Event-Triggered Second-Order Sliding Mode Controller Design and Implementation
Abstract
:1. Introduction
2. Preliminaries
3. Event-Triggering Super-Twisted Controller Design
4. Admissible Inter-Event Time of the ET-STA
5. Controller Implementation and Comparison
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Proakis, J.G.; Manolakis, D.G. Digital Signal Processing: Principles, Algorithms, and Applcations; Prentice Hall: Hoboken, NJ, USA, 2007. [Google Scholar]
- Phillips, C.L.; Nagle, H.T.; Chakrabortty, A. Digital Control System Analysis and Design; Pearson: London, UK, 2015. [Google Scholar]
- Jetto, L.; Orsini, V. A new event-driven output-based discrete-time control for the sporadic MIMO tracking problem. Int. J. Robust Nonlinear Control 2014, 24, 859–875. [Google Scholar] [CrossRef]
- Khashooei, B.; Antunes, D.; Heemels, W. Output-based event-triggered control with performance guarantees. IEEE Trans. Autom. Control 2017, 62, 3646–3652. [Google Scholar] [CrossRef]
- Astrom, K.; Bernhardsson, B. Comparison of periodic and event based sampling for first-order stochastic systems. In Proceedings of the 14th IFAC World Congress (1999), Beijing, China, 5–9 July 1999; Volume 11, pp. 301–306. [Google Scholar]
- Antunes, D.; Heemels, W.P.M.H. Rollout event-triggered control: Beyond periodic control performance. IEEE Trans. Autom. Control 2014, 59, 3296–3311. [Google Scholar] [CrossRef]
- Mazo, M.; Tabuada, P. Decentralized event-triggered control over wireless sensor/actuator networks. IEEE Trans. Autom. Control 2011, 56, 2456–2461. [Google Scholar] [CrossRef]
- Khojasteh, M.J.; Tallapragada, P.; Cortés, J.; Franceschetti, M. Time-triggering versus event-triggering control over communication channels. In Proceedings of the 2017 IEEE 56th Annual Conference on Decision and Control (CDC), Melbourne, VIC, Australia, 12–15 December 2017; pp. 5432–5437. [Google Scholar]
- Tallapragada, P.; Cortés, J. Event-triggered stabilization of linear systems under bounded bit rates. IEEE Trans. Autom. Control 2016, 61, 1575–1589. [Google Scholar] [CrossRef]
- Sawant, V.; Chakraborty, D.; Pal, D. Intermittent Feedback Control with Maximum Average Off-Time. IEEE Trans. Autom. Control 2021, 66, 5013–5020. [Google Scholar] [CrossRef]
- Bai, Q.; Wei, Z. Event-Triggered Impulsive Optimal Control for Continuous-Time Dynamic Systems with Input Time-Delay. Mathematics 2022, 10, 279. [Google Scholar] [CrossRef]
- Adaldo, A.; Alderisio, F.; Liuzza, D.; Shi, G.; Dimarogonas, D.V.; Di Bernardo, M.; Johansson, K.H. Event-triggered pinning control of switching networks. IEEE Trans. Control Netw. Syst. 2015, 2, 204–213. [Google Scholar] [CrossRef]
- Ge, X.; Han, Q.-L.; Zhang, X.-M.; Ding, L.; Yang, F. Distributed Event-Triggered Estimation Over Sensor Networks: A Survey. IEEE Trans. Cybern. 2020, 50, 1306–1320. [Google Scholar] [CrossRef]
- Nandanwar, A.; Dhar, N.K.; Malyshev, D.; Rybak, L.; Behera, L. Stochastic Event-Based Super-Twisting Formation Control for Multiagent System Under Network Uncertainties. IEEE Trans. Control Netw. Syst. 2022, 9, 966–978. [Google Scholar] [CrossRef]
- Ruiz, A.; Jimenez, J.E.; Sanchez, J.; Dormido, S. A practical tuning methodology for event-based P.I. control. J. Process Control 2014, 24, 278–295. [Google Scholar] [CrossRef]
- Arz’en, K.E. A simple event-based PID controller. IFAC Proc. Vol. 1999, 32, 8687–8692. [Google Scholar] [CrossRef]
- Du, S.; Yan, Q.; Qiao, J. Event-Triggered P.I.D. Control for Wastewater Treatment Plants. Water Process Eng. 2020, 38, 101659. [Google Scholar]
- Durand, S.; Boisseau, B.; Marchand, N.; Guerrero-Castellanos, J. Event-Based P.I.D. Control: Application to a Mini QuadrotorHelicopter. J. Control Eng. Appl. Inform. 2018, 20, 36–47. [Google Scholar]
- Heemels, W.; Sandee, J.; van den Bosch, P. Analysis of event-driven controllers for linear systems. Int. J. Control 2009, 81, 571–590. [Google Scholar] [CrossRef]
- Heemels, W.P.M.H.; Johansson, K.H.; Tabuada, P. An introduction to event-triggered and self-triggered control. In Proceedings of the 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), Maui, HI, USA, 10–13 December 2012; pp. 3270–3285. [Google Scholar] [CrossRef]
- Brunner, F.D.; Heemels, W.P.M.H.; Allgöwer, F. Event-triggered and self-triggered control for linear systems based on reachable sets. Automatica 2019, 101, 15–26. [Google Scholar] [CrossRef]
- Lehmann, D.; Henriksson, E.; Johansson, K.H. Event-triggered model predictive control of discrete-time linear systems subject to disturbances. In Proceedings of the 2013 European Control Conference (ECC), Zurich, Switzerland, 17–19 July 2013; pp. 1156–1161. [Google Scholar]
- Hashimoto, K.; Adachi, S.; Dimarogonas, D.V. Self-triggered model predictive control for nonlinear input-affine dynamical systems via adaptive control samples selection. IEEE Trans. Autom. Control 2017, 62, 177–189. [Google Scholar] [CrossRef]
- Xu, Z.; He, L.; He, N.; Bai, B. A quasi-differential type event-triggered model predictive control for perturbed continuous linear systems with constraints. IET Control Theory Appl. 2021, 15, 2334–2343. [Google Scholar] [CrossRef]
- He, N.; Du, J.; Xu, Z.; Chen, J. Event-triggered M.P.C. for linear systems with bounded disturbances: An accumulated error based approach. IET Control Theory Appl. 2022, 16, 816–827. [Google Scholar] [CrossRef]
- Xu, B.; Li, B. Event-Triggered State Estimation for Fractional-Order Neural Networks. Mathematics 2022, 10, 325. [Google Scholar] [CrossRef]
- Liu, L.; Li, X.; Liu, Y.-J.; Tong, S. Neural Network Based Adaptive Event Trigger Control for a Class of Electromagnetic Suspension Systems. Control. Eng. Pract. 2021, 106, 104675. [Google Scholar] [CrossRef]
- Cheng, J.; Liang, L.; Park, J.H.; Yan, H.; Li, K. A dynamic event-triggered approach to state estimation for switched memristive neural networks with nonhomogeneous sojourn probabilities. IEEE Trans. Circuits Syst. 2021, 68, 4924–4934. [Google Scholar] [CrossRef]
- Wang, X.; Fei, Z.; Yu, J.; Du, Z. Passivity-based event-triggered fault tolerant control for VTOL with actuator failure and parameter uncertainties. Int. J. Syst. Sci. 2019, 50, 817–828. [Google Scholar] [CrossRef]
- Fei, Z.; Guan, C.; Gao, H. Exponential synchronization of networked chaotic delayed neural network by a hybrid event trigger scheme. IEEE Trans. Neur. Net. Learn. Syst. 2018, 29, 2558–2567. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Reimann, S.; Gorges, D.; Liu, S. Suboptimal event-triggered control for time-delayed linear systems. IEEE Trans. Autom. Control 2015, 60, 1386–1391. [Google Scholar] [CrossRef]
- Behera, A.K.; Bandyopadhyay, B.; Cucuzzella, M.; Ferrara, A.; Yu, X. A survey on event-triggered sliding mode control. IEEE J. Emerg. Sel. Top. Ind. Electron. 2021, 2, 206–217. [Google Scholar] [CrossRef]
- Behera, A.K.; Bandyopadhyay, B.; Yu, X. Periodic event-triggered sliding mode. Automatica 2018, 96, 1916–1931. [Google Scholar] [CrossRef]
- Incremona, P.G.; Ferrara, A. Adaptive model-based event-triggered sliding mode control. Int. J. Adapt. Control Signal Process. 2016, 30, 1298–1316. [Google Scholar] [CrossRef]
- Tabuada, P. Event-triggered real-time scheduling of stabilizing control tasks. IEEE Trans. Autom. Control 2007, 52, 1680–1685. [Google Scholar] [CrossRef]
- Meng, Q.; Ma, Q.; Shi, Y. Fixed-Time Stabilization for Nonlinear Systems with Low-Order and High-Order Nonlinearities via Event-Triggered Control. IEEE Trans. Circuits Syst. I Regul. Pap. 2022, 69, 3006–3015. [Google Scholar] [CrossRef]
- Utkin, V.I.; Poznyak, A.S. Adaptive sliding mode control with application to super-twist algorithm: Equivalent control method. Automatica 2013, 49, 39–47. [Google Scholar] [CrossRef]
- Moreno, J.A.; Osorio, M. A Lyapunov approach to second-order sliding mode controllers and observers. In Proceedings of the 2008 47th IEEE Conference on Decision and Control, Camcum, Mexico, 9–11 December 2008; pp. 2856–2861. [Google Scholar]
- Shtessel, Y.; Edwards, C.; Fridman, L.; Levant, A. Sliding Mode Control and Observation; Springer: New York, NY, USA, 2014. [Google Scholar]
- Tseng, M.L.; Chen, M.S. Chattering reduction of sliding mode control by low-pass filtering the control signal. Asian J. Control 2010, 12, 392–398. [Google Scholar] [CrossRef]
- Zhang, J.; Youngkai, L.; Shijie, G.; Chengshan, H. Control Technology of Ground-Based Laser Communication Servo Turntable via a Novel Digital Sliding Mode Controller. Appl. Sci. 2019, 9, 4051. [Google Scholar] [CrossRef]
- Utkin, V. Discussion aspects of high-order sliding mode control. IEEE Trans. Autom. Control 2016, 61, 829–833. [Google Scholar] [CrossRef]
- Ventura, U.P.; Fridman, L. When is it reasonable to implement the discontinuous sliding-mode controllers instead of the continuous ones? Frequency domain criteria. Int. J. Robust Nonlinear Control 2019, 29, 810–828. [Google Scholar] [CrossRef]
- Boiko, I.; Fridman, L. Analysis of chattering in continuous sliding mode controllers. IEEE Trans. Autom. Control 2005, 50, 1442–1446. [Google Scholar] [CrossRef]
- Ventura, U.P.; Fridman, L. Chattering measurement in SMC and HOSMC. In Proceedings of the 2016 14th International Workshop on Variable Structure Systems, Nanjing, China, 1–4 June 2016; pp. 108–113. [Google Scholar] [CrossRef]
- Chalanga, A.; Kamal, S.; Fridman, L.; Bandyopadhyay, B.; Moreno, J.A. Implementation of super-twisting control: Super-twisting and higher order sliding-mode observer-based approaches. IEEE Trans. Ind. Electron. 2016, 63, 3677–3685. [Google Scholar] [CrossRef]
- Brogliato, B.; Polyakov, A. Digital implementation of sliding-mode control via the implicit method: A tutorial. Int. J. Robust Nonlinear Control 2021, 31, 3528–3586. [Google Scholar] [CrossRef]
- Obeid, H.; Fridman, L.; Laghrouche, S.; Harmouche, M.; Golkani, M.A. Adaptation of Levant’s differentiator based on barrier function. Int. J. Control 2018, 91, 2019–2027. [Google Scholar] [CrossRef]
- Sarjaš, A.; Gleich, D. Toward Embedded System Resources Relaxation Based on the Event-Triggered Feedback Control Approach. Mathematics 2022, 10, 550. [Google Scholar] [CrossRef]
- Benyazid, Y.; Fnadi, M.; Nouri, A.S. A Discrete Integral Sliding Manifold for a Nonlinear System with Time Delay: An Event-Triggered Scheme. Mathematics 2023, 11, 2326. [Google Scholar] [CrossRef]
- Behera, A.K.; Bandyopadhyay, B. Event-triggered sliding mode control for a class of nonlinear systems. Int. J. Control 2016, 89, 1916–1931. [Google Scholar] [CrossRef]
- Sontag, E.D.; Wang, Y. New characterizations ofinput-to-state stability. IEEE Trans. Autom. Control 1996, 41, 1283–1294. [Google Scholar] [CrossRef]
- Ventura, U.P.; Fridman, L. Design of super-twisting control gains: A describing function based methodology. Automatic 2019, 99, 175–180. [Google Scholar] [CrossRef]
- Alonge, F.; D’ippolito, F.; Garraffa, G.; Giaconia, G.C.; Latona, R.; Sferlazza, A. Sliding Mode Control of Quadratic Boost Converters Based on Min-Type Control Strategy. IEEE Access 2023, 11, 39176–39184. [Google Scholar] [CrossRef]
9.71 | |
4.33 | |
2.78 | |
0.212 |
Controller | RMSu | RMSs | minTi | maxTi | meanTi | Flag | |
---|---|---|---|---|---|---|---|
ET-STA | 0.0859 | 0.0068 | 5.2 × 10−3 | 18.2 ms | 38.6 s | 13.2 s | 3.9% |
TT-STA | 0.0156 | 0.0712 | 3.7 × 10−5 | 1 ms | 1 ms | 1 ms | 100% |
Controller | RMSu | RMSs | minTi | maxTi | meanTi | Flag | |
---|---|---|---|---|---|---|---|
ET-STA | 0.102 | 2.71 | 0.1581 | 13.3 ms | 12.4 s | 1.67 s | 23.7% |
TT-STA | 0.087 | 0.7071 | 4.9 × 10−4 | 1 ms | 1 ms | 1 ms | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarjaš, A.; Gleich, D. Event-Triggered Second-Order Sliding Mode Controller Design and Implementation. Mathematics 2023, 11, 4314. https://doi.org/10.3390/math11204314
Sarjaš A, Gleich D. Event-Triggered Second-Order Sliding Mode Controller Design and Implementation. Mathematics. 2023; 11(20):4314. https://doi.org/10.3390/math11204314
Chicago/Turabian StyleSarjaš, Andrej, and Dušan Gleich. 2023. "Event-Triggered Second-Order Sliding Mode Controller Design and Implementation" Mathematics 11, no. 20: 4314. https://doi.org/10.3390/math11204314
APA StyleSarjaš, A., & Gleich, D. (2023). Event-Triggered Second-Order Sliding Mode Controller Design and Implementation. Mathematics, 11(20), 4314. https://doi.org/10.3390/math11204314