Modulations of Collapsing Stochastic Modified NLSE Structures
Abstract
:1. Introduction
2. Mathematical Analysis
3. The New Stochastic Solutions
4. Physical Interpretation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oksendal, B. Stochastic Differential Equations: An Introduction with Applications, 6th ed.; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Dalal, N.; Greenhalgh, D.; Mao, X. A stochastic model for internal HIV dynamics. J. Math. Anal. Appl. 2008, 341, 1084–1101. [Google Scholar] [CrossRef]
- Mirzaee, F.; Rezaei, S.; Samadyar, N. Numerical solution of two-dimensional stochastic time-fractional sine-Gordon equation on non-rectangular domains using finite difference and meshfree methods. Eng. Anal. Bound. Elem. 2021, 12, 53–63. [Google Scholar] [CrossRef]
- Abdelrahman, M.A.E.; Refaey, H.A.; Alharthi, M.A. Investigation of new waves in chemical engineering. Phys. Scr. 2021, 96, 075218. [Google Scholar] [CrossRef]
- Alharbi, Y.F.; Abdelrahman, M.A.E.; Sohaly, M.A.; Inc, M. Stochastic treatment of the solutions for the resonant nonlinear Schrödinger equation with spatio-temporal dispersions and inter-modal using beta distribution. Eur. Phys. J. Plus 2020, 135, 368. [Google Scholar] [CrossRef]
- Karatzas, I.; Shreve, S.E. Brownian Motion and Stochastic Calculus, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- Pishro-Nik, H. Introduction to Probability, Statistics and Random Processes; Kappa Research, LLC: Blue Bell, PA, USA, 2014. [Google Scholar]
- Alharbi, Y.F.; El-Shewy, E.K.; Abdelrahman, M.A.E. New and effective solitary applications in Schrödinger equation via Brownian motion process with physical coefficients of fiber optics. AIMS Math. 2023, 8, 4126–4140. [Google Scholar] [CrossRef]
- Bodrova, A.S.; Chechkin, A.V.; Cherstvy, A.G.; Safdari, H.; Sokolov, I.M.; Metzler, R. Underdamped scaled Brownian motion: (non-)existence of the overdamped limit in anomalous diffusion. Sci. Rep. 2016, 6, 30520. [Google Scholar] [CrossRef] [PubMed]
- Safdari, H.; Cherstvy, A.G.; Chechkin, A.V.; Bodrova, A.; Metzler, R. Aging underdamped scaled Brownian motion: Ensemble- and time-averaged particle displacements, nonergodicity, and the failure of the overdamping approximation. Phys. Rev. E 2017, 95, 011120. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Cherstvy, A.G.; Chechkin, A.V.; Thapa, S.; Seno, F.; Liu, X.; Metzler, R. Fractional Brownian motion with random diffusivity: Emerging residual nonergodicity below the correlation time. J. Phys. A 2020, 53, 474001. [Google Scholar] [CrossRef]
- Cherstvy, A.G.; Wang, W.; Metzler, R.; Sokolov, I.M. Inertia triggers nonergodicity of fractional Brownian motion. Phys. Rev. E 2021, 104, 024115. [Google Scholar] [CrossRef]
- Alharbi, A.; Almatrafi, M.B. Exact solitary wave and numerical solutions for geophysical KdV equation. J. King Saud. Univ. Sci. 2022, 34, 102087. [Google Scholar] [CrossRef]
- Abdelrahman, M.A.E.; Sohaly, M.A. Solitary waves for the nonlinear Schrödinger problem with the probability distribution function in stochastic input case. Eur. Phys. J. Plus 2017, 132, 339. [Google Scholar] [CrossRef]
- Abdelwahed, H.G.; El-Shewy, E.K.; Abdelrahman, M.A.E.; Alsarhana, A.F. On the physical nonlinear (n+1)-dimensional Schrödinger equation applications. Results Phys. 2021, 21, 103798. [Google Scholar] [CrossRef]
- Li, B.Q.; Ma, Y.L. Soliton resonances and soliton molecules of pump wave and Stokes wave for a transient stimulated Raman scattering system in optics. Eur. Phys. J. Plus 2022, 137, 1227. [Google Scholar] [CrossRef]
- Alharbi, A.; Almatrafi, M.B. New exact and numerical solutions with their stability for Ito in-tegro-differential equation via Riccati–Bernoulli sub-ODE method. J. Taibah Univ. Sci. 2020, 14, 1447–1456. [Google Scholar] [CrossRef]
- Ma, Y.L.; Li, B.Q. Kraenkel-Manna-Merle saturated ferromagnetic system: Darboux transformation and loop-like soliton ex-citations. Chaos Solitons Fractals 2022, 159, 112179. [Google Scholar] [CrossRef]
- Almatrafi, M.B.; Alharbi, A.; Tunç, C. Constructions of the soliton solutions to the good Boussinesq equation. Adv. Differ. Equ. 2020, 2020, 629. [Google Scholar] [CrossRef]
- Almatrafi, M.B. Solitary wave solutions to a fractional model using the improved modified extended tanh-function method. Fractal Fract. 2023, 7, 252. [Google Scholar] [CrossRef]
- Ma, W.X. Soliton hierarchies and soliton solutions of type (-λ*, -λ) reduced nonlocal nonlinear Schrödinger equations of arbitrary even order. Partial. Differ. Equ. Appl. Math. 2023, 7, 100515. [Google Scholar] [CrossRef]
- Ma, W.X. Inverse scattering for nonlocal reverse-time nonlinear Schrödinger Equations. Appl. Math. Lett. 2020, 102, 106161. [Google Scholar] [CrossRef]
- Ma, W.X.; Huang, Y.H.; Wang, F.D. Inverse scattering transforms and soliton solutions of nonlocal reverse-space nonlinear Schrödinger hierarchies. Stud. Appl. Math. 2020, 14, 563–585. [Google Scholar] [CrossRef]
- Ma, W.X. A novel kind of reduced integrable matrix mKdV equations and their binary darboux transformations. Mod. Phys. Lett. B 2022, 36, 2250094. [Google Scholar] [CrossRef]
- Ma, W.X. Matrix integrable fifth-order mKdV equations and their soliton solutions. Chin. Phys. B 2023, 32, 020201. [Google Scholar] [CrossRef]
- Alharbi, A. Numerical solutions to two-dimensional fourth order parabolic thin film equations using the Parabolic Monge-Ampere method. AIMS Math. 2023, 8, 16463–16478. [Google Scholar] [CrossRef]
- Agarwal, G.P. Nonlinear Fiber Optics; Academic Press: Cambridge, MA, USA, 2001. [Google Scholar]
- Arafat, S.M.Y.; Islam, S.M.R.; Rahman, M.M.; Saklayen, M.A. On nonlinear optical solitons of fractional Biswas-Arshed Model with beta derivative. Results Phys. 2023, 48, 106426. [Google Scholar] [CrossRef]
- Biswas, A.; Konar, S. Introduction to Non-Kerr Law Optical Solitons; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Islam, S.M.R.; Kumar, D.; Fendzi-Donfack, E.M.; Inc, M. Impacts of nonlinearity and wave dispersion parameters on the soliton pulses of the (2+1)-dimensional Kundu–Mukherjee–Naskar equation. Rev. Mex. Fis. 2022, 68, 061301. [Google Scholar] [CrossRef]
- Islam, S.M.R.; Khan, S.; Arafat, S.M.Y.; Akbar, M.A. Diverse analytical wave solutions of plasma physics and water wave Equations. Results Phys. 2022, 40, 105834. [Google Scholar] [CrossRef]
- Kundu, A.; Mukherjee, A.; Naskar, T. Modelling rogue waves through exact dynamical lump soliton controlled by ocean currents. Proc. R. Soc. A 2014, 470, 20130576. [Google Scholar] [CrossRef]
- Wen, X. Higher-order rational solutions for the (2+1)-dimensional KMN equation. Proc. Rom. Acad. Ser. A 2017, 18, 191–198. [Google Scholar]
- Ekici, M.; Sonmezoglua, A.; Biswas, A.; Belic, M.R. Optical solitons in (2+1)-Dimensions with Kundu-Mukherjee-Naskar equation by extended trial function scheme. Chin. J. Phys. 2019, 57, 72–77. [Google Scholar] [CrossRef]
- Biswas, A.; Yildirim, Y.; Yasar, E.; Zhou, Q.; Moshokoa, S.P.; Belic, M. Optical soliton perturbation with quadraticcubic nonlinearity using a couple of strategic algorithms. Chin. J. Phys. 2018, 56, 1990–1998. [Google Scholar] [CrossRef]
- Alkhidhr, H.A.; Abdelwahed, H.G.; Abdelrahman, M.A.E.; Alghanimb, S. Some solutions for a stochastic NLSE in the unstable and higher order dispersive environments. Results Phys. 2022, 34, 105242. [Google Scholar] [CrossRef]
- Fedrizzi, E. Partial Differential Equation and Noise; Probability [math.PR]; Université ParisDiderot—Paris VII: Paris, France, 2012. [Google Scholar]
- Abdelrahman, M.A.E.; AlKhidhr, H. A robust and accurate solver for some nonlinear partial differential equations and tow applications. Phys. Scr. 2020, 95, 065212. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelrahman, M.A.E.; El-Shewy, E.K.; Omar, Y.; Abdo, N.F. Modulations of Collapsing Stochastic Modified NLSE Structures. Mathematics 2023, 11, 4330. https://doi.org/10.3390/math11204330
Abdelrahman MAE, El-Shewy EK, Omar Y, Abdo NF. Modulations of Collapsing Stochastic Modified NLSE Structures. Mathematics. 2023; 11(20):4330. https://doi.org/10.3390/math11204330
Chicago/Turabian StyleAbdelrahman, Mahmoud A. E., Emad K. El-Shewy, Y. Omar, and N. F. Abdo. 2023. "Modulations of Collapsing Stochastic Modified NLSE Structures" Mathematics 11, no. 20: 4330. https://doi.org/10.3390/math11204330
APA StyleAbdelrahman, M. A. E., El-Shewy, E. K., Omar, Y., & Abdo, N. F. (2023). Modulations of Collapsing Stochastic Modified NLSE Structures. Mathematics, 11(20), 4330. https://doi.org/10.3390/math11204330