Multi-Effective Collocation Methods for Solving the Volterra Integral Equation with Highly Oscillatory Fourier Kernels
Abstract
:1. Introduction
2. Direct Linear Interpolation Collocation Method (DL)
3. Direct High-Order Interpolation Collocation Method (DO)
4. Direct Hermite Interpolation Collocation Method (DH)
5. Piecewise Hermite Interpolation Collocation Method (PH)
6. Error Analysis
7. Numerical Experiments
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bao, G.; Sun, W. A fast algorithm for the electromagnetic scattering from a large cavity. SIAM J. Sci. Comput. 2005, 27, 553–574. [Google Scholar] [CrossRef]
- Davies, P.J.; Duncan, D.B. Stability and convergence of collocation schemes for retarded potential integral equations. SIAM J. Numer. Anal. 2004, 42, 1167–1188. [Google Scholar] [CrossRef]
- Langdon, S.; Chandler-Wilde, S.N. A wavenumber independent boundary element method for an acoustic scattering problem. SIAM J. Numer. Anal. 2006, 43, 2450–2477. [Google Scholar] [CrossRef]
- Fa, K.S.; Wang, K.G. Integro-Differential Equations Associated with Continuous-Time Random Walk. Int. J. Mod. Phys. B 2013, 27, 1330006. [Google Scholar] [CrossRef]
- Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 2000, 339, 1–77. [Google Scholar] [CrossRef]
- Ramm, A.G.; Charlot, J. Theory and Applications of Some New Classes of Integral Equations; Springer: New York, NY, USA, 1980. [Google Scholar]
- Tuan, N.H.; Mohammadi, H.; Rezapour., S. A mathematical model for COVID-19 transmission by using the Caputo fractional derivative. Chaos Solitons Fractals 2020, 140, 110107. [Google Scholar] [CrossRef]
- Mohammadi, H.; Rezapour, S.; Jajarmi, A. On the fractional SIRD mathematical model and control for the transmission of COVID-19: The first and the second waves of the disease in Iran and Japan. ISA Trans. 2022, 124, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, H.; Papp, E.; Cahill, L.; Rennie, M.; Banko, N.; Pinnaduwage, L.; Lee, J.; Kibschull, M.; Dunk, C.; Sled, J.G.; et al. HIV antiretroviral exposure in pregnancy induces detrimental placenta vascular changes that are rescued by progesterone supplementation. Sci. Rep. 2018, 8, 6552. [Google Scholar] [CrossRef]
- Berrone, L.R. Local positivity of the solution to Volterra integral equations and heat conduction in materials that may undergoes changes of phase. Math. Note 1995, 38, 79–93. [Google Scholar]
- Beezley, R.S.; Krueger, R.J. An electromagnetic inverse problem for dispersive media. J. Math. Phys. 1985, 26, 317–325. [Google Scholar] [CrossRef]
- Kristensson, G. Direct and Inverse Scattering Problems in Dispersive Media-Green’s Functions and Invariant Imbedding Techniques. Methoden Verfahr. Math. Phys. 1991, 37, 105–119. [Google Scholar]
- Linz, P. Product integration methods for Volterra integral equations of the first kind. BIT Numer. Math. 1971, 11, 413–421. [Google Scholar] [CrossRef]
- Anderssen, A.S.; White, E.T. Improved numerical methods for Volterra integral equations of the first kind. Comput. J. 1971, 14, 442–443. [Google Scholar] [CrossRef]
- Levin, D. Fast integration of rapidly oscillatory functions. J. Comput. Appl. Math. 1996, 67, 95–101. [Google Scholar] [CrossRef]
- Levin, D. Analysis of a collocation method for integrating rapidly oscillatory functions. J. Comput. Appl. Math. 1997, 78, 131–138. [Google Scholar] [CrossRef]
- Uddin, M.; Khan, A. A Numerical Method for Solving Volterra Integral Equations with Oscillatory Kernels Using a Transform. Numer. Anal. Appl. 2021, 14, 379–387. [Google Scholar] [CrossRef]
- Xiang, S.; Brunner, H. Efficient methods for Volterra integral equations with highly oscillatory Bessel kernels. BIT Numer. Math. 2013, 53, 241–263. [Google Scholar] [CrossRef]
- Xiang, S.; Wu, Q. Numerical solutions to Volterra integral equations of the second kind with oscillatory trigonometric kernels. Appl. Math. Comput. 2013, 223, 34–44. [Google Scholar] [CrossRef]
- Wu, Q. On graded meshes for weakly singular Volterra integral equations with oscillatory trigonometric kernels. J. Comput. Appl. Math. 2014, 263, 370–376. [Google Scholar] [CrossRef]
- Fang, C.; He, G.; Xiang, S. Hermite-type collocation methods to solve Volterra integral equations with highly oscillatory Bessel kernels. Symmetry 2019, 11, 168. [Google Scholar] [CrossRef]
- Ma, J.; Kang, H. Frequency-explicit convergence analysis of collocation methods for highly oscillatory Volterra integral equations with weak singularities. Appl. Numer. Math. 2020, 151, 1–12. [Google Scholar] [CrossRef]
- Ma, J.; Fang, C.; Xiang, S. Modified asymptotic orders of the direct Filon method for a class of Volterra integral equations. J. Comput. Appl. Math. 2015, 281, 120–125. [Google Scholar] [CrossRef]
- Chen, H.; Liu, L.; Ma, J. Analysis of generalized multistep collocation solutions for oscillatory Volterra integral equations. Mathematics 2020, 8, 2004. [Google Scholar] [CrossRef]
- Yang, X.; Wu, L.; Zhang, H. A space-time spectral order sinc-collocation method for the fourth-order nonlocal heat model arising in viscoelasticity. Appl. Math. Comput. 2023, 457, 128192. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, J.; Wang, W.; Zhang, H. A Predictor–Corrector Compact Difference Scheme for a Nonlinear Fractional Differential Equation. Fractal Fract. 2023, 7, 521. [Google Scholar] [CrossRef]
- Tian, Q.; Yang, X.; Zhang, H.; Xu, D. An implicit robust numerical scheme with graded meshes for the modified Burgers model with nonlocal dynamic properties. Comput. Appl. Math. 2023, 42, 246. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, H.; Tang, J. The OSC solver for the fourth-order sub-diffusion equation with weakly singular solutions. Comput. Math. Appl. 2021, 82, 1–12. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, X.; Tang, Q.; Xu, D. A robust error analysis of the OSC method for a multi-term fourth-order sub-diffusion equation. Comput. Math. Appl. 2022, 109, 180–190. [Google Scholar] [CrossRef]
- Teriele, H. Collocation methods for weakly singular second-kind Volterra integral equations with non-smooth solution. IMA J. Numer. Anal. 1982, 2, 437–449. [Google Scholar]
- Brunner, H. Collocation Methods for Volterra Integral and Related Functional Differential Equations; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Xiang, S.; He, G.; Cho, Y.J. On error bounds of Filon-Clenshaw-Curtis quadrature for highly oscillatory integrals. Adv. Comput. Math. 2015, 41, 573–597. [Google Scholar] [CrossRef]
- Gao, J.; Iserles, A. A generalization of Filon–Clenshaw–Curtis quadrature for highly oscillatory integrals. BIT Numer. Math. 2017, 57, 943–961. [Google Scholar] [CrossRef]
- Ma, J.; Liu, H. A well-conditioned Levin method for calculation of highly oscillatory integrals and its application. J. Comput. Appl. Math. 2018, 342, 451–462. [Google Scholar] [CrossRef]
- Zhang, Q.; Xiang, S. On fast multipole methods for Volterra integral equations with highly oscillatory kernels. J. Comput. Appl. Math. 2019, 348, 535–554. [Google Scholar] [CrossRef]
- Kayijuka, I.; Ege, Ş.M.; Konuralp, A.; Topal, F.S. Clenshaw–Curtis algorithms for an efficient numerical approximation of singular and highly oscillatory Fourier transform integrals. J. Comput. Appl. Math. 2021, 385, 113201. [Google Scholar] [CrossRef]
- Xiang, S.; Cho, Y.J.; Wang, H.; Brunner, H. Clenshaw–Curtis–Filon–type methods for highly oscillatory Bessel transforms and applications. IMA J. Numer. Anal. 2011, 31, 1281–1314. [Google Scholar] [CrossRef]
- Wu, Q.; Hou, W. Efficient BBFM-collocation for weakly singular oscillatory Volterra integral equations of the second kind. Int. J. Comput. Math. 2022, 99, 1022–1040. [Google Scholar] [CrossRef]
- Volterra, V. Sulla inversione degli integrali definiti. Atti R. Accad. Sci. Torino 1896, 31, 311–323. [Google Scholar]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; US Government Printing Office: Washington, DC, USA, 1964.
- Erdelyi, A. Asymptotic representations of Fourier integrals and the method of stationary phase. J. Soc. Ind. Appl. Math. 1955, 3, 17–27. [Google Scholar] [CrossRef]
- Xiang, S.; Wang, H. Fast integration of highly oscillatory integrals with exotic oscillators. Math. Comput. 2010, 79, 829–844. [Google Scholar] [CrossRef]
- Liu, G.; Xiang, S. Clenshaw-Curtis-type quadrature rule for hypersingular integrals with highly oscillatory kernels. Appl. Math. Comput. 2019, 340, 251–267. [Google Scholar] [CrossRef]
- Xu, Z.; Xiang, S. Computation of Highly Oscillatory Bessel Transforms with Algebraic Singularities. arXiv 2016, arXiv:1605.08568. [Google Scholar]
0.2 | 0.4 | 0.6 | 0.8 | |
---|---|---|---|---|
8.5811 | 1.0505e | 1.2809 | 1.5639 | |
5.4129 | 6.6218 | 8.0717 | 9.8618 | |
8.5811 | 1.0488 | 1.2766 | 1.5604 | |
5.3575 | 6.7978 | 7.5534 | 1.0026 |
0.2 | 0.4 | 0.6 | 0.8 | Times (s) | ||
---|---|---|---|---|---|---|
method in ref. [13] | 9.0505 | 2.4929 | 5.1834 | 9.5648 | ||
7.1590 | 4.4221 | 8.4436 | 5.8542 | 0.07 | ||
10 | 1.6541 | 1.1349 | 2.6547 | 3.5627 | 0.17 | |
5.0565 | 1.5197 | 8.0397 | 1.8113 | 0.18 | ||
8.5811 | 1.0505 | 1.2809 | 1.5639 | 12.01 | ||
method in ref. [13] | 5.3956 | 1.4430 | 2.9208 | 5.3042 | ||
1.7381 | 1.8079 | 1.7382 | 8.4881 | 0.08 | ||
100 | 1.7398 | 2.4167 | 2.7397 | 2.3903 | 0.18 | |
5.7609 | 3.1650 | 7.9237 | 1.1255 | 0.19 | ||
8.3020 | 1.0136 | 1.2384 | 1.5133 | 12.14 | ||
method in ref. [13] | 4.4797 | 1.2024 | 2.4321 | 4.4078 | ||
1.9208 | 2.4344 | 8.3147 | 6.5576 | 0.08 | ||
1000 | 1.0842 | 2.1712 | 2.8220 | 2.8309 | 0.19 | |
3.5449 | 2.8325 | 8.1719 | 1.3838 | 0.19 | ||
1.2003 | 1.4653 | 1.7894 | 2.1859 | 12.24 | ||
method in ref. [13] | 2.5400 | 4.6830 | 5.7729 | 1.0625 | ||
1.2448 | 1.8349 | 8.0239 | 9.0117 | 0.09 | ||
10,000 | 1.8448 | 2.3232 | 1.0113 | 2.3808 | 0.20 | |
5.7004 | 2.9783 | 1.8947 | 1.0765 | 0.20 | ||
1.2245 | 1.4954 | 1.8288 | 2.2344 | 12.41 | ||
method in ref. [13] | 7.5131 | 2.0218 | 4.0961 | 7.4200 | ||
5.5605 | 8.6924 | 5.9600 | 7.9871 | 0.13 | ||
60,000 | 2.6945 | 5.4208 | 7.6252 | 8.8118 | 0.24 | |
2.0344 | 5.2951 | 4.4443 | 1.2404 | 0.28 | ||
5.0765 | 7.2941 | 9.8994 | 9.6185 | 12.57 |
0.2 | 0.4 | 0.6 | 0.8 | ||
---|---|---|---|---|---|
6.4692 | 7.2174 | 1.8880 | 1.8278 | ||
10 | 1.3290 | 8.0655 | 1.6386 | 1.8575 | |
4.5631 | 2.4625 | 1.7470 | 4.6872 | ||
6.8836 | 6.4721 | 5.8028 | 4.8986 | ||
1.6481 | 3.8164 | 6.3979 | 2.1824 | ||
100 | 1.5431 | 1.8583 | 1.7695 | 1.1951 | |
5.2188 | 5.1081 | 1.7083 | 2.9020 | ||
6.6663 | 6.2640 | 5.6120 | 4.7362 | ||
1.7580 | 4.4871 | 5.6898 | 1.7894 | ||
1000 | 9.5127 | 1.6639 | 1.8252 | 1.4591 | |
3.4056 | 4.6007 | 1.7571 | 3.5168 | ||
9.6336 | 9.0524 | 8.1094 | 6.8432 | ||
1.2468 | 3.7801 | 1.7088 | 2.1301 | ||
10,000 | 1.6407 | 1.7858 | 4.3324 | 1.1816 | |
5.1895 | 4.8727 | 5.1573 | 2.7606 | ||
9.8325 | 9.2382 | 8.2756 | 6.9947 | ||
5.0667 | 1.4987 | 1.9306 | 3.1078 | ||
60,000 | 2.3506 | 4.1277 | 4.9203 | 4.6249 | |
1.1938 | 1.7093 | 1.4874 | 2.9122 | ||
4.4944 | 4.2769 | 5.0636 | 2.6914 |
0.2 | 0.4 | 0.6 | 0.8 | |
---|---|---|---|---|
6.8836 | 6.4721 | 5.8028 | 4.8986 | |
4.3376 | 4.0792 | 3.6573 | 3.0879 | |
6.8726 | 6.4635 | 5.7926 | 4.8900 | |
4.2871 | 4.0620 | 3.5909 | 2.9635 |
0.2 | 0.4 | 0.6 | 0.8 | ||
---|---|---|---|---|---|
1.5048 | 9.7657 | 1.9603 | 1.4660 | ||
10 | 2.2412 | 1.6209 | 3.9982 | 5.6128 | |
2.0739 | 6.3914 | 3.4675 | 8.0126 | ||
1.0302 | 1.4780 | 2.0528 | 2.8177 | ||
3.6570 | 4.0623 | 4.4738 | 2.1014 | ||
100 | 1.9558 | 3.0131 | 3.8122 | 4.0400 | |
2.3633 | 1.3319 | 3.4215 | 4.9957 | ||
9.9416 | 1.4154 | 1.9780 | 2.7214 | ||
4.0409 | 5.4286 | 2.7346 | 1.6420 | ||
1000 | 1.2514 | 2.7275 | 3.9153 | 4.5590 | |
1.4547 | 1.1920 | 3.5286 | 6.1365 | ||
1.4394 | 2.0484 | 2.8583 | 3.9296 | ||
2.6219 | 4.1222 | 1.8699 | 2.2262 | ||
10,000 | 2.0596 | 2.8986 | 2.0550 | 4.0667 | |
2.5041 | 1.2785 | 8.1372 | 4.9120 | ||
1.4654 | 2.0875 | 2.9210 | 4.0130 | ||
1.1697 | 1.9308 | 1.4828 | 2.2263 | ||
60,000 | 3.1514 | 6.9042 | 1.0630 | 1.3734 | |
1.5612 | 5.6320 | 2.8927 | 7.0474 | ||
6.7350 | 9.6907 | 1.5380 | 1.8024 |
0.2 | 0.4 | 0.6 | 0.8 | |
---|---|---|---|---|
9.9416 | 1.4154 | 1.9780 | 2.7214 | |
2.2131 | 3.1525 | 4.3998 | 6.0463 | |
9.8247 | 1.4001 | 1.9544 | 2.6853 | |
6.3141 | 8.9961 | 1.2560 | 1.7224 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Fang, C.; Zhang, G. Multi-Effective Collocation Methods for Solving the Volterra Integral Equation with Highly Oscillatory Fourier Kernels. Mathematics 2023, 11, 4249. https://doi.org/10.3390/math11204249
Wang J, Fang C, Zhang G. Multi-Effective Collocation Methods for Solving the Volterra Integral Equation with Highly Oscillatory Fourier Kernels. Mathematics. 2023; 11(20):4249. https://doi.org/10.3390/math11204249
Chicago/Turabian StyleWang, Jianyu, Chunhua Fang, and Guifeng Zhang. 2023. "Multi-Effective Collocation Methods for Solving the Volterra Integral Equation with Highly Oscillatory Fourier Kernels" Mathematics 11, no. 20: 4249. https://doi.org/10.3390/math11204249
APA StyleWang, J., Fang, C., & Zhang, G. (2023). Multi-Effective Collocation Methods for Solving the Volterra Integral Equation with Highly Oscillatory Fourier Kernels. Mathematics, 11(20), 4249. https://doi.org/10.3390/math11204249