Analysis of Stress and Deformation on Surrounding Rock Mass of a Trapezoidal Roadway in a Large Inclination Coal Seam and Novel High Yielding Prop Support: A Case Study
Abstract
:1. Introduction
2. Geological Background
3. Mechanics Analysis of Surrounding Rocks Stress Distribution and Deformation in Deeply Inclined Coal Seam Roadway
3.1. Mechanical Modeling
3.2. Flow Chart on Stress and Strain Calculation Based on Complex Analysis and Comfort Mapping
3.3. Results
3.3.1. Deformation Characteristics
3.3.2. Stress Characteristics
4. On-Site Experiment
4.1. The Yielding Prop Supporting Method Based on Stress and Deformation on the Trapezoidal Roadway
4.2. The On-Site Supporting Method with Yielding Prop
4.3. Monitoring Method
4.4. Test Results
4.4.1. Roadway Deformation
4.4.2. Prop Shrinkage
4.4.3. Rock Bolt Axial Force
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, S.Q.; Song, D.Z.; Li, Z.L.; He, X.Q.; Chen, J.Q.; Li, D.H.; Tian, X.H. Precursor of Spatio-temporal Evolution Law of MS and AE Activities for Rock Burst Warning in Steeply Inclined and Extremely Thick Coal Seams Under Caving Mining Conditions. Rock Mech. Rock Eng. 2019, 52, 2415–2435. [Google Scholar] [CrossRef]
- Carroll, T.; Ho, C.; Richards, T.; Torres, J. Design and Construction of a Soil Cement Mixed TBM Retrieval Shaft in Porous Limestone. Grouting 2017, 269–278. [Google Scholar] [CrossRef]
- Li, S.; Zheng, C.; Zhao, Y. Numerical Modeling on Blasting Stress Wave in Interbedding Rheological Rockmass for the Stability of the Main Shaft of Mine. Front. Earth Sci. 2022, 10, 930013. [Google Scholar] [CrossRef]
- Chen, C.; Zhou, J.; Zhou, T.; Yong, W.X. Evaluation of vertical shaft stability in underground mines: Comparison of three weight methods with uncertainty theory. Nat. Hazards 2021, 109, 1457–1479. [Google Scholar] [CrossRef]
- Long, L.L.; Liu, Y.; Chen, X.Y.; Guo, J.T.; Li, X.H.; Guo, Y.N.; Zhang, X.Y.; Lei, S.G. Analysis of Spatial Variability and Influencing Factors of Soil Nutrients in Western China: A Case Study of the Daliuta Mining Area. Sustainability 2022, 14, 2793. [Google Scholar] [CrossRef]
- Zhang, H.D.; Hu, G.Z.; Zhao, G.C. Research on the Movement Law of Roof Structure in Large-Inclined Coal Seam Working Face: A Case Study in Liu.Pan.Shui. Mining Area. Shock Vib. 2022, 6328851. [Google Scholar] [CrossRef]
- Xia, Y.Q.; Wang, X.Q.; Li, H.Z.; Li, W. China’s Provincial Environmental Efficiency Evaluation and Influencing Factors of the Mining Industry Considering Technology Heterogeneity. IEEE Access 2020, 8, 178924–178937. [Google Scholar] [CrossRef]
- Zeng, Q.; Dong, J.X.; Zhao, L.H. Investigation of the potential risk of coal fire to local environment: A case study of Daquanhu coal fire, Xinjiang region, China. Sci. Total Environ. 2018, 640, 1478–1488. [Google Scholar] [CrossRef]
- Liu, W.T.; Mu, D.R.; Xie, X.X.; Yang, L.; Wang, D.H. Sensitivity Analysis of the Main Factors Controlling Floor Failure Depth and a Risk Evaluation of Floor Water Inrush for an Inclined Coal Seam. Mine Water Environ. 2018, 37, 636–648. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Liu, C.S.; Wu, J.D.; Jiang, H.S.; Zhao, Y.M. Impact of screening coals on screen surface and multi-index optimization for coal cleaning production. J. Clean. Prod. 2018, 187, 562–575. [Google Scholar] [CrossRef]
- Sun, X.Y.; Ho, C.H.; Li, C.; Xia, Y.C.; Zhang, Q. Inclination effect of coal mine strata on the stability of loess land slope under the condition of underground mining. Nat. Hazards 2020, 104, 833–852. [Google Scholar] [CrossRef]
- Ren, W.X.; Shi, J.T.; Zhu, J.T.; Guo, Q. An innovative dust suppression device used in underground tunneling. Tunn. Undergr. Space Technol. 2020, 99, 103337. [Google Scholar] [CrossRef]
- Qi, X.Y.; Wang, R.J.; Mi, W.T. Failure Characteristics and Control Technology of Surrounding Rock in Deep Coal Seam Roadway with Large Dip Angle under the Influence of Weak Structural Plane. Adv. Civ. Eng. 2020, 6623159. [Google Scholar] [CrossRef]
- Wang, Y.L.; Tang, J.X.; Dai, Z.Y.; Yi, T.; Li, X.Y. Flexible roadway protection technology in medium-thickness coal seam with large dip angle. Energy Source Part A Recover. Util. Environ. Eff. 2019, 41, 3085–3102. [Google Scholar] [CrossRef]
- Hu, K.; Yao, Z.S.; Wu, Y.S.; Xu, Y.J.; Wang, X.J.; Wang, C. Application of FBG Sensor to Safety Monitoring of Mine Shaft Lining Structure. Sensors 2022, 22, 4838. [Google Scholar] [CrossRef]
- Xie, F.X. Control of Gob-Side Roadway with Large Mining Height in Inclined Thick Coal Seam: A Case Study. Shock Vib. 2021, 2021, 6687244. [Google Scholar]
- Khodadadian, A.; Noii, N.; Parvizi, M.; Abbaszadeh, M.; Wick, T.; Heitzinger, C. A Bayesian estimation method for variational phase-field fracture problems. Comput. Mech. 2020, 66, 827–849. [Google Scholar] [CrossRef]
- Ren, C.; Yu, J.; Liu, S.; Yao, W.; Zhu, Y.; Liu, X. A Plastic Strain-Induced Damage Model of Porous Rock Suitable for Different Stress Paths. Rock Mech. Rock Eng. 2022, 55, 1887–1906. [Google Scholar] [CrossRef]
- Yu, J.; Zhu, Y.; Yao, W.; Liu, X.; Ren, C.; Cai, Y.; Tang, X. Stress relaxation behaviour of marble under cyclic weak disturbance and confining pressures. Measurement 2021, 182, 109777. [Google Scholar] [CrossRef]
- Xu, Z.; Li, X.; Li, J.; Xue, Y.; Jiang, S.; Liu, L.; Luo, Q.; Wu, K.; Zhang, N.; Feng, Y. Characteristics of Source Rocks and Genetic Origins of Natural Gas in Deep Formations, Gudian Depression, Songliao Basin, NE China. ACS Earth Space Chem. 2022, 6, 1750–1771. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Nguyen, X.; Zhuang, X.; Li, J.; Querol, X.; Li, B.; Moreno, N.; Hoang, V.; Cordoba, P. First insights into mineralogy, geochemistry, and isotopic signatures of the Upper Triassic high-sulfur coals from the Thai Nguyen Coal field, NE Vietnam. Int. J. Coal Geol. 2022, 261, 104097. [Google Scholar] [CrossRef]
- Zhang, J.H.; Chen, H.; Shi, X.Z.; Guan, W.M.; Sun, X.L. Research on Stress Distribution Characteristics for Uniquely Shaped Roadway with Hard Roof in Steeply Inclined Coal Seam and Support Technology of Reducing Vibration Impact. Shock Vib. 2021, 2021, 2785479. [Google Scholar] [CrossRef]
- Chen, B.; Zuo, Y.J.; Zheng, L.L.; Zheng, L.J.; Lin, J.Y.; Pan, C.; Sun, W.J.B. Deformation failure mechanism and concrete-filled steel tubular support control technology of deep high-stress fractured roadway. Tunn. Undergr. Space Technol. 2022, 129, 104684. [Google Scholar] [CrossRef]
- Yang, R.S.; Li, Y.L.; Guo, D.M.; Yao, L.; Yang, T.M.; Li, T.T. Failure mechanism and control technology of water-immersed roadway in high-stress and soft rock in a deep mine. Int. J. Min. Sci. Technol. 2017, 27, 245–252. [Google Scholar] [CrossRef]
- Tan, X.J.; Chen, W.Z.; Liu, H.Y.; Chan, A.H.C.; Tian, H.M.; Meng, X.J.; Wang, F.Q.; Deng, X.L. A combined supporting system based on foamed concrete and U-shaped steel for underground coal mine roadways undergoing large deformations. Tunn. Undergr. Space Technol. 2017, 68, 196–210. [Google Scholar] [CrossRef]
- Wang, M.Y.; Lin, T.S.; Yin, L.J.; Yang, Y.; Yang, L. Research on Roadway Surrounding Rock Control Technology Using O-arch Combination Support Scheme. In Proceedings of the 3rd International Conference on Advances in Energy and Environmental Science, Zhuhai, China, 25–26 July 2015; Volume 31, pp. 865–870. [Google Scholar]
- Yang, Z.Q.; Liu, C.; Tang, S.C.; Dou, L.M.; Cao, J.L. Rock burst mechanism analysis in an advanced segment of gob-side entry under different dip angles of the seam and prevention technology. Int. J. Min. Sci. Technol. 2018, 28, 891–899. [Google Scholar] [CrossRef]
- Kong, J.; Chen, P.; Chen, J.; Liu, Q.S.; Ma, Z. Research on support technology in deep roadway of Huafeng mine. Adv. Mater. Res. 2013, 753–755, 831–834. [Google Scholar] [CrossRef]
- Dong, X.J.; Karrech, A.; Basarir, H.; Elchalakani, M.; Qi, C.C. Analytical solution of energy redistribution in rectangular openings upon insitu rock mass alteration. Int. J. Rock Mech. Min. Sci. 2018, 106, 74–83. [Google Scholar] [CrossRef]
- Hao, Y.; Wu, Y.; Chen, L.; Teng, Y. An innovative yielding prop with high stable load capacity and long shrinkage distance in coal mine. Mech. Adv. Mater. Struct. 2019, 26, 1568–1579. [Google Scholar] [CrossRef]
- Hao, Y.; Wu, Y.; Chen, Y.L.; Li, P.; Chen, L.; Zhang, K. An innovative equivalent width supporting technology for sustaining large-cross section roadway in thick coal seam. Arab. J. Geosci. 2019, 12, 688. [Google Scholar] [CrossRef]
Angle | Horizontal Displacement/mm | Vertical Displacement/mm | Total Displacement/mm |
---|---|---|---|
0° | −10.86 | −1.46 | 10.96 |
20° | −7.62 | −2.71 | 8.09 |
40° | −6.51 | −3.24 | 7.27 |
48° | −5.63 | −5.21 | 7.67 |
60° | −1.31 | −12.35 | 12.42 |
80° | −2.22 | −12.37 | 12.57 |
100° | 2.48 | −26.12 | 26.24 |
120° | 2.67 | −19.23 | 19.41 |
140° | 5.56 | −17.21 | 18.09 |
160° | 7.23 | −14.22 | 15.95 |
173° | 8.82 | −9.61 | 13.04 |
180° | 12.32 | −4.78 | 13.21 |
200° | 8.44 | −1.37 | 8.55 |
220° | 7.32 | 1.43 | 7.46 |
228° | 3.82 | 1.86 | 4.25 |
240° | 2.11 | 3.24 | 3.87 |
260° | 0.25 | 8.35 | 8.35 |
280° | −1.42 | 9.55 | 9.65 |
300° | −1.53 | 8.72 | 8.85 |
312° | −4.51 | 4.32 | 6.25 |
320° | −3.46 | 2.38 | 4.20 |
340° | −9.43 | 2.27 | 9.70 |
Angle | σx/MPa | σy/MPa | Angle | σx/MPa | σy/MPa |
---|---|---|---|---|---|
0° | 0 | −9.55 | 180° | 0 | −11.86 |
20° | 0 | −8.42 | 200° | 0 | −11.05 |
40° | 0 | −10.72 | 220° | 0 | −11.78 |
48° | −10.42 | −8.31 | 228° | −7.29 | −12.23 |
60° | −10.33 | −2.42 | 240° | −11.52 | 0 |
80° | −8.50 | −0.02 | 260° | −9.08 | 0 |
100° | −6.81 | −0.84 | 280° | −8.57 | 0 |
120° | −6.83 | −0.71 | 300° | −10.62 | 0 |
140° | −8.05 | −2.65 | 312° | −6.31 | −11.06 |
160° | −8.27 | −4.47 | 320° | 0 | −10.84 |
173° | −7.73 | −9.09 | 340° | 0 | −9.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, Y.; Liu, C.; Wu, Y.; Pu, H.; Zhang, K.; Shen, L. Analysis of Stress and Deformation on Surrounding Rock Mass of a Trapezoidal Roadway in a Large Inclination Coal Seam and Novel High Yielding Prop Support: A Case Study. Mathematics 2023, 11, 319. https://doi.org/10.3390/math11020319
Hao Y, Liu C, Wu Y, Pu H, Zhang K, Shen L. Analysis of Stress and Deformation on Surrounding Rock Mass of a Trapezoidal Roadway in a Large Inclination Coal Seam and Novel High Yielding Prop Support: A Case Study. Mathematics. 2023; 11(2):319. https://doi.org/10.3390/math11020319
Chicago/Turabian StyleHao, Yang, Chunhui Liu, Yu Wu, Hai Pu, Kai Zhang, and Lingling Shen. 2023. "Analysis of Stress and Deformation on Surrounding Rock Mass of a Trapezoidal Roadway in a Large Inclination Coal Seam and Novel High Yielding Prop Support: A Case Study" Mathematics 11, no. 2: 319. https://doi.org/10.3390/math11020319
APA StyleHao, Y., Liu, C., Wu, Y., Pu, H., Zhang, K., & Shen, L. (2023). Analysis of Stress and Deformation on Surrounding Rock Mass of a Trapezoidal Roadway in a Large Inclination Coal Seam and Novel High Yielding Prop Support: A Case Study. Mathematics, 11(2), 319. https://doi.org/10.3390/math11020319