Traveling Wave Solutions for Complex Space-Time Fractional Kundu-Eckhaus Equation
Abstract
:1. Introduction
2. The Truncated M-Fractional Derivative
3. Existence of Traveling Wave Solutions of the Space-Time FKEE
4. Traveling Wave Solutions of the Space-Time FKEE
4.1. Kink Wave Solutions
4.1.1. First Formula
4.1.2. Second Formula
4.2. Solitary Wave Solutions
4.2.1. First Formula
4.2.2. Second Formula
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Griffiths, D.J.; Schroeter, D.F. Introduction to Quantum Mechanics; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Laskin, N. Fractional Schrödinger equation. Phys. Rev. E 2002, 66, 056108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laskin, N. Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 2000, 268, 298–305. [Google Scholar] [CrossRef] [Green Version]
- Al-Smadi, M.; Abu Arqub, O.; Momani, S. Numerical computations of coupled fractional resonant Schrödinger equations arising in quantum mechanics under conformable fractional derivative sense. Phys. Scr. 2020, 95, 075218. [Google Scholar] [CrossRef]
- Alabedalhadi, M.; Al-Smadi, M.; Al-Omari, S.; Baleanu, D.; Momani, S. Structure of optical soliton solution for nonliear resonant space-time Schrödinger equation in conformable sense with full nonlinearity term. Phys. Scr. 2020, 95, 105215. [Google Scholar] [CrossRef]
- Muslih, S.I.; Agrawal, O.P.; Baleanu, D. A fractional Schrödinger equation and its solution. Int. J. Theor. Phys. 2010, 49, 1746–1752. [Google Scholar] [CrossRef]
- Hasan, S.; Al-Smadi, M.; El-Ajou, A.; Momani, S.; Hadid, S.; Al-Zhour, Z. Numerical approach in the Hilbert space to solve a fuzzy Atangana-Baleanu fractional hybrid system. Chaos Solitons Fractals 2020, 143, 110506. [Google Scholar] [CrossRef]
- Eid, R.; Muslih, S.I.; Baleanu, D.; Rabei, E. On fractional Schrödinger equation in α-dimensional fractional space. Nonlinear Anal. Real World Appl. 2009, 10, 1299–1304. [Google Scholar] [CrossRef]
- Gómez-Aguilar, J.F.; Baleanu, D. Schrödinger equation involving fractional operators with non-singular kernel. J. Electromagn. Waves Appl. 2017, 31, 752–761. [Google Scholar] [CrossRef]
- Al-Smadi, M.; Abu Arqub, O. Computational algorithm for solving fredholm time-fractional partial integrodifferential equations of dirichlet functions type with error estimates. Appl. Math. Comput. 2019, 342, 280–294. [Google Scholar] [CrossRef]
- Choi, J.; Kim, H. Coupled Fractional Traveling Wave Solutions of the Extended Boussinesq–Whitham–Broer–Kaup-Type Equations with Variable Coefficients and Fractional Order. Symmetry 2021, 13, 1396. [Google Scholar] [CrossRef]
- Arafa, A.A.M.; Hagag, A.M.S. Q-homotopy analysis transform method applied to fractional Kundu-Eckhaus equation and fractional massive Thirring model arising in quantum field theory. Asian-Eur. J. Math. 2019, 12, 1950045. [Google Scholar] [CrossRef]
- Ali, A.; Seadawy, A.R.; Lu, D. Dispersive analytical soliton solutions of some nonlinear waves dynamical models via modified mathematical methods. Adv. Differ. Equations 2018, 2018, 334. [Google Scholar] [CrossRef] [Green Version]
- Al-Smadi, M.; Abu Arqub, O.; Hadid, S. Approximate solutions of nonlinear fractional Kundu-Eckhaus and coupled fractional massive Thirring equations emerging in quantum field theory using conformable residual power series method. Phys. Scr. 2020, 95, 105205. [Google Scholar] [CrossRef]
- Kumar, D.; Manafian, J.; Hawlader, F.; Ranjbaran, A. New closed form soliton and other solutions of the Kundu-Eckhaus equation via the extended sinh-Gordon equation expansion method. Optik 2018, 160, 159–167. [Google Scholar] [CrossRef]
- Khater, M.M.A. Exact traveling wave solutions for nonlinear dynamics of microtubules—A new model and the Kundu-Eckhaus equation. Commun. Numer. Anal. 2019, 2, 78–90. [Google Scholar] [CrossRef]
- Rezazadeh, H.; Korkmaz, A.; Eslami, M.; Mirhosseini-Alizamini, S.M. A large family of optical solutions to Kundu-Eckhaus model by a new auxiliary equation method. Opt. Quantum Electron. 2019, 51, 84. [Google Scholar] [CrossRef]
- Wang, P.; Feng, L.; Shang, T.; Guo, L.; Cheng, G.; Du, Y. Analytical soliton solutions for the cubic–quintic nonlinear Schrödinger equation with Raman effect in the nonuniform management systems. Nonlinear Dyn. 2014, 79, 387–395. [Google Scholar] [CrossRef]
- Khatera, M.M.A.; Seadawy, A.R.; Lua, D. Optical soliton and rogue wave solutions of the ultra-short femto-second pulses in an optical fiber via two different methods and its applications. Optik 2018, 158, 434–450. [Google Scholar] [CrossRef]
- Gao, W.; Veeresha, P.; Prakasha, D.G.; Baskonus, H.M.; Yel, G. New Numerical Results for the Time-Fractional Phi-Four Equation Using a Novel Analytical Approach. Symmetry 2020, 12, 478. [Google Scholar] [CrossRef] [Green Version]
- Baleanu, D.; Fernandez, A. On some new properties of fractional derivatives with Mittag-Leffler kernel. Commun. Nonlinear Sci. Numer. Simul. 2018, 59, 444–462. [Google Scholar] [CrossRef]
- Alruwaili, A.D.; Seadawy, A.R.; Ali, A.; Beinane, S.A.O. Novel Analytical Approach for the Space-Time Fractional (2+1)-Dimensional Breaking Soliton Equation via Mathematical Methods. Mathematics 2021, 9, 3253. [Google Scholar] [CrossRef]
- Baleanu, D.; Machado, J.A.T.; Luo, A.C. (Eds.) Fractional Dynamics and Control; Springer: New York, NY, USA, 2012. [Google Scholar]
- Ibrahim, R.W.; Baleanu, D. Symmetry Breaking of a Time-2D Space Fractional Wave Equation in a Complex Domain. Axioms 2021, 10, 141. [Google Scholar] [CrossRef]
- Burqan, A.; El-Ajou, A.; Saadeh, R.; Al-Smadi, M. A new efficient technique using Laplace transforms and smooth expansions to construct a series solution to the time-fractional Navier-Stokes equations. Alex. Eng. J. 2021, 61, 1069–1077. [Google Scholar] [CrossRef]
- Shah, N.A.; Rauf, A.; Vieru, D.; Sitthithakerngkiet, K.; Kumam, P. Analytical Solutions of the Diffusion–Wave Equation of Groundwater Flow with Distributed-Order of Atangana–Baleanu Fractional Derivative. Appl. Sci. 2021, 11, 4142. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Mathematics in Science and Engineering; Elsevier: Amsterdam, The Netherlands, 1999; Volume 198, pp. 41–119. [Google Scholar]
- Sousa, J.V.D.C.; de Oliveira, E.C. A New Truncated M-Fractional Derivative Type Unifying Some Fractional Derivative Types with Classical Properties. Int. J. Anal. Appl. 2018, 16, 83–96. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.Z. Abundant Jacobi elliptic function solutions of nonlinear evolution equations. Acta Phys. Sin. 2005, 54, 4501–4505. [Google Scholar]
- Shqair, M.; Al-Smadi, M.; Momani, S.; El-Zahar, E. Adaptation of conformable residual power series scheme in solving nonlinear fractional quantum mechanics problems. Appl. Sci. 2020, 10, 890. [Google Scholar] [CrossRef] [Green Version]
- Shqair, M.; Alabedalhadi, M.; Al-Omari, S.; Al-Smadi, M. Abundant Exact Travelling Wave Solutions for a Fractional Massive Thirring Model Using Extended Jacobi Elliptic Function Method. Fractal Fract. 2022, 6, 252. [Google Scholar] [CrossRef]
- Hirsch, M.W. Geometrical methods in the theory of ordinary differential equations. Bull. Am. Math. Soc. 1984, 10, 305–311. [Google Scholar] [CrossRef] [Green Version]
- Glushkov, A.V. Methods of a Chaos Theory; Astroprint: Odessa, Ukraine, 2012. [Google Scholar]
- Verhulst, F. Nonlinear Differential Equations and Dynamical Systems; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Freihet, A.; Hasan, S.; Alaroud, M.; Al-Smadi, M.; Ahmad, R.R.; Din, U.K.S. Toward computational algorithm for time-fractional Fokker-Planck models. Adv. Mech. Eng. 2019, 11, 1687814019881039. [Google Scholar] [CrossRef]
- Jharna, T.; Saha, A. Bifurcations of small-amplitude supernonlinear waves of the mKdV and modified Gardner equations in a three-component electron-ion plasma. Phys. Plasmas 2020, 27, 012105. [Google Scholar] [CrossRef]
- Dubinov, A.E.; Kolotkov, D.Y.; Sazonkin, M.A. Nonlinear theory of ion-sound waves in a dusty electron-positron-ion plasma. Tech. Phys. 2012, 57, 585–593. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alabedalhadi, M.; Shqair, M.; Al-Omari, S.; Al-Smadi, M. Traveling Wave Solutions for Complex Space-Time Fractional Kundu-Eckhaus Equation. Mathematics 2023, 11, 404. https://doi.org/10.3390/math11020404
Alabedalhadi M, Shqair M, Al-Omari S, Al-Smadi M. Traveling Wave Solutions for Complex Space-Time Fractional Kundu-Eckhaus Equation. Mathematics. 2023; 11(2):404. https://doi.org/10.3390/math11020404
Chicago/Turabian StyleAlabedalhadi, Mohammed, Mohammed Shqair, Shrideh Al-Omari, and Mohammed Al-Smadi. 2023. "Traveling Wave Solutions for Complex Space-Time Fractional Kundu-Eckhaus Equation" Mathematics 11, no. 2: 404. https://doi.org/10.3390/math11020404
APA StyleAlabedalhadi, M., Shqair, M., Al-Omari, S., & Al-Smadi, M. (2023). Traveling Wave Solutions for Complex Space-Time Fractional Kundu-Eckhaus Equation. Mathematics, 11(2), 404. https://doi.org/10.3390/math11020404