Optimal Designs for Proportional Interference Models with Different Guarding Strategies
Abstract
:1. Introduction
2. Preliminaries
2.1. Models and Notation
2.2. Optimal Criterion
3. Equivalence Theorems
3.1. Optimal Design for Direct Effects under Unguarded Model
3.2. Optimal Design for Total Effects under Unguarded Model
4. Examples
Algorithm 1: For a measure and a sequence s, we define , and the vector of length m with ith entry as 1 and other entries 0. |
|
4.1. Optimal Unguarded Designs
4.2. Optimal Noncircular Designs: In Comparison with Optimal Circular Designs
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Afsarinejad, K.; Hedayat, A.S. Repeated measurements designs for a model with self and simple mixed carryover effects. J. Stat. Plan. Inference 2002, 106, 449–459. [Google Scholar] [CrossRef]
- Azaïs, J.M.; Onillon, O.; Lefort Buson, M. Une methode d’etude de phenomenes de competition entre genotypes. Application au colza (Brassica napus L.). Agronomie 1986, 6, 601–614. [Google Scholar] [CrossRef] [Green Version]
- Bailey, R.A.; Payne, R.W. Experimental design: Statistical research and its application. In Institute of Arable Crops Research Report for 1989; Abbott, J., Ed.; Agriculture and Food Research Council, Institute of Arable Crops Research: Harpenden, UK, 1990; pp. 107–112. [Google Scholar]
- Bradshaw, J.E. Competition between cultivars of fodder kale in yield trials with single-row plots. Euphytica 1986, 35, 433–439. [Google Scholar] [CrossRef]
- Haines, W.B.; Benzian, B. Some manuring experiments on oil palm in Africa. Emp. J. Exp. Agric. 1956, 24, 137–160. [Google Scholar]
- Hide, G.A.; Read, P.J. Effect of neighbouring plants on the yield of potatoes from seed tubers affected with gangrene (Phoma foveata) or from plants affected with stem canker (Rhizoc- tonia solani). Ann. Appl. Biol. 1990, 116, 233–243. [Google Scholar] [CrossRef]
- Jenkyn, J.F.; Dyke, G.V. Interference between plots in experiments with plant pathogens. Asp. Appl. Biol. 1985, 10, 75–85. [Google Scholar]
- Kawano, K.; Amaya, A.; Daza, P.; Rios, M. Factors affecting efficiency of hybridization and selection in cassava. Crop. Sci. 1978, 17, 373–376. [Google Scholar] [CrossRef]
- Kempton, R.A. Interference in agricultural experiments. In Proceedings of the 2nd Meeting of the Biometric Society, East, Central and Southern African Network, Harare, Zimbabwe, 4–8 December 1992; pp. 1–19. [Google Scholar]
- Kempton, R.A.; Gregory, R.S.; Hughes, W.G.; Stoeer, P.J. The effect of interplot competition on yield assessment in triticale trial. Euphytica 1986, 35, 257–265. [Google Scholar] [CrossRef]
- Langton, S. Avoiding edge effects in agroforestry experiments; the use of neighbour-balanced designs and guard areas. Agrofor. Syst. 1990, 12, 173–185. [Google Scholar] [CrossRef]
- Morgan, J.P.; Uddin, N. Two-Dimensional Design for Correlated Errors. Ann. Stat. 1991, 19, 2160–2182. [Google Scholar] [CrossRef]
- Murugesan, M.; Arokia Raj, A. Inter-plot competition in manurial experiments among different genotypes of sorghum. Madras Agric. J. 1978, 65, 46–51. [Google Scholar]
- Pearce, S.C. Experimenting with organisms as blocks. Biometrika 1957, 44, 141–149. [Google Scholar] [CrossRef]
- Speckel, D.; Vincourt, P.; Azais, J.M.; Kobilinsky, A. Etude de la competition inter- parcellaire chez le tournesol. Biom.-Praxim. 1987, 27, 21–43. [Google Scholar]
- Ai, M.; Yu, Y.; He, S. Optimality of circular neighbor-balanced designs for total effects with autoregressive correlated observations. J. Stat. Plan. Inference 2009, 139, 2293–2304. [Google Scholar] [CrossRef]
- Bailey, R.A.; Druilhet, P. Optimality of neighbor-balanced designs for total effects. Ann. Stat. 2004, 32, 1650–1661. [Google Scholar] [CrossRef]
- Cheng, C.S.; Wu, C.-F. Balanced repeated measurements designs. Ann. Stat. 1980, 8, 1272–1283. [Google Scholar] [CrossRef]
- Druilhet, P. Optimality of neighbour balanced designs. J. Stat. Plan. Inference 1999, 81, 141–152. [Google Scholar] [CrossRef]
- Druilhet, P.; Tinsson, W. Efficient circular neighbour designs for spatial interference model. J. Statistical Plan. Inference 2012, 142, 1161–1169. [Google Scholar] [CrossRef] [Green Version]
- Kunert, J.; Martin, R.J. On the determination of optimal designs for an interference model. Ann. Stat. 2000, 28, 1728–1742. [Google Scholar] [CrossRef]
- Kunert, J.; Mersmann, S. Optimal designs for an interference model. J. Stat. Plan. Inference 2011, 141, 1623–1632. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Zheng, W.; Ai, M. Optimal designs for the proportional interference model. Ann. Stat. 2015, 43, 1596–1616. [Google Scholar] [CrossRef]
- Stufken, J. Some families of optimal and efficient repeated measurements designs. J. Stat. Plan. Inference 1991, 27, 75–83. [Google Scholar] [CrossRef]
- Stufken, J. Optimal crossover designs. Design and Analysis of Experiments. In Handbook of Statistics 13; Ghosh, S., Rao, C.R., Eds.; North Holland: Amsterdam, The Netherlands, 1996; pp. 63–90. [Google Scholar]
- Zheng, W. Universally optimal designs for two interference models. Ann. Stat. 2015, 43, 501–518. [Google Scholar] [CrossRef] [Green Version]
- Zheng, W.; Ai, M.; Li, K. Identification of universally optimal circular designs for the interference model. Ann. Stat. 2017, 45, 1462–1487. [Google Scholar] [CrossRef]
- Draper, N.R.; Guttman, I. Incorporating overlap effects from neighbouring units into response surface models. J. R. Stat. Soc. Ser. 1980, 29, 128–134. [Google Scholar] [CrossRef]
- Bailey, R.A.; Kunert, J. On optimal crossover designs when carryover effects are proportional to direct effects. Biometrika 2006, 93, 613–625. [Google Scholar] [CrossRef]
- Bose, M.; Stufken, J. Optimal crossover designs when carryover effects are proportional to direct effects. J. Stat. Plan. Inference 2007, 137, 3291–3302. [Google Scholar] [CrossRef]
- Kempton, R.A.; Ferris, S.J.; David, O. Optimal change-over designs when carryover effects are proportional to direct effects of treatments. Biometrika 2001, 88, 391–399. [Google Scholar] [CrossRef]
- Zheng, W. Optimal crossover designs for the proportional model. Ann. Stat. 2013, 41, 2218–2235. [Google Scholar] [CrossRef] [Green Version]
- Azaïs, J.M.; Bailey, R.A.; Monod, H. A catalogue of efficient neighbour-designs with border plots. Biometrics 1993, 49, 1252–1261. [Google Scholar] [CrossRef]
- Filipiak, K.; Markiewicz, A. On universal optimality of circular weakly neighbor balanced designs under an interference model. Commun. Stat. Theory Methods 2012, 41, 2356–2366. [Google Scholar] [CrossRef]
- Filipiak, K.; Markiewicz, A. Optimality and efficiency of circular neighbor balanced designs for correlated observations. Metrika 2005, 61, 17–27. [Google Scholar] [CrossRef]
- Kong, X.S.; Yuan, M.G.; Zheng, W. Approximate and exact designs for total effects. Ann. Stat. 2021, 49, 1594–1625. [Google Scholar] [CrossRef]
- Besag, J.; Kempton, R.A. Statistical analysis of field experiments using neighbouring plots. Biometrics 1986, 231–251. [Google Scholar] [CrossRef]
- Kiefer, J.C. Construction and optimality of generalized Youden designs. In A Survey of Statistical Designs and Linear Models; Srivastava, J.N., Ed.; North-Holland: Amsterdam, The Netherlands, 1975; pp. 333–353. [Google Scholar]
- Pukelsheim, F. Optimal Design of Experiments (Classics in Applied Mathematics); Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2006. [Google Scholar]
value for optimal circular design | 0.2222 | 0.2485 | 0.2192 |
value for optimal noncircular design | 1.0000 | 0.4167 | 0.2977 |
4.5004 | 1.6769 | 1.3581 |
t | A | D | E | T | |
---|---|---|---|---|---|
3 | 2.1511 | 1.6152 | 2.3679 | 1.2835 | |
3 | 1.6474 | 1.3267 | 2.0121 | 1.1606 | |
3 | 2.1976 | 1.7487 | 2.5533 | 1.3113 | |
4 | 1.4699 | 1.4211 | 1.6193 | 1.4001 | |
4 | 1.2468 | 1.2433 | 1.3100 | 1.2768 | |
4 | 1.7360 | 1.5906 | 2.0544 | 1.4924 | |
5 | 1.6108 | 1.4587 | 1.9916 | 1.3948 | |
5 | 1.4187 | 1.3534 | 1.6081 | 1.3251 | |
5 | 1.7858 | 1.5970 | 2.4537 | 1.4853 |
t | A | D | E | T | |
---|---|---|---|---|---|
3 | 1.3048 | 1.1951 | 1.1579 | 1.1169 | |
3 | 1.2965 | 1.2876 | 1.3778 | 1.2788 | |
3 | 1.0728 | 1.0716 | 1.1222 | 1.0704 | |
4 | 1.2388 | 1.2498 | 1.1875 | 1.2660 | |
4 | 2.5977 | 2.6053 | 2.5550 | 2.6163 | |
4 | 1.1702 | 1.1899 | 1.0483 | 1.2225 | |
5 | 1.3534 | 1.3527 | 1.4376 | 1.3518 | |
5 | 1.3642 | 1.3581 | 1.5647 | 1.3527 | |
5 | 1.3502 | 1.3516 | 1.3397 | 1.3534 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Kong, X. Optimal Designs for Proportional Interference Models with Different Guarding Strategies. Mathematics 2023, 11, 443. https://doi.org/10.3390/math11020443
Zhang F, Kong X. Optimal Designs for Proportional Interference Models with Different Guarding Strategies. Mathematics. 2023; 11(2):443. https://doi.org/10.3390/math11020443
Chicago/Turabian StyleZhang, Futao, and Xiangshun Kong. 2023. "Optimal Designs for Proportional Interference Models with Different Guarding Strategies" Mathematics 11, no. 2: 443. https://doi.org/10.3390/math11020443
APA StyleZhang, F., & Kong, X. (2023). Optimal Designs for Proportional Interference Models with Different Guarding Strategies. Mathematics, 11(2), 443. https://doi.org/10.3390/math11020443