An Artificial Rabbits’ Optimization to Allocate PVSTATCOM for Ancillary Service Provision in Distribution Systems
Abstract
:1. Introduction
- A novel AROA has been developed for simultaneous PVSTATCOM allocation in distribution systems;
- Daily energy losses and voltage profiles considering different 24 h loadings have been taken into consideration in the objective function and constraints;
- Higher effectiveness of the proposed AROA versus DE and GSO in minimizing the energy losses and voltage profile deviations and maintaining all the operational constraints;
- Moreover, the proposed AROA shows lower computational time compared to DE and GSO;
- It is noticed from this scenario that the losses and voltage deviations are reduced when using the STATCOM with PV.
2. AROA: Mathematical Model
2.1. Detour Forage Tactic
2.2. Randomized Hiding Tactic
2.3. Energy Decline
3. PVSTATCOM Allocation for Ancillary Service Provision in Distribution Systems
3.1. PVSTATCOM Model
3.2. PVSTATCOM Allocation for Ancillary Service Provision: Constraints and Objective
4. Simulation Results
4.1. First Scenario
4.2. Second Scenario
4.3. Third Scenario
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- International Energy Agency. Renewables 2020—Analysis; IEA: Paris, France, 2020. [Google Scholar]
- Jay, D.; Swarup, K.S. A comprehensive survey on reactive power ancillary service markets. Renew. Sustain. Energy Rev. 2021, 144, 110967. [Google Scholar] [CrossRef]
- Wolgast, T.; Ferenz, S.; Nieße, A. Reactive Power Markets: A Review. IEEE Access 2022, 10, 28397–28410. [Google Scholar] [CrossRef]
- El-Ela, A.A.A.; El-Sehiemy, R.A.; Shaheen, A.M.; Ellien, A.R. Review on Active Distribution Networks with Fault Current Limiters and Renewable Energy Resources. Energies 2022, 15, 7648. [Google Scholar] [CrossRef]
- Ginidi, A.R.; Shaheen, A.M.; El-Sehiemy, R.A.; Hasanien, H.M.; Al-Durra, A. Estimation of electrical parameters of photovoltaic panels using heap-based algorithm. IET Renew. Power Gener. 2022, 16, 2292–2312. [Google Scholar] [CrossRef]
- Shaheen, A.M.; Elsayed, A.M.; Ginidi, A.R.; El-Sehiemy, R.A.; Elattar, E. Enhanced social network search algorithm with powerful exploitation strategy for PV parameters estimation. Energy Sci. Eng. 2022, 10, 1398–1417. [Google Scholar] [CrossRef]
- Eslami, M.; Akbari, E.; Sadr, S.T.S.; Ibrahim, B.F. A novel hybrid algorithm based on rat swarm optimization and pattern search for parameter extraction of solar photovoltaic models. Energy Sci. Eng. 2022, 10, 2689–2713. [Google Scholar] [CrossRef]
- Yaghoubi, M.; Eslami, M.; Noroozi, M.; Mohammadi, H.; Kamari, O.; Palani, S. Modified Salp Swarm Optimization for Parameter Estimation of Solar PV Models. IEEE Access 2022, 10, 110181–110194. [Google Scholar] [CrossRef]
- Cui, Z.; Kang, L.; Li, L.; Wang, L.; Wang, K. A combined state-of-charge estimation method for lithium-ion battery using an improved BGRU network and UKF. Energy 2022, 259, 124933. [Google Scholar] [CrossRef]
- Li, D.; Yang, D.; Li, L.; Wang, L.; Wang, K. Electrochemical Impedance Spectroscopy Based on the State of Health Estimation for Lithium-Ion Batteries. Energies 2022, 15, 6665. [Google Scholar] [CrossRef]
- Elshahed, M. Assessment of sudden voltage changes and flickering for a grid-connected photovoltaic plant. Int. J. Renew. Energy Res. 2016, 6, 1328–1335. [Google Scholar] [CrossRef]
- Elshahed, M. Complying grid-connected wind farm according to the requirements of utility grid code using STATCOM. In Proceedings of the 2017 9th IEEE-GCC Conference and Exhibition, Manama, Bahrain, 8–11 May 2017. [Google Scholar]
- International Electrotechnical Commission. IEC 60050 International Electrotechnical Vocabulary—Details for IEV Number 617-01-05; IEC: Geneva, Switzerland, 2009. [Google Scholar]
- Kotsampopoulos, P.; Hatziargyriou, N.; Bletterie, B.; Lauss, G. Review, analysis and recommendations on recent guidelines for the provision of ancillary services by Distributed Generation. In Proceedings of the 2013 IEEE International Workshop on Intelligent Energy Systems (IWIES), Vienna, Austria, 14 November 2013. [Google Scholar]
- Braun, M. Provision of Ancillary Services by Distributed Generators; Kassel University Press: Kassel, Germany, 2008; Volume 10. [Google Scholar]
- Gawhade, P.; Ojha, A. Recent advances in synchronization techniques for grid-tied PV system: A review. Energy Rep. 2021, 7, 6581–6599. [Google Scholar] [CrossRef]
- Xavier, L.S.; Cupertino, A.F.; Pereira, H.A. Ancillary services provided by photovoltaic inverters: Single and three phase control strategies. Comput. Electr. Eng. 2018, 70, 102–121. [Google Scholar] [CrossRef]
- Magdy, M.; Elshahed, M.; Ibrahim, D.K. Enhancing PV Hosting Capacity Using Smart Inverters and Time of Use Tariffs. Iran. J. Sci. Technol. Trans. Electr. Eng. 2021, 45, 905–920. [Google Scholar] [CrossRef]
- Rivera, D.; Guillen, D.; Mayo-Maldonado, J.C.; Valdez-Resendiz, J.E.; Escobar, G. Power grid dynamic performance enhancement via statcom data-driven control. Mathematics 2021, 9, 2361. [Google Scholar] [CrossRef]
- Varma, R.K.; Khadkikar, V.; Seethapathy, R. Nighttime application of PV solar farm as STATCOM to regulate grid voltage. IEEE Trans. Energy Convers. 2009, 24, 983–985. [Google Scholar] [CrossRef]
- Varma, R.K.; Khadkikar, V.; Rahman, S.A. Utilization of Distributed Generator Inverters as STATCOM. U.S. Patent 9,325,173, 26 April 2016. [Google Scholar]
- Varma, R.K.; Siavashi, E.M. PV-STATCOM: A New Smart Inverter for Voltage Control in Distribution Systems. IEEE Trans. Sustain. Energy 2018, 9, 1681–1691. [Google Scholar] [CrossRef]
- Varma, R.K.; Siavashi, E.M. Enhancement of solar farm connectivity with smart PV inverter PV-STATCOM. IEEE Trans. Sustain. Energy 2019, 10, 1161–1171. [Google Scholar] [CrossRef]
- Varma, R.K.; Siavashi, E.; Mohan, S.; McMichael-Dennis, J. Grid Support Benefits of Solar PV Systems as STATCOM (PV-STATCOM) through Converter Control: Grid Integration Challenges of Solar PV Power Systems. IEEE Electrif. Mag. 2021, 9, 50–61. [Google Scholar] [CrossRef]
- Varma, R.K.; Maleki, H. PV Solar System Control as STATCOM (PV-STATCOM) for Power Oscillation Damping. IEEE Trans. Sustain. Energy 2019, 10, 1793–1803. [Google Scholar] [CrossRef]
- Popavath, L.N.; Kaliannan, P. Photovoltaic-STATCOM with low voltage ride through strategy and power quality enhancement in a grid integrated Wind-PV system. Electronics 2018, 7, 51. [Google Scholar] [CrossRef]
- Luo, L.; Gu, W.; Zhang, X.P.; Cao, G.; Wang, W.; Zhu, G.; You, D.; Wu, Z. Optimal siting and sizing of distributed generation in distribution systems with PV solar farm utilized as STATCOM (PV-STATCOM). Appl. Energy 2018, 210, 1092–1100. [Google Scholar] [CrossRef]
- Luo, L.; Wu, Z.; Gu, W.; Huang, H.; Gao, S.; Han, J. Coordinated allocation of distributed generation resources and electric vehicle charging stations in distribution systems with vehicle-to-grid interaction. Energy 2020, 192, 116631. [Google Scholar] [CrossRef]
- Rezaeian-Marjani, S.; Galvani, S.; Talavat, V.; Farhadi-Kangarlu, M. Optimal allocation of D-STATCOM in distribution networks including correlated renewable energy sources. Int. J. Electr. Power Energy Syst. 2020, 122, 106178. [Google Scholar] [CrossRef]
- Shaheen, A.M.; Elattar, E.E.; El-Sehiemy, R.A.; Elsayed, A.M. An Improved Sunflower Optimization Algorithm-Based Monte Carlo Simulation for Efficiency Improvement of Radial Distribution Systems Considering Wind Power Uncertainty. IEEE Access 2021, 9, 2332–2344. [Google Scholar] [CrossRef]
- Kumar, P.; Bohre, A.K. Optimal Allocation of Solar-PV and STATCOM Using PSO with Multi-Objective Approach to Improve the Overall System Performance. In Lecture Notes in Electrical Engineering; Springer: Berlin/Heidelberg, Germany, 2022; Volume 812. [Google Scholar]
- Kumar, P.; Bohre, A.K. Optimal allocation of Hybrid Solar-PV with STATCOM based on Multi-objective Functions using combined OPF-PSO Method. In Proceedings of the International Conference on IoT Based Control Networks & Intelligent Systems (ICICNIS), Kottayam, India, 28–29 June 2021. [Google Scholar] [CrossRef]
- Wang, L.; Cao, Q.; Zhang, Z.; Mirjalili, S.; Zhao, W. Artificial rabbits optimization: A new bio-inspired meta-heuristic algorithm for solving engineering optimization problems. Eng. Appl. Artif. Intell. 2022, 114, 105082. [Google Scholar] [CrossRef]
- Gasperic, S.; Mihalic, R. Estimation of the efficiency of FACTS devices for voltage-stability enhancement with PV area criteria. Renew. Sustain. Energy Rev. 2019, 105, 144–156. [Google Scholar] [CrossRef]
- Varma, R.K.; Das, B.; Axente, I.; Vanderheide, T. Optimal 24-hr utilization of a PV solar system as STATCOM (PV-STATCOM) in a distribution network. In Proceedings of the 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–28 July 2011. [Google Scholar]
- Sadiq, R.; Wang, Z.; Chung, C.Y.; Zhou, C.; Wang, C. A review of STATCOM control for stability enhancement of power systems with wind/PV penetration: Existing research and future scope. Int. Trans. Electr. Energy Syst. 2021, 31, e13079. [Google Scholar] [CrossRef]
- Sirjani, R. Optimal placement and sizing of PV-STATCOM in power systems using empirical data and adaptive particle swarm optimization. Sustainability 2018, 10, 727. [Google Scholar] [CrossRef] [Green Version]
- Nasef, A.; Shaheen, A.; Khattab, H. Local and remote control of automatic voltage regulators in distribution networks with different variations and uncertainties: Practical cases study. Electr. Power Syst. Res. 2022, 205, 107773. [Google Scholar] [CrossRef]
- Shaheen, A.M.; Elsayed, A.M.; El-Sehiemy, R.A.; Kamel, S.; Ghoneim, S.S.M. A modified marine predators optimization algorithm for simultaneous network reconfiguration and distributed generator allocation in distribution systems under different loading conditions. Eng. Optim. 2021, 54, 687–708. [Google Scholar] [CrossRef]
- Shaheen, A.; El-Sehiemy, R.; Kamel, S.; Selim, A. Optimal Operational Reliability and Reconfiguration of Electrical Distribution Network Based on Jellyfish Search Algorithm. Energies 2022, 15, 6994. [Google Scholar] [CrossRef]
- El-Ela, A.; Abou El-Ela, A.A.; El-Sehiemy, R.A.; Allam, S.M.; Shaheen, A.M.; Nagem, N.A.; Sharaf, A.M. Renewable Energy Micro-Grid Interfacing: Economic and Environmental Issues. Electronics 2022, 11, 815. [Google Scholar] [CrossRef]
- Noroozi, M.; Mohammadi, H.; Efatinasab, E.; Lashgari, A.; Eslami, M.; Khan, B. Golden Search Optimization Algorithm. IEEE Access 2022, 10, 37515–37532. [Google Scholar] [CrossRef]
Items | DE | AROA |
---|---|---|
Installed buses | 12 | 11 |
31 | 17 | |
18 | 31 | |
Regarding PV Size (kW) | 818 | 636 |
936 | 844 | |
696 | 971 | |
Objective | 5224.216 | 5223.662 |
Items | Initial | DE | AROA |
---|---|---|---|
Energy Losses (kWh/day) | 3557.2479 | 2485.314 | 2482.624 |
Voltage deviations (p.u./day) | 35.643 | 28.4277 | 28.4663 |
Violations | 6912.71 | 2710.4729 | 2712.6 |
Objective | 10505.6 | 5224.216 | 5223.662 |
Items | GSO | DE | AROA |
---|---|---|---|
Installed buses | 10 | 31 | 7 |
32 | 15 | 14 | |
33 | 8 | 31 | |
Regarding PV Size (kW) | 1000 | 934 | 652 |
451 | 448 | 969 | |
1000 | 716 | 830 | |
Regarding (kVAr) | ±1000 | ±953 | ±862 |
±1000 | ±965 | ±769 | |
±1000 | ±842 | ±838 | |
Objective | 2387.5 | 2132.1595 | 1643.774 |
Items | Initial | GSO | DE | AROA |
---|---|---|---|---|
Energy Losses (kWh/day) | 3557.2479 | 2111.2 | 1979.7587 | 1623.56 |
Voltage deviations (p.u./day) | 35.643 | 21.6216 | 23.03956 | 20.2141 |
Violations | 6912.71 | 254.7555 | 129.36121 | 0 |
Objective | 10505.6 | 2387.5 | 2132.1595 | 1643.774 |
Items | GSO | DE | AROA |
---|---|---|---|
Computational Time (second) | 758.85 | 585.51 | 531.833 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elshahed, M.; Tolba, M.A.; El-Rifaie, A.M.; Ginidi, A.; Shaheen, A.; Mohamed, S.A. An Artificial Rabbits’ Optimization to Allocate PVSTATCOM for Ancillary Service Provision in Distribution Systems. Mathematics 2023, 11, 339. https://doi.org/10.3390/math11020339
Elshahed M, Tolba MA, El-Rifaie AM, Ginidi A, Shaheen A, Mohamed SA. An Artificial Rabbits’ Optimization to Allocate PVSTATCOM for Ancillary Service Provision in Distribution Systems. Mathematics. 2023; 11(2):339. https://doi.org/10.3390/math11020339
Chicago/Turabian StyleElshahed, Mostafa, Mohamed A. Tolba, Ali M. El-Rifaie, Ahmed Ginidi, Abdullah Shaheen, and Shazly A. Mohamed. 2023. "An Artificial Rabbits’ Optimization to Allocate PVSTATCOM for Ancillary Service Provision in Distribution Systems" Mathematics 11, no. 2: 339. https://doi.org/10.3390/math11020339
APA StyleElshahed, M., Tolba, M. A., El-Rifaie, A. M., Ginidi, A., Shaheen, A., & Mohamed, S. A. (2023). An Artificial Rabbits’ Optimization to Allocate PVSTATCOM for Ancillary Service Provision in Distribution Systems. Mathematics, 11(2), 339. https://doi.org/10.3390/math11020339