × 128 |
Encoder 3 | Convolution Instance Normalization | 256 | 3 × 3 | 56 × 56 × 256 |
Residual Block | - 256 - - 256 - | - 3 × 3 - - 3 × 3 - | 56 × 56 × 256 | |
Decoder 1 | Deconvolution Instance Normalization | 128 - | 3 × 3 - | 112 × 112 × 128 |
Decoder 2 | Deconvolution Instance Normalization | 64 - | 3 × 3 - | 224 × 224 × 64 |
Decoder 3 | Padding Deconvolution | - 3 | 3 × 3 7 × 7 | 230 × 230 × 64 224 × 224 × 3 |
Layer | Output Channel | Filter Size (Stride) | Output Size |
---|---|---|---|
Input | - | - | 224 × 224 × 3 |
Convolution | 64 | 4 × 4 (2) | 128 × 128 × 64 |
Convolution Instance Normalization | 128 | 4 × 4 (2) - | 56 × 56 × 128 |
Convolution Instance Normalization | 256 | 4 × 4 (2) - | 28 × 28 × 256 |
Convolution Instance Normalization | 512 | 4 × 4 - | 28 × 28 × 512 |
Convolution | 1 | 4 × 4 | 28 × 28 × 1 |
Layer | Output Channel | Filter Size (Stride) | Output Size | |
---|---|---|---|---|
Input | - | - | 224 × 224 | |
ZeroPadding2D | - | 3 × 3 | 230 × 230 | |
Convolution | 64 | 3 × 3 (2) | 112 × 112 | |
ZeroPadding2D | - | 1 × 1 | 114 × 114 | |
Max Pooling | - | 3 × 3 (2) | 56 × 56 | |
1st Dense Block | 128 32 | 1 × 1 3 × 3 | 56 × 56 | |
Transition Block (1) | Convolution | 128 | 1 × 1 | 56 × 56 |
Layer | Group = 2 Output Channel | Filter Size (Stride) | #Iteration | Output Size | ||
---|---|---|---|---|---|---|
Input | - | - | - | 56 × 56 | ||
Convolution | 24 | 3 × 3 (2) | - | 28 × 28 | ||
MaxPooling | 24 | 3 × 3 (2) | - | 14 × 14 | ||
Stage 1 | Unit 1 | Group Convolution 1 Average Pooling Channel Shuffle Depth-wise Convolution Group Convolution 2 | 200 | 1 × 1 3 × 3 (2) - 3 × 3 (2) 1 × 1 | 1 | 7 × 7 |
Unit 2 | Group Convolution 1 Channel Shuffle Depth-wise Convolution Group Convolution 2 | 200 | 1 × 1 - 3 × 3 | 7 | 7 × 7 | |
Stage 2 | Unit 1 | Group Convolution 1 Average Pooling Channel Shuffle Depth-wise Convolution Group Convolution 2 | 400 | 1 × 1 3 × 3 (2) - 3 × 3 (2) 1 × 1 | 1 | 4 × 4 |
Unit 2 | Group Convolution 1 Channel Shuffle Depth-wise Convolution Group Convolution 2 | 400 | 1 × 1 - 3 × 3 1 × 1 | 3 | 4 × 4 | |
Global Average Pooling | 400 | - | - | 400 | ||
FC-Layer | 200 | - | - | 2 |
Dataset | Group | Number of Class in Live Images | Number of Live Images | Number of Fake Images |
---|---|---|---|---|
LiveDet-Iris-2017-Warsaw | Sub-dataset A | 141 | 2577 | 3477 |
Sub-dataset B | 140 | 2593 | 3368 | |
LiveDet-Iris-2017-ND | Sub-dataset A | 161 | 2277 | 1251 |
Sub-dataset B | 161 | 2509 | 1251 | |
LiveDet-Iris-2017-Warsaw live images + fake images generated by CycleGAN | Sub-dataset A | 141 | 2577 | 2577 |
Sub-dataset B | 140 | 2591 | 2591 | |
LiveDet-Iris-2017-ND live images + fake images generated by CycleGAN | Sub-dataset A | 161 | 2277 | 2277 |
Sub-dataset B | 161 | 2509 | 2509 |
Parameters | Value |
---|---|
Epochs | 200 |
Batch size | 1 |
Learning rate | |
Learning decay | 100 |
Beta 1 | 0.5 |
Gradient penalty | None |
Adversarial loss | LSGAN |
Identity loss weight | 0.0 |
Cycle loss weight | 10.0 |
Gradient penalty weight | 10.0 |
Pool size | 50 |
Parameters | Value |
---|---|
Batch size | 2 |
Epochs | 50 |
Learning decay | None |
Learning rate | |
Optimizer | Adam |
Beta 1 | 0.9 |
Beta 2 | 0.999 |
Epsilon | |
Kernel initializer | Glorot_uniform |
Bias initializer | Zeros |
Loss | Categorical cross entropy |
Database | Method | FID | WD |
---|---|---|---|
LiveDet-Iris-2017-Warsaw | PGGAN [44] | 70.82 | 30.04 |
RaSGAN [22] | 189.91 | 33.11 | |
iDCGAN [20] | 176.12 | 32.69 | |
Pix2Pix [45] | 206.10 | 30.03 | |
ACL-GAN [46] | 40.21 | 7.22 | |
FastGAN [47] | 214.56 | 31.67 | |
CycleGAN [8] (proposed method) | 14.10 | 7.51 | |
LiveDet-Iris-2017-ND | PGGAN [44] | 236.06 | 33.93 |
RaSGAN [22] | 260.44 | 14.53 | |
iDCGAN [20] | 150.28 | 34.19 | |
Pix2Pix [45] | 273.92 | 32.22 | |
ACL-GAN [46] | 56.14 | 13.65 | |
FastGAN [47] | 181.32 | 37.88 | |
CycleGAN [8] (proposed method) | 33.08 | 11.69 |
Model | Fold | With Gaussian filtering | |||||||
---|---|---|---|---|---|---|---|---|---|
Without Gaussian Filtering | 3 × 3 Filter | 9 × 9 Filter | 11 × 11 Filter | ||||||
Each Fold | Average | Each Fold | Average | Each Fold | Average | Each Fold | Average | ||
DenseNet-169 | 1-fold | 5.55 | 4.75 | 3.13 | 3.14 | 4.79 | 3.79 | 5.14 | 4.18 |
2-fold | 3.94 | 3.14 | 2.78 | 3.22 | |||||
ResNet-152 | 1-fold | 7.05 | 7.10 | 4.88 | 4.93 | 5.15 | 4.38 | 5.15 | 4.47 |
2-fold | 7.15 | 4.98 | 3.6 | 3.78 | |||||
VGG-19 | 1-fold | 10.61 | 9.89 | 6.46 | 5.84 | 9.88 | 7.54 | 9.88 | 7.54 |
2-fold | 9.17 | 5.21 | 5.20 | 5.20 | |||||
XceptionNet | 1-fold | 9.26 | 8.75 | 6.89 | 6.63 | 7.09 | 6.66 | 7.09 | 6.96 |
2-fold | 8.24 | 6.36 | 6.22 | 6.82 |
Method | Without Gaussian Filtering | 11 × 11 Gaussian Filtering | |||||
---|---|---|---|---|---|---|---|
APCER | BPCER | ACER | APCER | BPCER | ACER | ||
DenseNet-169 | With only iris region | 1.71 | 1.96 | 1.84 | 1.69 | 0 | 0.84 |
With only upper eyelash region | 6.50 | 23.24 | 14.87 | 7.77 | 0 | 3.88 | |
With only lower eyelash region | 11.94 | 9.63 | 10.78 | 10.79 | 0 | 5.39 | |
Feature-level fusion | 1.14 | 1.42 | 1.28 | 1.13 | 0 | 0.56 | |
Score-level fusion | Weighted sum | 1.62 | 3.55 | 2.59 | 1.62 | 0 | 0.81 |
Weighted product | 1.38 | 1.49 | 1.43 | 1.65 | 0 | 0.83 | |
SVM | 1.59 | 1.94 | 1.76 | 1.57 | 0 | 0.78 | |
LRFID-Net | Ocular | 0.24 | 0.16 | 0.20 | 0.24 | 14.45 | 7.34 |
I + U + L (proposed) | 0.06 | 0 | 0.03 | 0.06 | 0 | 0.03 |
Number of Dense Blocks | Number of Shuffle Stages | Without Gaussian Filtering | 11 × 11 Gaussian Filtering | ||||
---|---|---|---|---|---|---|---|
APCER | BPCER | ACER | APCER | BPCER | ACER | ||
1 | 2 | 0.06 | 0 | 0.03 | 0.06 | 0 | 0.03 |
2 | 2 | 0.08 | 0.04 | 0.06 | 0.08 | 0 | 0.04 |
3 | 2 | 2.96 | 6.04 | 4.50 | 2.96 | 0.46 | 1.71 |
Combination of Local Regions | Without Gaussian Filtering | 11 × 11 Gaussian Filtering | ||||
---|---|---|---|---|---|---|
APCER | BPCER | ACER | APCER | BPCER | ACER | |
I + U | 1.84 | 19.60 | 10.72 | 1.94 | 21.08 | 11.51 |
I + L | 16.09 | 14.43 | 15.26 | 18.65 | 23.16 | 20.91 |
U + L | 10.64 | 25.69 | 18.16 | 12.84 | 33.03 | 22.93 |
I + U + L | 0.06 | 0 | 0.03 | 0.06 | 0 | 0.03 |
LRFID-Net with I + U + L | |||
---|---|---|---|
Gaussian Filter Size | APCER | BPCER | ACER |
3 × 3 | 0.06 | 0 | 0.03 |
9 × 9 | 0.06 | 0 | 0.03 |
11 × 11 | 0.06 | 0 | 0.03 |
Method | Without Gaussian Filtering | 11 × 11 Gaussian Filtering | ||||
---|---|---|---|---|---|---|
APCER | BPCER | ACER | APCER | BPCER | ACER | |
iDCGAN [20] | 0.04 | 0 | 0.02 | 0.04 | 0.10 | 0.07 |
RaSGAN [22] | 0 | 0 | 0 | 0.04 | 0.10 | 0.07 |
ACL-GAN [46] | 0.02 | 0.01 | 0.02 | 0.02 | 0.01 | 0.02 |
FastGAN [47] | 0.04 | 0 | 0.02 | 0.02 | 0 | 0.02 |
CycleGAN [8] | 0.06 | 0 | 0.03 | 0.06 | 0 | 0.03 |
Method | Without Gaussian Filtering | 11 × 11 Gaussian Filtering | ||||
---|---|---|---|---|---|---|
APCER | BPCER | ACER | APCER | BPCER | ACER | |
D-NetPAD [12] | 1.74 | 1.63 | 1.68 | 1.12 | 1.28 | 1.20 |
DCLNet [15] | 10.63 | 12.37 | 11.50 | 3.67 | 11.58 | 7.62 |
AG-PAD [25] | 6.97 | 0.46 | 3.72 | 6.97 | 0.64 | 3.80 |
ViT [53] | 0.12 | 1.57 | 0.84 | 3.02 | 12.43 | 7.72 |
MaxViT [54] | 1.43 | 1.82 | 1.63 | 6.85 | 6.87 | 6.86 |
LRFID-Net (Proposed) | 0.06 | 0 | 0.03 | 0.06 | 0 | 0.03 |
Model | Fold | Without Gaussian Filtering | With Gaussian Filtering | ||||||
---|---|---|---|---|---|---|---|---|---|
3 × 3 Filter | 9 × 9 Filter | 11 × 11 Filter | |||||||
Each Fold | Average | Each Fold | Average | Each Fold | Average | Each Fold | Average | ||
DenseNet169 | 1-fold | 3.72 | 3.30 | 2.57 | 1.65 | 2.41 | 1.55 | 2.41 | 1.55 |
2-fold | 2.89 | 0.74 | 0.70 | 0.70 | |||||
ResNet152 | 1-fold | 4.45 | 4.49 | 2.29 | 2.54 | 1.88 | 2.29 | 1.88 | 2.29 |
2-fold | 4.53 | 2.80 | 2.71 | 2.71 | |||||
VGG19 | 1-fold | 8.88 | 7.71 | 5.72 | 5.07 | 5.57 | 4.99 | 5.57 | 4.99 |
2-fold | 6.54 | 4.43 | 4.42 | 4.42 | |||||
XceptionNet | 1-fold | 5.52 | 4.76 | 3.56 | 2.90 | 2.86 | 2.38 | 2.96 | 2.42 |
2-fold | 4.01 | 2.24 | 1.89 | 1.88 |
Method | Without Gaussian Filtering | 3 × 3 Gaussian Filtering | |||||
---|---|---|---|---|---|---|---|
APCER | BPCER | ACER | APCER | BPCER | ACER | ||
DenseNet-169 | With only iris region | 4.15 | 6.47 | 5.31 | 6.48 | 9.18 | 7.83 |
With only upper eyelash region | 9.46 | 6.51 | 7.98 | 4.35 | 4.92 | 4.64 | |
With only lower eyelash region | 19.06 | 13.03 | 16.04 | 18.51 | 0.1 | 9.31 | |
Feature-level fusion | 3.10 | 3.35 | 3.22 | 4.79 | 0.16 | 2.48 | |
Score-level fusion | Weighted sum | 3.23 | 5.08 | 4.15 | 4.77 | 6.25 | 5.51 |
Weighted product | 3.23 | 3.56 | 3.39 | 3.79 | 3.03 | 3.41 | |
SVM | 3.49 | 5.72 | 4.60 | 4.74 | 7.09 | 5.91 | |
LRFID-Net | Ocular | 3.71 | 0.16 | 1.93 | 3.71 | 0.06 | 1.88 |
I + U + L (proposed) | 0.12 | 0.10 | 0.11 | 0.12 | 0.10 | 0.11 |
Number of Dense Blocks | Number of Shuffle Stages | Without Gaussian Filtering | 3 × 3 Gaussian Filtering | ||||
---|---|---|---|---|---|---|---|
APCER | BPCER | ACER | APCER | BPCER | ACER | ||
1 | 2 | 0.12 | 0.10 | 0.11 | 0.12 | 0.10 | 0.11 |
2 | 2 | 0.43 | 0.51 | 0.47 | 0.43 | 0.04 | 0.24 |
3 | 2 | 9.92 | 17.36 | 13.64 | 9.92 | 9.31 | 9.61 |
Combination of Local Regions | Without Gaussian Filtering | 3 × 3 Gaussian Filtering | ||||
---|---|---|---|---|---|---|
APCER (%) | BPCER (%) | ACER (%) | APCER (%) | BPCER (%) | ACER (%) | |
LRFID-Net + I + U | 2.29 | 2.31 | 2.30 | 7.88 | 3.37 | 5.72 |
LRFID-Net + I + L | 10.92 | 13.02 | 11.97 | 5.07 | 1.56 | 3.31 |
LRFID-Net + U + L | 4.30 | 5.55 | 4.93 | 15.58 | 13.72 | 14.65 |
LRFID-Net + I + U + L | 0.12 | 0.10 | 0.11 | 0.12 | 0.10 | 0.11 |
LRFID-Net with I + U + L | |||
---|---|---|---|
Gaussian Filter Size | APCER (%) | BPCER (%) | ACER (%) |
3 × 3 | 0.12 | 0.10 | 0.11 |
9 × 9 | 0.12 | 0.12 | 0.12 |
11 × 11 | 0.12 | 0.10 | 0.11 |
Method | Without Gaussian Filtering | 3 × 3 Gaussian Filtering | ||||
---|---|---|---|---|---|---|
APCER | BPCER | ACER | APCER | BPCER | ACER | |
iDCGAN [20] | 0.07 | 0 | 0.04 | 0.04 | 0.0 | 0.02 |
RaSGAN [22] | 0.03 | 0.02 | 0.03 | 0.03 | 0 | 0.02 |
ACL-GAN [46] | 0 | 0 | 0 | 0.08 | 0.08 | 0.04 |
FastGAN [47] | 0.04 | 0 | 0.02 | 0.04 | 0 | 0.02 |
CycleGAN [8] | 0.12 | 0.10 | 0.11 | 0.12 | 0.10 | 0.11 |
Method | Without Gaussian Filtering | 3 × 3 Gaussian Filtering | ||||
---|---|---|---|---|---|---|
APCER | BPCER | ACER | APCER | BPCER | ACER | |
D-NetPAD [12] | 1.69 | 1.78 | 1.73 | 0.90 | 0.94 | 0.92 |
DCLNet [15] | 8.76 | 8.74 | 8.75 | 3.65 | 3.62 | 3.63 |
AG-PAD [25] | 6.96 | 6.37 | 6.67 | 6.96 | 22.75 | 14.86 |
ViT [53] | 0.29 | 2.47 | 1.38 | 0.29 | 11.12 | 5.7 |
MaxViT [54] | 0.04 | 1.32 | 0.68 | 0.04 | 19.81 | 9.92 |
LRFID-Net (Proposed) | 0.12 | 0.10 | 0.11 | 0.12 | 0.10 | 0.11 |
Method | GFLOPs (G) | #Parameters (M) | Memory Usage (GB) | Inference time (ms) |
---|---|---|---|---|
D-NetPAD [12] | 2.91 | 6.956 | 3.36 | 21.2 |
DCLNet [15] | 2.64 | 51.838 | 1.60 | 7.2 |
AG-PAD [25] | 7.46 | 22.774 | 3.60 | 113.2 |
ViT [53] | 17.58 | 85.648 | 3.84 | 31.2 |
MaxViT [54] | 24.11 | 118.807 | 4.96 | 172.6 |
LRFID-Net (Proposed) | 12.60 | 4.757 | 2.96 | 25.6 |
Classification Results | PSNR | |
---|---|---|
Correct | 31.22 | |
Incorrect | Bona fide presentation classification error | 33.27 |
Attack presentation classification error | 38.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.S.; Lee, Y.W.; Hong, J.S.; Kim, S.G.; Batchuluun, G.; Park, K.R. LRFID-Net: A Local-Region-Based Fake-Iris Detection Network for Fake Iris Images Synthesized by a Generative Adversarial Network. Mathematics 2023, 11, 4160. https://doi.org/10.3390/math11194160
Kim JS, Lee YW, Hong JS, Kim SG, Batchuluun G, Park KR. LRFID-Net: A Local-Region-Based Fake-Iris Detection Network for Fake Iris Images Synthesized by a Generative Adversarial Network. Mathematics. 2023; 11(19):4160. https://doi.org/10.3390/math11194160
Chicago/Turabian StyleKim, Jung Soo, Young Won Lee, Jin Seong Hong, Seung Gu Kim, Ganbayar Batchuluun, and Kang Ryoung Park. 2023. "LRFID-Net: A Local-Region-Based Fake-Iris Detection Network for Fake Iris Images Synthesized by a Generative Adversarial Network" Mathematics 11, no. 19: 4160. https://doi.org/10.3390/math11194160
APA StyleKim, J. S., Lee, Y. W., Hong, J. S., Kim, S. G., Batchuluun, G., & Park, K. R. (2023). LRFID-Net: A Local-Region-Based Fake-Iris Detection Network for Fake Iris Images Synthesized by a Generative Adversarial Network. Mathematics, 11(19), 4160. https://doi.org/10.3390/math11194160