General Fractional Noether Theorem and Non-Holonomic Action Principle
Abstract
:1. Introduction
- (A)
- The mathematical basis of the action principles and the Noether theorems is variational calculus. The standard variational calculus considers the holonomic functionals that are represented by definite integrals of integer orders involving functions and their derivatives of integer orders. An important concept of variational calculus is the concept of a functional derivative (variation derivative). One of the directions of generalizations of variational calculus is related to fractional calculus of integrals and derivatives of non-integer orders.
- (A1)
- The holonomic functionals can be considered as definite integer-order integrals involving functions and their fractional derivatives of non-integer orders. This type of generalization is called “Fractional calculus of variations” (FCofV) or “Fractional variational calculus” [59,60,61,62,63,64,65,66,67,68]. Note that in paper [61], the fractional integrals are considered in addition to fractional derivatives in FCofV.
- (A2)
- There are other approaches to the generalization of the calculus of variations. For example, one can define a fractional generalization of functional (variational) derivatives on non-integer orders, or the functional itself can be defined as a fractional integral of non-integer orders. However, these approaches are less developed. Attempts to formulate such generalizations are discussed in the papers [69,70,71,72,73,74].
- (B)
- The standard action principle and Noether’s theorem can be generalized by using the fractional calculus in the framework of the FCofV-approach. Lagrangians with fractional derivatives lead directly to equations of motion with non-conservative forces such as resistance forces, friction, and dissipative forces. Using Lagrangian functions, which depend on coordinates and its fractional derivatives with respect to time, once can obtain fractional differential equations of motion as fractional Euler–Lagrange equations. Generalizations of the standard action principle for systems that are described by equation with fractional derivatives of non-integer orders are proposed in works [51,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91].
- (B1)
- (B2)
- (B3)
- (B4)
- (B5)
- (C)
2. Preliminary: GFC on and Notations
- An example of kernel pairs describing the power-law type of nonlocality.
- An example of kernel pairs describing gamma-distributed nonlocality.
- An example of kernel pairs describing the Mittag–Leffler type of nonlocality.
- An example of kernel pairs describing the Bessel type of nonlocality.
- An example of kernel pairs describing the hypergeometric type of nonlocality.
- An example of kernel pairs describing the cosine type of nonlocality.
3. Non-Holonomic Action Principle
3.1. Variations of Fields and Coordinates
3.2. Field Equations from Non-Holonomic Variational Equation
3.3. Remark about Functionals with ,
4. General Fractional Noether Theorem
4.1. General Fractional Noether Theorem and Its Proof
4.2. Remark about General Form of Gf Non-Holonomic Functional
5. Example of Application to Fractional Field Equations
5.1. General Energy–Momentum Tensor and Energy–Momentum Vector
5.2. General Orbital and Spin Angular-Momentum Tensors
5.3. Example of Field Equations for Real Scalar Field
5.4. Example of Field Equations for Real Vector Field
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bogoliubov, N.N.; Shirkov, D.V. Introduction to the Theory of Quantized Fields, 3rd ed.; John Wiley and Sons Inc.: Hoboken, NJ, USA, 1980; 620p. [Google Scholar]
- Roman, P. Introduction to Quantum Field Theory; John Wiley and Sons Inc.: Hoboken, NJ, USA, 1969; 634p, ISBN 0471731986. [Google Scholar]
- Itzykson, C.; Zuber, J.-B. Quantum Field Theory; Dover Publications: New York, NY, USA, 2006; 752p, ISBN 9780486445687. [Google Scholar]
- Barut, A.O. Electrodynamics and Classical Theory of Fields and Particles; Dover Publications Inc.: New York, NY, USA, 1980; 251p, ISBN 0-486-64038-8. [Google Scholar]
- Bogush, A.A.; Moroz, L.G. Introduction to Theory of Classical Fields, 2nd ed.; Editorial URSS: Moscow, Russia, 2004; 384p, ISBN 5-354-00553-1. [Google Scholar]
- Giachetta, G.; Mangiarotti, L.; Sardanashvily, G. Advanced Classical Field Theory; World Scientific: Singapore, 2009; 392p. [Google Scholar]
- Konopleva, N.P.; Popov, V.N. Gauge Fields; Harwood Academic Publishers: Amsterdam, The Netherlands, 1981; 264p, ISBN 3718600455. ISBN 9783718600458. [Google Scholar]
- Faddeev, L.D.; Slavnov, A.A. Gauge Fields: An Introduction To Quantum Theory, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2018; 236p, ISBN 978-0-201-40634-4. [Google Scholar]
- Anderson, D. Noether’s theorem in generalized mechanics. J. Phys. A Math. Nucl. Gen. 1973, 6, 299–305. [Google Scholar] [CrossRef]
- Deslodge, E.A.; Karch, R.J. Noether’s theorem in classical mechanics. Am. J. Phys. 1977, 45, 336–339. [Google Scholar] [CrossRef]
- Carinena, J.F.; Lazaro-Cami, J.A.; Martinez, E. On second Noether’s theorem and gauge symmetries in mechanics. Int. J. Geom. Methods Mod. Phys. 2006, 3, 471–487. [Google Scholar] [CrossRef]
- Henyey, F.S. Gauge groups and Noether’s theorem for continuum mechanics. AIP Conf. Proc. 1982, 88, 85–89. [Google Scholar] [CrossRef]
- Komkov, V. A dual form of Noether’s theorem with applications to continuum mechanics. J. Math. Anal. Appl. 1980, 75, 251–269. [Google Scholar] [CrossRef]
- Blaker, J.W.; Tavel, M.A. The application of Noether’s theorem to optical systems. Am. J. Phys. 1974, 42, 857–861. [Google Scholar] [CrossRef]
- Hermann, S.; Schmidt, M. Noether’s theorem in statistical mechanics. Commun. Phys. 2021, 4, 176. [Google Scholar] [CrossRef]
- Kerins, J.; Boiteux, M. Applications of Noether’s theorem to inhomogeneous fluids. Phys. A Stat. Mech. Its Appl. 1983, 117, 575–592. [Google Scholar] [CrossRef]
- Badin, G.; Crisciani, F. Mechanics, symmetries and Noether’s theorem. In Variational Formulation of Fluid and Geophysical Fluid Dynamics; Springer: Cham, Switzerland, 2018; pp. 57–106. [Google Scholar] [CrossRef]
- Struckmeier, J.; Stocker, H.; Vasak, D. Covariant Hamiltonian representation of Noether’s theorem and its application to SU(N) gauge theories. In New Horizons in Fundamental Physics; Schramm, S., Schafer, M., Eds.; Springer: Cham, Switzerland, 2016; pp. 317–331. [Google Scholar] [CrossRef]
- Noether, E. Invariante Variationsprobleme. Nachrichten Ges. Wiss. Gottingen Math.-Phys. Kl. 1918, 1918, 235–257. Available online: https://eudml.org/doc/59024 (accessed on 12 October 2023).
- Noether, E. Invariant variation problems. In Transport Theory and Statistical Physics; Tavel, M.A., Translator; 1971; Volume 1, pp. 186–207. [Google Scholar] [CrossRef]
- Neuenschwander, D.E. Emmy Noether’s Wonderful Theorem, 2nd ed.; John Hopkins University Press: Baltimore, MD, USA, 2017; 321p, ISBN 978-1-42142-267-1. [Google Scholar]
- Kosmann-Schwarzbach, Y.; Schwarzbach, B.E. The Noether Theorems Invariance and Conservation Laws in the Twentieth Century. Springer: New York, NY, USA, 2010. [Google Scholar] [CrossRef]
- Sedov, Leonid Ivanovich (1907–1999). Available online: https://www.mathnet.ru/eng/person21697 (accessed on 12 October 2023).
- Sedov, L.I. Mathematical methods for constructing new models of continuous media. Russ. Math. Surv. 1965, 20, 123–182. [Google Scholar] [CrossRef]
- Sedov, L.I. The energy-momentum tensor and macroscopic internal interactions in a gravitational field and in material media. In Doklady Akademii Nauk; Russian Academy of Sciences: Moscow, Russia, 1965; Volume 164, pp. 519–522. Available online: https://www.mathnet.ru/eng/dan31604 (accessed on 12 October 2023).
- Sedov, L.I. Continuous media models with internal degrees of freedom. J. Appl. Math. Mech. 1968, 32, 771–785. [Google Scholar] [CrossRef]
- Sedov, L.I. Variational methods of constructing models of continuous media. In Irreversible Aspects of Continuum Mechanics and Transfer of Physical Characteristics in Moving Fluids: Symposia Vienna, 22–28 June 1966; Parkus, H., Sedov, L.I., Eds.; Springer: New York, NY, USA, 1968; pp. 346–358. [Google Scholar]
- Sedov, L.I. Continuous media models with internal degrees of freedom. In Continuum Mechanics. Volume 1, 4 th ed.; Sedov, L.I., Ed.; Nauka: Moscow, Russia, 1983; Appendix II; pp. 493–520. [Google Scholar]
- Zhelnorovich, V.A.; Sedov, L.I. On variational derivation of equations of state for material medium and gravitational field. J. Appl. Math. Mech. 1978, 42, 771–780. Available online: https://pmm.ipmnet.ru/ru/Issues/1978/42-5 (accessed on 12 October 2023). [CrossRef]
- Sedov, L.I.; Tsypkin, A.G. On construction of models of continuous media interacting with electromagnetic field. J. Appl. Math. Mech. 1979, 43, 387–400. [Google Scholar] [CrossRef]
- Tarasov, V.E. Generalization of Noether theorem and action principle for non-Lagrangian theories. Commun. Nonlinear Sci. Numer. Simul. 2023, 128, 107601. [Google Scholar] [CrossRef]
- Sedov, L.I.; Tsypkin, A.G. Fundamentals of Macroscopic Theories of Gravity and Electromagnetism; Nauka: Moscow, Russia, 1989; 272p, ISBN 5-02-013805-3. [Google Scholar]
- Chernyy, L.T. Relativistic Models of Continuous Media; Nauka: Moscow, Russia, 1983; 288p. [Google Scholar]
- Berdichevsky, V.L. Variational Principles of Continuous Medium Mechanics; Nauka: Moscow, Russia, 1983; 448p, Sections 1.2 and 1.4. [Google Scholar]
- Berdichevsky, V. Variational Principles of Continuum Mechanics. Volume 1. Fundamental; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar] [CrossRef]
- Filippov, V.M.; Savchin, V.M.; Shorokhov, S.G. Variational principles for nonpotential operators. J. Math. Sci. 1994, 68, 275–398. [Google Scholar] [CrossRef]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach: New York, NY, USA, 1993. [Google Scholar]
- Kiryakova, V. Generalized Fractional Calculus and Applications; Longman and J. Wiley: New York, NY, USA, 1994; 360p, ISBN 9780582219779. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1998; ISBN 978-0-12-558840-9. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; ISBN 9780444518323. [Google Scholar]
- Diethelm, F. The Analysis of Fractional Differential Equations. An Application-Oriented Exposition Using Differential Operators of Caputo Type; Springer: Berlin/Heidelberg, Gremany, 2010. [Google Scholar] [CrossRef]
- Kochubei, A.; Luchko, Yu. (Eds.) Handbook of Fractional Calculus with Applications. Volume 1. Basic Theory; Walter de Gruyter GmbH: Berlin, Germany; Boston, MA, USA, 2019; 481p. [Google Scholar] [CrossRef]
- Kochubei, A.; Luchko, Yu. (Eds.) Handbook of Fractional Calculus with Applications. Volume 2. Fractional Differential Equations; Walter de Gruyter GmbH: Berlin, Germany; Boston, MA, USA, 2019; 519p. [Google Scholar] [CrossRef]
- Handbook of Fractional Calculus with Applications. Volume 4. Application in Physics. Part A; Tarasov, V.E. (Ed.) Walter de Gruyter GmbH: Berlin, Germany; Boston, MA, USA, 2019. [Google Scholar] [CrossRef]
- Handbook of Fractional Calculus with Applications. Volume 5. Application in Physics. Part B; Tarasov, V.E. (Ed.) Walter de Gruyter GmbH: Berlin, Germany; Boston, MA, USA, 2019. [Google Scholar] [CrossRef]
- Tarasov, V.E. Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media; Springer: New York, NY, USA, 2010. [Google Scholar] [CrossRef]
- Fractional Dynamics. Recent Advances; Klafter, J.; Lim, S.C.; Metzler, R. (Eds.) World Scientific: Singapore, 2011. [Google Scholar] [CrossRef]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. World Scientific: Singapore, 2010. [Google Scholar] [CrossRef]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, 2nd ed.; World Scientific: Singapore, 2022. [Google Scholar] [CrossRef]
- Uchaikin, V.; Sibatov, R. Fractional Kinetics in Solids: Anomalous probability Transport in Semiconductors, Dielectrics and Nanosystems; World Scientific: Singapore, 2013. [Google Scholar] [CrossRef]
- Atanackovic, T.; Pilipovic, S.; Stankovic, B.; Zorica, D. Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes; Wiley-ISTE: London, UK; Hoboken, NJ, USA, 2014. [Google Scholar]
- Atanackovic, T.; Pilipovic, S.; Stankovic, B.; Zorica, D. Fractional Calculus with Applications in Mechanics: Wave Propagation, Impact and Variational Principles; Wiley-ISTE: London, UK; Hoboken, NJ, USA, 2014. [Google Scholar]
- Povstenko, Y. Fractional Thermoelasticity; Springer International Publishing: Cham, Switzerland; Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2015. [Google Scholar] [CrossRef]
- Uchaikin, V.; Sibatov, R. Fractional Kinetics in Space. Anomalous Transport Models; Worls Scientific: Singapore, 2018; 300p. [Google Scholar] [CrossRef]
- Djukic, D.S.; Vujanovic, B.D. Noether’s theory in classical nonconservative mechanics. Acta Mech. 1975, 23, 17–27. [Google Scholar] [CrossRef]
- Djukic, D.S.; Strauss, A.M. Noether’s theory for non-conservative generalised mechanical systems. J. Phys. Math. Gen. 1980, 13, 431–436. [Google Scholar] [CrossRef]
- Riewe, F. Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 1996, 53, 1890–1899. [Google Scholar] [CrossRef] [PubMed]
- Frederico, G.S.F.; Torres, D.F.M. Nonconservative Noether’s theorem in optimal control. Int. J. Tomogr. Stat. 2007, 5, 109–114. [Google Scholar] [CrossRef]
- Agrawal, O.P. Fractional variational calculus and the transversality conditions. J. Phys. Math. Nucl. Gen. 2006, 39, 10375–10384. [Google Scholar] [CrossRef]
- Agrawal, O.P. Fractional variational calculus in terms of Riesz fractional derivatives. J. Phys. A Math. Theor. 2007, 40, 6287–6303. [Google Scholar] [CrossRef]
- Almeida, R.; Torres, D.F.M. Calculus of variations with fractional derivatives and fractional integrals. Appl. Math. Lett. 2009, 22, 1816–1820. [Google Scholar] [CrossRef]
- Malinowska, A.B.; Torres, D.F.M. Fractional calculus of variations for a combined Caputo derivative. Fract. Calc. Appl. Anal. 2011, 14, 523–537. [Google Scholar] [CrossRef]
- Odzijewicz, T.; Malinowska, A.B.; Torres, D.F.M. Fractional variational calculus with classical and combined Caputo derivatives. Nonlinear Anal. Real World Appl. 2012, 75, 1507–1515. [Google Scholar] [CrossRef]
- Agrawal, O.P. Generalized multiparameters fractional variational calculus. Int. J. Differ. Eqs. 2012, 2012, 521750. [Google Scholar] [CrossRef]
- Malinowska, A.B.; Torres, D.F.M. Introduction to the Fractional Calculus of Variations; World Scientific Publishing Company: Singapore, 2012; 292p. [Google Scholar] [CrossRef]
- Malinowska, A.B.; Odzijewicz, T.; Torres, D.F.M. Advanced Methods in the Fractional Calculus of Variations; Springer: Cham, Switzerland; Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2015; 135p. [Google Scholar] [CrossRef]
- Almeida, R.; Tavares, D.; Torres, D.F.M. The Variable-Order Fractional Calculus of Variations; Springer International Publishing AG: Cham, Switzerland, 2019; 124p. [Google Scholar] [CrossRef]
- Almeida, R.; Torres, D.F.M. A survey on fractional variational calculus. In Handbook of Fractional Calculus with Applications. Volume 1. Basic Theory; Kochubei, A., Luchko, Yu., Eds.; De Gruyter: Berlin, Germany, 2019; pp. 347–360. [Google Scholar] [CrossRef]
- Tarasov, V.E. Fractional variations for dynamical systems: Hamilton and Lagrange approaches. J. Phys. A 2006, 39, 8409–8425. [Google Scholar] [CrossRef]
- Tarasov, V.E. Fractional-order variational derivative. Int. J. Appl. Math. 2014, 27, 491–518. [Google Scholar] [CrossRef]
- Ferreira, R.A.C. Fractional calculus of variations: A novel way to look at it. Fract. Calc. Appl. Anal. 2019, 22, 1133–1144. [Google Scholar] [CrossRef]
- Herzallah, M.A.E.; Baleanu, D. Fractional-order variational valculus with generalized boundary vonditions. Adv. Differ. Equ. 2011, 2011, 357580. [Google Scholar] [CrossRef]
- Shchigolev, V.K. Cosmological models with fractional derivatives and fractional action functional. Commun. Theor. Phys. 2011, 56, 389. [Google Scholar] [CrossRef]
- Shchigolev, V.K. Cosmic evolution in fractional action cosmology. Discontinuity Nonlinearity Complex. 2013, 2, 115–123. [Google Scholar] [CrossRef]
- Agrawal, O.P. A new Lagrangian and a new Lagrange equation of motion for fractionally damped systems. J. Appl. Mech. 2001, 68, 339–341. [Google Scholar] [CrossRef]
- Klimek, M. Fractional sequential mechanics—Models with symmetric fractional derivative. Czechoslov. J. Phys. 2001, 51, 1348–1354. [Google Scholar] [CrossRef]
- Klimek, M. Lagrangean and Hamiltonian fractional sequential mechanics. Czechoslov. J. Phys. 2002, 52, 1247–1253. [Google Scholar] [CrossRef]
- Agrawal, O.P. Formulation of Euler-Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 2002, 272, 368–379. [Google Scholar] [CrossRef]
- Tarasov, V.E. Fractional generalization of gradient and Hamiltonian systems. J. Phys. A Math. Gen. 2005, 38, 5929–5943. [Google Scholar] [CrossRef]
- Tarasov, V.E.; Zaslavsky, G.M. Nonholonomic constraints with fractional derivatives. J. Phys. Math. Gen. 2006, 39, 9797–9816. [Google Scholar] [CrossRef]
- Klimek, M. Lagrangian fractional mechanics—A noncommutative approach. Czechoslov. J. Phys. 2005, 55, 1447–1453. [Google Scholar] [CrossRef]
- Klimek, M. Fractional mechanics—A noncommutative approach. IFAC Proc. Vol. 2006, 39, 135–140. [Google Scholar] [CrossRef]
- Agrawal, O.P. Generalized Euler-Lagrange equations and transversality conditions for FVPs in terms of the Caputo derivative. J. Vib. Control 2007, 13, 1217–1237. [Google Scholar] [CrossRef]
- Atanackovic, T.M.; Konjik, S.; Pilipovic, S. Variational problems with fractional derivatives: Euler-Lagrange equations. J. Phys. A Math. Gen. 2008, 41, 095201. [Google Scholar] [CrossRef]
- Baleanu, D.; Muslih, S.I.; Rabei, E.M. On fractional Euler-Lagrange and Hamilton equations and the fractional generalization of total time derivative. Nonlinear Dyn. 2008, 53, 67–74. [Google Scholar] [CrossRef]
- Tarasov, V.E.; Zaslavsky, G.M. Conservation laws and Hamilton’s equations for systems with long-range interaction and memory. Commun. Nonlinear Sci. Numer. Simul. 2008, 13, 1860–1878. [Google Scholar] [CrossRef]
- Atanackovic, T.M.; Konjik, S.; Oparnica, L.; Pilipovic, B. Generalized Hamilton’s principle with fractional derivatives. J. Phys. A Math. Gen. 2010, 43, 255203. [Google Scholar] [CrossRef]
- Baleanu, D.; Trujillo, J.J. A new method of finding the fractional Euler-Lagrange and Hamilton equations within Caputo fractional derivatives. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 1111–1115. [Google Scholar] [CrossRef]
- Luo, S.K.; Xu, Y.L. Fractional Birkhoffian mechanics. Acta Mech. 2015, 226, 829–844. [Google Scholar] [CrossRef]
- Atanackovic, T.M.; Janev, M.; Pilipovic, S.; Zorica, D. Euler-Lagrange equations for Lagrangians containing complex order fractional derivatives. J. Optim. Theory Appl. 2017, 174, 256–275. [Google Scholar] [CrossRef]
- Atanackovic, T.M.; Konjik, S.; Pilipovic, S. Variational principles with fractional derivatives. In Handbook of Fractional Calculus with Applications. Volume 1. Basic Theory; Kochubei, A., Luchko, Yu., Eds.; De Gruyter: Berlin, Germany, 2019; pp. 361–383. [Google Scholar] [CrossRef]
- Lim, S.C.; Muniandy, S.V. Stochastic quantization of nonlocal fields. Phys. Lett. A 2004, 324, 396–405. [Google Scholar] [CrossRef]
- Lim, S.C. Fractional derivative quantum fields at positive temperature. Phys. Stat. Mech. Its Appl. 2006, 363, 269–281. [Google Scholar] [CrossRef]
- Lim, S.C.; Teo, L.P. Casimir effect associated with fractional Klein-Gordon field. In Fractional Dynamics. Recent Advances; Klafter, J., Lim, S.C., Metzler, R., Eds.; World Scientific: Singapore, 2011; pp. 483–506. [Google Scholar] [CrossRef]
- Calcagni, G. Geometry and field theory in multi-fractional spacetime. J. High Energy Phys. 2012, 2012, 65. [Google Scholar] [CrossRef]
- Tarasov, V.E. Fractional quantum field theory: From lattice to continuum. Adv. High Energy Phys. 2014, 2014, 957863. [Google Scholar] [CrossRef]
- Tarasov, V.E. Variational principle of stationary action for fractional nonlocal media and fields. Pac. J. Math. Ind. 2015, 7, 6. [Google Scholar] [CrossRef]
- Calcagni, G. Quantum scalar field theories with fractional operators. Class. Quantum Gravity 2021, 38, 165006. [Google Scholar] [CrossRef]
- Atman, K.G.; Sirin, H. Quantization of nonlocal fields via fractional calculus. Phys. Scr. 2022, 97, 065203. [Google Scholar] [CrossRef]
- Klimek, M. Stationarity-conservation laws for certain linear fractional differential equations. J. Phys. A Math. Gen. 2001, 34, 6167–6184. [Google Scholar] [CrossRef]
- Klimek, M. Stationary-conservation laws for fractional differential equations with variable coefficients. J. Phys. A Math. Gen. 2002, 35, 6675–6693. [Google Scholar] [CrossRef]
- Torres, D.F.M. Proper extensions of Noether’s symmetry theorem for nonsmooth extremals of the calculus of variations. IFAC Proc. Vol. 2003, 36, 195–198. [Google Scholar] [CrossRef]
- Frederico, G.S.F.; Torres, D.F.M. Constants of motion for fractional action-like variational problems. Int. J. Appl. Math. 2006, 19, 97–104. [Google Scholar]
- Frederico, G.S.F.; Torres, D.F.M. A formulation of Noether’s theorem for fractional problems of the calculus of variations. J. Math. Anal. Appl. 2007, 334, 834–846. [Google Scholar] [CrossRef]
- Atanackovic, T.M.; Konjik, S.; Pilipovic, S.; Simic, S. Variational problems with fractional derivatives: Invariance conditions and Noether’s theorem. Nonlinear Anal. Theory Methods Appl. 2009, 71, 1504–1517. [Google Scholar] [CrossRef]
- Cresson, J. Inverse problem of fractional calculus of variations for partial differential equations. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 987–996. [Google Scholar] [CrossRef]
- Frederico, G.S.F.; Torres, D.F.M. Fractional Noether’s theorem in the Riesz-Caputo sense. Appl. Math. Comput. 2010, 217, 1023–1033. [Google Scholar] [CrossRef]
- Atanackovic, T.M.; Janev, M.; Pilipovic, S.; Zorica, D. Complementary variational principles with fractional derivatives. Acta Mech. 2012, 223, 685–704. [Google Scholar] [CrossRef]
- Malinowska, A.B. A formulation of the fractional Noether-type theorem for multidimensional Lagrangians. Appl. Math. Lett. 2012, 25, 1941–1946. [Google Scholar] [CrossRef]
- Bourdin, L.; Cresson, J.; Greff, I. A continuous/discrete fractional Noether’s theorem. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 878–887. [Google Scholar] [CrossRef]
- Ferreira, R.A.C.; Malinowska, A.B. A counterexample to a Frederico-Torres fractional Noether-type theorem. J. Math. Anal. Appl. 2015, 429, 1370–1373. [Google Scholar] [CrossRef]
- Jin, S.X.; Zhang, Y. Noether theorem for non-conservative systems with time delay in phase space based on fractional model. Nonlinear Dyn. 2015, 82, 663–676. [Google Scholar] [CrossRef]
- Frederico, G.S.F.; Lazo, M.J. Fractional Noether’s theorem with classical and Caputo derivatives: Constants of motion for non-conservative systems. Nonlinear Dyn. 2016, 85, 839–851. [Google Scholar] [CrossRef]
- Fu, J.L.; Fu, L.P.; Chen, B.Y.; Sun, Y. Lie symmetries and their inverse problems of nonholonomic Hamilton systems with fractional derivatives. Phys. Lett. A 2016, 380, 15–21. [Google Scholar] [CrossRef]
- Cresson, J.; Szafranska, A. About the Noether theorem for fractional Lagrangian systems and a generalization of the classical Jost method of proof. Fract. Calc. Appl. Anal. 2019, 22, 871–898. [Google Scholar] [CrossRef]
- Song, C.J. Noether symmetry for fractional Hamiltonian system. Phys. Lett. A 2019, 383, 125914. [Google Scholar] [CrossRef]
- Janev, M.; Atanackovic, T.M.; Pilipovic, S. Noether’s theorem for Herglotz type variational problems utilizing complex fractional derivatives. Theor. Appl. Mech. 2021, 48, 127–142. [Google Scholar] [CrossRef]
- Atanackovic, T.M.; Janev, M.; Pilipovic, S. Noether’s theorem for variational problems of Herglotz type with real and complex order fractional derivatives. Acta Mech. 2021, 232, 1131–1146. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhai, X.H. Noether symmetries and conserved quantities for fractional Birkhoffian systems. Nonlinear Dyn. 2015, 81, 469–480. [Google Scholar] [CrossRef]
- Zhai, X.H.; Zhang, Y. Noether symmetries and conserved quantities for fractional Birkhoffian systems with time delay. Commun. Nonlinear Sci. Numer. Simul. 2016, 36, 81–97. [Google Scholar] [CrossRef]
- Jia, Q.; Wu, H.; Mei, F. Noether symmetries and conserved quantities for fractional forced Birkhoffian systems. J. Math. Anal. Appl. 2016, 442, 782–795. [Google Scholar] [CrossRef]
- Song, C.J.; Zhang, Y. Noether symmetry and conserved quantity for fractional Birkhoffian mechanics and its applications. Fract. Calc. Appl. Anal. 2018, 21, 509–526. [Google Scholar] [CrossRef]
- Jia, Y.-D.; Zhang, Y. Fractional Birkhoffian mechanics based on quasi-fractional dynamics models and its Noether symmetry. Math. Probl. Eng. 2021, 2021, 6694709. [Google Scholar] [CrossRef]
- Agrawal, O.P. Generalized variational problems and Euler-Lagrange equations. Comput. Math. Appl. 2010, 59, 1852–1864. [Google Scholar] [CrossRef]
- Agrawal, O.P.; Muslih, S.I.; Baleanu, D. Generalized variational calculus in terms of multi-parameters fractional derivatives. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 4756–4767. [Google Scholar] [CrossRef]
- Odzijewicz, T.; Malinowska, A.B.; Torres, D.F.M. Generalized fractional calculus with applications to the calculus of variations. Comput. Math. Appl. 2012, 64, 3351–3366. [Google Scholar] [CrossRef]
- Garra, R.; Taverna, G.S.; Torres, D.F.M. Fractional Herglotz variational principles with generalized Caputo derivatives. Chaos Solitons Fractals 2017, 102, 94–98. [Google Scholar] [CrossRef]
- Sonine, N. On the generalization of an Abel formula. (Sur la generalisation d’une formule d’Abel). Acta Math. 1884, 4, 171–176. (In French) [Google Scholar] [CrossRef]
- Sonin, N.Y. On the generalization of an Abel formula. In Investigations of Cylinder Functions and Special Polynomials; Sonin, N.Y., Ed.; GTTI: Moscow, Russia, 1954; pp. 148–154. (In Russian) [Google Scholar]
- Luchko, Yu. General fractional integrals and derivatives with the Sonine kernels. Mathematics 2021, 9, 594. [Google Scholar] [CrossRef]
- Luchko, Yu. General fractional integrals and derivatives of arbitrary order. Symmetry 2021, 13, 755. [Google Scholar] [CrossRef]
- Luchko, Yu. Operational calculus for the general fractional derivatives with the Sonine kernels. Fract. Calc. Appl. Anal. 2021, 24, 338–375. [Google Scholar] [CrossRef]
- Luchko, Yu. Special functions of fractional calculus in the form of convolution series and their applications. Mathematics 2021, 9, 2132. [Google Scholar] [CrossRef]
- Luchko, Yu. Convolution series and the generalized convolution Taylor formula. Fract. Calc. Appl. Anal. 2022, 25, 207–228. [Google Scholar] [CrossRef]
- Luchko, Yu. Fractional differential equations with the general fractional derivatives of arbitrary order in the Riemann-Liouville sense. Mathematics 2022, 10, 849. [Google Scholar] [CrossRef]
- Luchko, Yu. The 1st level general fractional derivatives and some of their properties. J. Math. Sci. 2022, 266, 709–722. [Google Scholar] [CrossRef]
- Al-Kandari, M.; Hanna, L.A.M.; Luchko, Yu. Operational calculus for the general fractional derivatives of arbitrary order. Mathematics 2022, 10, 1590. [Google Scholar] [CrossRef]
- Al-Refai, M.; Luchko, Yu. Comparison principles for solutions to the fractional differential inequalities with the general fractional derivatives and their applications. J. Differ. Equ. 2022, 319, 312–324. [Google Scholar] [CrossRef]
- Tarasov, V.E. General fractional calculus: Multi-kernel approach. Mathematics 2021, 9, 1501. [Google Scholar] [CrossRef]
- Tarasov, V.E. General fractional vector calculus. Mathematics 2021, 9, 2816. [Google Scholar] [CrossRef]
- Tarasov, V.E. Nonlocal probability theory: General fractional calculus approach. Mathematics 2022, 10, 848. [Google Scholar] [CrossRef]
- Tarasov, V.E. General fractional calculus in multi-dimensional space: Riesz form. Mathematics 2023, 11, 1651. [Google Scholar] [CrossRef]
- Tarasov, V.E. Scale-Invariant General Fractional Calculus: Mellin Convolution Operators. Fractal Fract. 2023, 7, 481. [Google Scholar] [CrossRef]
- Tarasov, V.E. Multi-kernel general fractional calculus of arbitrary order. Mathematics 2023, 11, 1726. [Google Scholar] [CrossRef]
- Tarasov, V.E. General nonlocal probability of arbitrary order. Entropy 2023, 25, 919. [Google Scholar] [CrossRef]
- Diethelm, K.; Kiryakova, V.; Luchko, Yu.; Tenreiro Machado, J.A.; Tarasov, V.E. Trends, directions for further research, and some open problems of fractional calculus. Nonlinear Dyn. 2022, 107, 3245–3270. [Google Scholar] [CrossRef]
- Tarasov, V.E. General non-local continuum mechanics: Derivation of balance equations. Mathematics 2022, 10, 1427. [Google Scholar] [CrossRef]
- Tarasov, V.E. General non-local electrodynamics: Equations and non-local effects. Ann. Phys. 2022, 445, 169082. [Google Scholar] [CrossRef]
- Tarasov, V.E. Nonlocal statistical mechanics: General fractional Liouville equations and their solutions. Phys. A Stat. Mech. Its Appl. 2023, 609, 128366. [Google Scholar] [CrossRef]
- Kochubei, A.N. General fractional calculus, evolution equations and renewal processes. Integral Equ. Oper. Theory 2011, 71, 583–600. [Google Scholar] [CrossRef]
- Kochubei, A.N. General fractional calculus. Chapter 5. In Handbook of Fractional Calculus with Applications. Volume 1. Basic Theory; Kochubei, A., Luchko, Yu., Tenreiro Machado, J.A., Eds.; De Gruyter: Berlin, Germany; Boston, MA, USA, 2019; pp. 111–126. [Google Scholar] [CrossRef]
- Kochubei, A.N. Equations with general fractional time derivatives. Cauchy problem. Chapter 11. In Handbook of Fractional Calculus with Applications. Volume 2. Fractional Differential Equations; Tenreiro Machado, J.A., Ed.; De Gruyter: Berlin, Germany; Boston, MA, USA, 2019; pp. 223–234. [Google Scholar]
- Samko, S.G.; Cardoso, R.P. Integral equations of the first kind of Sonine type. Int. J. Math. Math. Sci. 2003, 57, 238394. [Google Scholar] [CrossRef]
- Samko, S.G.; Cardoso, R.P. Sonine integral equations of the first kind in Ly(0;b). Fract. Calc. Appl. Anal. 2003, 6, 235–258. [Google Scholar]
- Toaldo, B. Convolution-type derivatives, hitting times of subordinators and time-changed C0-semigroups. Potential Anal. 2015, 42, 115–140. [Google Scholar] [CrossRef]
- Luchko, Yu.; Yamamoto, M. General time-fractional diffusion equation: Some uniqueness and existence results for the initial-boundary-value problems. Fract. Calc. Appl. Anal. 2016, 19, 675–695. [Google Scholar] [CrossRef]
- Luchko, Yu.; Yamamoto, M. The general fractional derivative and related fractional differential equations. Mathematics 2020, 8, 2115. [Google Scholar] [CrossRef]
- Sin, C.-S. Well-posedness of general Caputo-type fractional differential equations. Fract. Calc. Appl. Anal. 2018, 21, 819–832. [Google Scholar] [CrossRef]
- Ascione, G. Abstract Cauchy problems for the generalized fractional calculus. Nonlinear Anal. 2021, 209, 112339. [Google Scholar] [CrossRef]
- Hanyga, A. A comment on a controversial issue: A generalized fractional derivative cannot have a regular kernel. Fract. Calc. Appl. Anal. 2020, 23, 211–223. [Google Scholar] [CrossRef]
- Giusti, A. General fractional calculus and Prabhakar’s theory. Commun. Nonlinear Sci. Numer. Simul. 2020, 83, 105114. [Google Scholar] [CrossRef]
- Bazhlekova, E. Estimates for a general fractional relaxation equation and application to an inverse source problem. Math. Methods Appl. Sci. 2018, 41, 9018–9026. [Google Scholar] [CrossRef]
- Bazhlekova, E.; Bazhlekov, I. Identification of a space-dependent source term in a nonlocal problem for the general time-fractional diffusion equation. J. Comput. Appl. Math. 2021, 386, 113213. [Google Scholar] [CrossRef]
- Tarasov, V.E. General fractional dynamics. Mathematics 2021, 9, 1464. [Google Scholar] [CrossRef]
- Al-Refai, M.; Luchko, Yu. The general fractional integrals and derivatives on a finite interval. Mathematics 2023, 11, 1031. [Google Scholar] [CrossRef]
- Prigogine, I. From Being to Becoming; Freeman and Co.: San Francisco, CA, USA, 1980. [Google Scholar]
- Tarasov, V.E. Pure stationary states of open quantum systems. Phys. Rev. E 2002, 66, 056116. [Google Scholar] [CrossRef]
- Tarasov, V.E. Stationary states of dissipative quantum systems. Phys. Lett. A 2002, 299, 173–178. [Google Scholar] [CrossRef]
- Tarasov, V.E. Stationary solutions of Liouville equations for non-Hamiltonian systems. Ann. Phys. 2005, 316, 393–413. [Google Scholar] [CrossRef]
- Tarasov, V.E. Quantum Mechanics of Non-Hamiltonian and Dissipative Systems; Elsevier: Amsterdam, The Netherlands; London, UK, 2008; 540p, ISBN 9780444530912. [Google Scholar]
- Weiss, U. Quantum Dissipative Systems, 4th ed.; World Scientific: Singapore, 2012; 588p, ISBN 978-981-4374-91-0. [Google Scholar] [CrossRef]
- Ingarden, R.S.; Kossakowski, A.; Ohya, M. Information Dynamics and Open Systems: Classical and Quantum Approach; Kluwer: New York, NY, USA, 1997; 310p, ISBN 978-0-7923-4473-5. [Google Scholar] [CrossRef]
- Breuer, H.-P.; Petruccione, F. Theory of Open Quantum Systems; Oxford University Press: Oxford, UK, 2002; 625p, ISBN 0-19-852063-8. [Google Scholar]
- Schwinger, J. Quantum Mechanics; Springer: Berlin/Heidelberg, Germany, 2001; ISBN 978-3-642-07467-7. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarasov, V.E. General Fractional Noether Theorem and Non-Holonomic Action Principle. Mathematics 2023, 11, 4400. https://doi.org/10.3390/math11204400
Tarasov VE. General Fractional Noether Theorem and Non-Holonomic Action Principle. Mathematics. 2023; 11(20):4400. https://doi.org/10.3390/math11204400
Chicago/Turabian StyleTarasov, Vasily E. 2023. "General Fractional Noether Theorem and Non-Holonomic Action Principle" Mathematics 11, no. 20: 4400. https://doi.org/10.3390/math11204400
APA StyleTarasov, V. E. (2023). General Fractional Noether Theorem and Non-Holonomic Action Principle. Mathematics, 11(20), 4400. https://doi.org/10.3390/math11204400