An Accurate Metaheuristic Mountain Gazelle Optimizer for Parameter Estimation of Single- and Double-Diode Photovoltaic Cell Models
Abstract
:1. Introduction
1.1. Motivation
1.2. Literature Review
1.3. Drawbacks and Gaps in the Literature
1.4. Contribution
- To use the new MGO-based approach to tackle, for the first time, the problem of the PV cell/module key parameters’ identification.
- To apply and experimentally validate the proposed approach to accurately approximate both the single-diode model and the double-diode model and extract their five and seven unknown parameters, respectively.
- The experimentation on two commercialized PV panels (Photowatt-PWP201, and STM6-40/36) to confirm the accuracy, stability, and convergence speed of the proposed approach.
2. Different PV Cell Types’ Modeling
2.1. Single Diode Model
2.2. Double-Diode Model
3. Problem Formulation
4. Proposed MGO-Based Extraction Method
4.1. MGO’s Inspiration
4.2. MGO Mathematical Modeling
4.3. Territorial Solitary Males
4.4. Maternity Herds
4.5. Bachelor Male Herds
4.6. Migration to Search for Food
4.7. Pseudocode of the Proposed MGO Algorithm
Algorithm 1: Pseudocode of the proposed MGO. |
Input: The measured I–V data, the population size N, and the maximum number of iterations Output: The best solutions and the fitness value in the search space Initialize MGO parameters; Create a random population Calculate the fitness levels of the gazelles while Stopping criterion is not satisfied do for each gazelle () do Load the measured I–V data Compute the TSM by employing Equation (20) Compute the MH by employing Equation (26) Compute thee BMH according to Equation (27) Compute thee MSF by employing Equation (29) Compute the fitness values of the TSM, MH, BMH, and MSF, then add them to the habitat Sort the entire population in ascending order Update the best gazelle Save the N best gazelles in the Max number of the population |
5. Executed Experiments and Results
6. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PEMFC | Proton Exchange Membrane Fuel Cell |
DO | Dandelion Optimizer |
GWO | Grey Wolf Optimizer |
GBO | Gradient-Based Optimizer |
HHO | Harris Hawks Optimizer |
IAEO | Improved Artificial Ecosystem Optimizer |
VSDE | Vortex Search Differential Evolution |
ABCDESC | Artificial Bee Colony Differential Evolution Shuffled Complex |
HR | Hail Region |
CO2 | Carbon dioxide |
CO | Carbon monoxide |
H2O | Water molecule |
H2 | Hydrogen gas |
O2 | Dioxygen gas |
RE | Renewable Energy |
KSA | Kingdom of Saudi Arabia |
UNWTO | World Tourism Organization |
COVID-19 | Coronavirus Disease |
EV | Electric Vehicle |
ZEV | Zero-Emission Vehicle |
AC | Alternating Current |
GTO | Gorilla Troops Optimizer |
MGTO | Modified GTO |
HBO | Honey Badger Optimizer |
SSE | Sum of Squared Errors |
BO | Bonobo Optimizer |
QOBO | Quasi-Oppositional Bonobo Optimizer |
EBES | Enhanced Bald Eagle Search |
DA | Dandelion Algorithm |
ELM | Extreme Learning Machine |
NNA | Neural Network Algorithm |
ELMD | Dandelion algorithm with ELM |
References
- Łukasiewicz, K.; Pietrzak, P.; Kraciuk, J.; Kacperska, E.; Cieciora, M. Sustainable Energy Development—A Systematic Literature Review. Energies 2022, 15, 8284. [Google Scholar] [CrossRef]
- Alturki, M.; Abbassi, R.; Albaker, A.; Jerbi, H. A New Hybrid Synchronization PLL Scheme for Interconnecting Renewable Energy Sources to an Abnormal Electric Grid. Mathematics 2022, 10, 1101. [Google Scholar] [CrossRef]
- Sidea, D.O.; Tudose, A.M.; Picioroaga, I.I.; Bulac, C. Two-Stage Optimal Active-Reactive Power Coordination for Microgrids with High Renewable Sources Penetration and Electrical Vehicles Based on Improved Sine–Cosine Algorithm. Mathematics 2023, 11, 45. [Google Scholar] [CrossRef]
- Zhao, L.; Jerbi, H.; Abbassi, R.; Liu, B.; Latifi, M.; Nakamura, H. Sizing renewable energy systems with energy storage systems based microgrids for cost minimization using hybrid shuffled frog-leaping and pattern search algorithm. Sustain. Cities Soc. 2021, 73, 103124. [Google Scholar] [CrossRef]
- Rasool, M.H.; Perwez, U.; Qadir, Z.; Hassan Ali, S.H. Scenario-based techno-reliability optimization of an off-grid hybrid renewable energy system: A multi-city study framework. Sustain. Energy Technol. Assess. 2022, 53, 102411. [Google Scholar] [CrossRef]
- Rasool, M.H.; Taylan, O.; Perwez, U.; Batunlu, C. Comparative assessment of multi-objective optimization of hybrid energy storage system considering grid balancing. Renew. Energy 2023, 216, 119107. [Google Scholar] [CrossRef]
- Abbassi, R.; Hammami, M.; Chebbi, S. Improvement of the integration of a grid-connected wind-photovoltaic hybrid system. In Proceedings of the International Conference on Electrical Engineering and Software Applications, Hammamet, Tunisia, 17–19 March 2013. [Google Scholar]
- Gorjian, S.; Shukla, A. (Eds.) Photovoltaic Solar Energy Conversion: Technologies, Applications and Environmental Impacts; Elsevier Science: Amsterdam, The Netherlands, 2020; Volume 15, p. 8284. [Google Scholar]
- Sara, O.P.; Paulo, R.S.; Francisco, T.P. Assessment of the potential of combining wave and solar energy resources to power supply worldwide offshore oil and gas platforms. Energy Convers. Manag. 2020, 223, 113299. [Google Scholar]
- Available online: https://www.pv-magazine.com/2023/01/18/china-added-87-41-gw-of-solar-in-2022 (accessed on 3 April 2023).
- Okai, V.; Chahul, H.F.; Shikler, R. Enhancement of Power Conversion Efficiency of Non-Fullerene Organic Solar Cells Using Green Synthesized Au–Ag Nanoparticles. Polymers 2023, 15, 1482. [Google Scholar] [CrossRef]
- Ye, X.; Tao, Z.; Huifeng, Y.; Jingwen, W.; Pengqing, B.; Jianhui, H. Design of ultranarrow-bandgap acceptors for efficient organic photovoltaic cells and highly sensitive organic photodetectors. J. Energy Chem. 2022, 72, 388–394. [Google Scholar]
- Zheng, Z.; Shao, Y.; Ding, C.; Li, M.; Lu, W. Rational design of ZL003-based organic dyes for highly efficient dye-sensitized solar cells: Influence of alkynyl group and π-spacers on photovoltaic performance. J. Mol. Struct. 2022, 1269, 133728. [Google Scholar] [CrossRef]
- Shaolei, G.; Rabeh, A.; Houssem, J.; Alireza, R.; Kengo, S. Efficient maximum power point tracking for a photovoltaic using hybrid shuffled frog-leaping and pattern search algorithm under changing environmental conditions. J. Clean. Prod. 2021, 297, 126573. [Google Scholar]
- Boubaker, S.; Kamel, S.; Ghazouani, N.; Mellit, A. Assessment of Machine and Deep Learning Approaches for Fault Diagnosis in Photovoltaic Systems Using Infrared Thermography. Remote Sens. 2023, 15, 1686. [Google Scholar] [CrossRef]
- Liu, Y.; Ding, K.; Zhang, J.; Lin, Y.; Yang, Z.; Chen, X.; Li, Y.; Chen, X. Intelligent fault diagnosis of photovoltaic array based on variable predictive models and I–V curves. Sol. Energy 2022, 237, 340–351. [Google Scholar] [CrossRef]
- Syed, H.J.; Puviarasi, R.; Chilambarasan, M.; Sarita, S.S.; Raviteja, S.; Vipin, S.; Madhavarao, S.; Sudhakar, M.; Mohanavel, V. An approach to the utilization of grid integration to analyze the performance and quality of solar photovoltaic model. Energy Rep. 2022, 8, 1029–1044. [Google Scholar]
- Rabeh, A.; Abdelkader, A.; Mohamed, J.; Souad, C. Identification of unknown parameters of solar cell models: A comprehensive overview of available approaches. Renew. Sustain. Energy Rev. 2018, 90, 453–474. [Google Scholar]
- Elkholy, A.; Abou El-Ela, A.A. Optimal parameters estimation and modelling of photovoltaic modules using analytical method. Heliyon 2019, 5, e02137. [Google Scholar] [CrossRef]
- Martin, Ć.; Shady, H.E.; Ahmed, F.Z. On the root mean square error (RMSE) calculation for parameter estimation of photovoltaic models: A novel exact analytical solution based on Lambert W function. Energy Convers. Manag. 2020, 210, 112716. [Google Scholar]
- Firoz, K.; Amir, A.A.; Fahad, A.A. Critical analysis of the limitations and validity of the assumptions with the analytical methods commonly used to determine the photovoltaic cell parameters. Renew. Sustain. Energy Rev. 2021, 140, 110753. [Google Scholar]
- Ma, J.; Hong, D.; Wang, K.; Bi, Z.; Zhu, X.; Zhang, J. Analytical modeling and parameter estimation of photovoltaic strings under partial shading conditions. Sol. Energy Mater. Sol. Cells 2022, 235, 111494. [Google Scholar] [CrossRef]
- Dris, B.H.; Mustapha, E.; El Hanafi, A.; Driss, S.; Souad, L.; Jamal, C.; Ahmed, I.; Rabya, A.; Daoudi, E.; Sergey, O. A novel hybrid numerical with analytical approach for parameter extraction of photovoltaic modules. Energy Convers. Manag. X 2022, 14, 100219. [Google Scholar]
- Rabeh, A.; Boudjemline, A.; Abdelkader, A.; Torchani, A.; Gasmi, H.; Guesmi, T. A Numerical-Analytical Hybrid Approach for the Identification of SDM Solar Cell Unknown Parameters. Eng. Technol. Appl. Sci. Res. 2018, 8, 2907–2913. [Google Scholar]
- Kawtar, T.; Noureddine, M.; Askar, S.S.; Mohamed, A. Numerical procedure for accurate simulation of photovoltaic modules performance based on the identification of the single-diode model parameters. Energy Rep. 2023, 9, 5532–5544. [Google Scholar]
- Chen, X.; Ding, K.; Yang, H.; Chen, X.; Zhang, J.; Jiang, M.; Gao, R.; Liu, Z. Research on real-time identification method of model parameters for the photovoltaic array. Appl. Energy 2023, 342, 121157. [Google Scholar] [CrossRef]
- Abbassi, R.; Saidi, S.; Abbassi, A.; Jerbi, H.; Kchaou, M.; Alhasnawi, B.N. Accurate Key Parameters Estimation of PEMFCs’ Models Based on Dandelion Optimization Algorithm. Mathematics 2023, 11, 1298. [Google Scholar] [CrossRef]
- Abdelfattah, E.; Mustapha, E.; El Hanafi, A.; Dris, B.H.; Souad, L.; Driss, S.; Imade, C.; Ismail, A. Dandelion Optimizer algorithm-based method for accurate photovoltaic model parameter identification. Energy Convers. Manag. X 2023, 19, 100405. [Google Scholar]
- Papadimitrakis, M.; Giamarelos, N.; Stogiannos, M.; Zois, E.N.; Livanos, N.A.-I.; Alexandridis, A. Metaheuristic search in smart grid: A review with emphasis on planning, scheduling and power flow optimization applications. Renew. Sustain. Energy Rev. 2023, 145, 111072. [Google Scholar] [CrossRef]
- Koteswara, R.D.; Seshu, K.R.; Phani, R.L.; Singh, A.R. Enhancement of loadability and voltage stability in grid-connected microgrid network. J. Clean. Prod. 2023, 374, 133881. [Google Scholar]
- Wu, Q.; Xue, F.; Lu, S.; Jiang, L.; Huang, T.; Wang, X.; Sang, Y. Integrated network partitioning and DERs allocation for planning of Virtual Microgrids. Electr. Power Syst. Res. 2023, 216, 109024. [Google Scholar] [CrossRef]
- Qiong, W.; Gang, C.; Mohammad, K.; Banar, F.I.; Shima, R. Multi-objective optimization of IoT-based green building energy system using binary metaheuristic algorithms. J. Build. Eng. 2023, 68, 106031. [Google Scholar]
- Leite, G.M.C.; Marcelino, C.G.; Pedreira, C.E.; Jiménez-Fernández, S.; Salcedo-Sanz, S. Evaluating the risk of uncertainty in smart grids with electric vehicles using an evolutionary swarm-intelligent algorithm. J. Clean. Prod. 2023, 401, 136775. [Google Scholar] [CrossRef]
- Hubert, M.S.; Dirk, U.S. Metaheuristic for the integrated electric vehicle and crew scheduling problem. Appl. Energy 2023, 339, 120915. [Google Scholar]
- Mohd, B.; Fareed, A.; Rizwan, M. Techno- economic assessment of grid and renewable powered electric vehicle charging stations in India using a modified metaheuristic technique. Energy Convers. Manag. 2023, 284, 116995. [Google Scholar]
- Mohamed, A.K.; Sihem, S.; Okba, K.; Abdelhak, M.; Seyedali, M. Deep learning and metaheuristics application in internet of things: A literature review. Microprocess. Microsyst. 2023, 98, 104792. [Google Scholar]
- Ali, S.; Tania, T.; Ali, G. Towards developing a machine learning-metaheuristic-enhanced energy-sensitive routing framework for the internet of things. Microprocess. Microsyst. 2023, 96, 104747. [Google Scholar]
- Agostino, F. Metaheuristic algorithm for anomaly detection in Internet of Things leveraging on a neural-driven multiagent system. Knowl.-Based Syst. 2021, 228, 107241. [Google Scholar]
- Banghua, W.; Xuebin, L.; Wameed, D.S.; Ebrahim, G.D. Optimal deploying IoT services on the fog computing: A metaheuristic-based multi-objective approach. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34 Pt B, 10010–10027. [Google Scholar]
- Ayyarao, T.S.L.V.; Ramakrishna, N.S.S.; Elavarasan, R.M.; Polumahanthi, N.; Rambabu, M.; Saini, G.; Khan, B.; Alatas, B. War Strategy Optimization Algorithm: A New Effective Metaheuristic Algorithm for Global Optimization. IEEE Access 2022, 10, 25073–25105. [Google Scholar] [CrossRef]
- Lin, C.J.; Prasetyo, Y.T. A metaheuristic-based approach to optimizing color design for military camouflage using particle swarm optimization. Color Res. Appl. 2019, 44, 740–748. [Google Scholar] [CrossRef]
- Ismail, M.A.; Hasan, H.T.; Sondoss, E. A military fleet mix problem for high-valued defense assets: A simulation-based optimization approach. Expert Syst. Appl. 2023, 213, 118964. [Google Scholar]
- Naman, S.B.; Abhishek, D.P.; Jegadeeshwaran, R.; Sujit, S.P.; Kaushal, A.K.; Rohan, S.G. Application of metaheuristic optimization based support vector machine for milling cutter health monitoring. Intell. Syst. Appl. 2023, 18, 200196. [Google Scholar]
- Mohamed, O.M.; Zineb, Z.; Abdellah, N.; Seifeddine, C.; Nouzha, L.; Mohamed, E. Optimal sensor placement methodology of triaxial accelerometers using combined metaheuristic algorithms for structural health monitoring applications. Structures 2023, 51, 1959–1971. [Google Scholar]
- Malik, M.I.; Ibrahim, A.; Hannay, P.; Sikos, L.F. Developing Resilient Cyber-Physical Systems: A Review of State-of-the-Art Malware Detection Approaches, Gaps, and Future Directions. Computers 2023, 12, 79. [Google Scholar] [CrossRef]
- Hadeel, A.; Mohammed, A.; Jaber, S.A.; Fahd, N.A.; Anwer, M.H.; Abu Sarwar, Z.; Azza, E.O.; Amani, A.A. Chaotic marine predators optimization based task scheduling scheme for resource limited cyber-physical systems. Comput. Electr. Eng. 2023, 106, 108597. [Google Scholar]
- Xu, Y.; Li, Q.; Xu, X.; Yang, J.; Chen, Y. Research Progress of Nature-Inspired Metaheuristic Algorithms in Mobile Robot Path Planning. Electronics 2023, 12, 3263. [Google Scholar] [CrossRef]
- Soyeon, P.; Jongwoo, K.; Jieun, P.; Jessica, B.K.; Gunwoo, N. Design of patterns in tubular robots using DNN-metaheuristics optimization. Int. J. Mech. Sci. 2023, 251, 108352. [Google Scholar]
- Kumar, M.; Kumar, A. An efficient parameters extraction technique of photovoltaic models for performance assessment. Sol. Energy 2017, 158, 192–206. [Google Scholar] [CrossRef]
- Dizqah, A.M.; Maheri, A.; Busawon, K. An accurate method for the pv model identification based on a genetic algorithm and the interior-point method. Renew. Energy 2014, 72, 212–222. [Google Scholar] [CrossRef]
- Khanna, V.; Das, B.K.; Bisht, D.; Vandana; Singh, P.K. A three diode model for industrial solar cells and estimation of solar cell parameters using pso algorithm. Renew. Energy 2015, 78, 105–113. [Google Scholar] [CrossRef]
- Jordehi, A.R. Time varying acceleration coefficients particle swarm optimisation (tvacpso): A new optimisation algorithm for estimating parameters of pv cells and modules. Energy Convers. Manag. 2016, 129, 262–274. [Google Scholar] [CrossRef]
- Nunes, H.G.G.; Pombo, J.A.N.; Mariano, S.J.P.S.; Calado, M.R.A.; Felippe de Souza, J.A.M. A new high performance method for determining the parameters of pv cells and modules based on guaranteed convergence particle swarm optimization. Appl. Energy 2018, 211, 774–791. [Google Scholar] [CrossRef]
- Jordehi, A.R. Enhanced leader particle swarm optimisation (elpso): An efficient algorithm for parameter estimation of photovoltaic (pv) cells and modules. Sol. Energy 2018, 159, 78–87. [Google Scholar] [CrossRef]
- Wu, L.; Chen, Z.; Long, C.; Cheng, S.; Lin, P.; Chen, Y.; Chen, H. Parameter extraction of photovoltaic models from measured I-V characteristics curves using a hybrid trust region reflective algorithm. Appl. Energy 2018, 232, 36–53. [Google Scholar] [CrossRef]
- Chen, X.; Xu, B.; Mei, C.; Ding, Y.; Li, K. Teaching–learning–based artificial bee colony for solar photovoltaic parameter estimation. Appl. Energy 2018, 212, 1578–1588. [Google Scholar] [CrossRef]
- Jamadi, B.M.; Merrikh-Bayat, F. Very accurate parameter estimation of single- and double-diode solar cell models using a modified artificial bee colony algorithm. Int. J. Energy Environ. Eng. 2016, 7, 13–25. [Google Scholar] [CrossRef]
- Li, D.; Guo, W.; Lerch, A.; Li, Y.; Wang, L.; Wu, Q. An Adaptive Particle Swarm Optimizer with Decoupled Exploration and Exploitation for Large Scale Optimization. Swarm Evol. Comput. 2021, 60, 100789. [Google Scholar] [CrossRef]
- Premkumar, M.; Shankar, N.; Sowmya, R.; Jangir, P.; Kumar, C.; Abualigah, L.; Derebew, B. A reliable optimization framework for parameter identification of single-diode solar photovoltaic model using weighted velocity-guided grey wolf optimization algorithm and Lambert-W function. IET Renew. Power Gener. 2023, 17, 2711–2732. [Google Scholar] [CrossRef]
- Irudayaraj, A.X.R.; Wahab, N.I.A.; Veerasamy, V.; Premkumar, M.; Radzi, M.A.M.; Sulaiman, N.B.; Haes Alhelou, H. Decentralized frequency control of restructured energy system using hybrid intelligent algorithm and non-linear fractional order proportional integral derivative controller. IET Renew. Power Gener. 2023, 17, 2009–2037. [Google Scholar] [CrossRef]
- Premkumar, M.; Sowmya, R.; Ramakrishnan, C.; Pradeep, J.; Essam, H.H.; Sanchari, D.; Nallapaneni, M.K. An efficient and reliable scheduling algorithm for unit commitment scheme in microgrid systems using enhanced mixed integer particle swarm optimizer considering uncertainties. Energy Rep. 2023, 9, 1029–1053. [Google Scholar] [CrossRef]
- Chen, W.-C.; Tai, Y.-C.; Wang, M.-W.; Tsai, H.-C. Parameter optimization of etching process for a LGP stamper. Neural Comput. Appl. 2013, 23, 1539–1550. [Google Scholar] [CrossRef]
- Chen, W.-C.; Kurniawan, D. Process parameters optimization for multiple quality characteristics in plastic injection molding using Taguchi method, BPNN, GA, and hybrid PSO-GA. Int. J. Precis. Eng. Manuf. 2014, 15, 1583–1593. [Google Scholar] [CrossRef]
- Li, M.; Chen, H.; Shi, X.; Liu, S.; Zhang, M.; Lu, S. A multi-information fusion riple variables with iterationinertia weight PSO algorithm and its application. Appl. Soft Comput. 2019, 84, 105677. [Google Scholar] [CrossRef]
- Ji, K.; Zhao, P.; Zhou, X.; Chen, Y.; Dong, Z.; Zheng, J.; Fu, J.; Zhou, H. Uniform Initialization in Response Space for PSO and its Applications. Appl. Math. Comput. 2022, 431, 127351. [Google Scholar] [CrossRef]
- Rezaee, A.J.; Jasni, J. Parameter selection in particle swarm optimisation: A survey. J. Exp. Theor. Artif. Intell. 2013, 25, 527–542. [Google Scholar] [CrossRef]
- Chen, Y.; Li, L.; Xiao, J.; Yang, Y.; Liang, J.; Li, T. Particle swarm optimizer with crossover operation. Eng. Appl. Artif. Intell. 2018, 70, 159–169. [Google Scholar] [CrossRef]
- Liu, W.; Wang, Z.; Liu, X.; Zeng, N.; Bell, D. A novel particle swarm optimization approach for patient clustering from emergency departments. IEEE Trans. Evol. Comput. 2013, 23, 718–724. [Google Scholar] [CrossRef]
- Li, J.; Zhang, J.Q.; Jiang, C.J.; Zhou, M.C. Composite particle swarm optimizer with historical memory for function optimization. IEEE Trans. Cybern. 2017, 45, 2350–2363. [Google Scholar] [CrossRef]
- Sibalija, T.V. Particle swarm optimisation in designing parameters of manufacturing processes: A review. Appl. Soft Comput. 2019, 84, 105743. [Google Scholar] [CrossRef]
- Sengupta, S.; Basak, S.; Peters, R.A. Particle swarm optimization: A survey of historical and recent developments with hybridization perspectives. J. Mach. Learn. Knowl. Extract. 2019, 1, 157–191. [Google Scholar] [CrossRef]
- Anthony, T.; Anthony, S.M.; Ashok, K. Exploration in neo-Hebbian reinforcement learning: Computational approaches to the exploration–exploitation balance with bio-inspired neural networks. Neural Netw. 2022, 151, 16–33. [Google Scholar]
- Nikhil, A.; Siba, S.M. Switching from exploration to exploitation in gravitational search algorithm based on diversity with Chaos. Inf. Sci. 2023, 635, 298–327. [Google Scholar]
- Wang, P.; Xue, B.; Liang, J.; Zhang, M. Feature Selection Using Diversity-Based Multi-objective Binary Differential Evolution. Inf. Sci. 2023, 626, 586–606. [Google Scholar] [CrossRef]
- Atefeh, R.K.; Fatemeh, G.J.; Iman, S.; Mostafa, H.K. Utilizing hybrid metaheuristic approach to design an agricultural closed-loop supply chain network. Expert Syst. Appl. 2023, 217, 119504. [Google Scholar]
- Souhail, D.; Alaeddine, Z. Adaptive iterated stochastic metaheuristic to optimize holes drilling path in manufacturing industry: The Adaptive-Dhouib-Matrix-3 (A-DM3). Eng. Appl. Artif. Intell. 2023, 120, 105898. [Google Scholar]
- Benyamin, A.; Farhad, S.G.; Nima, K.; Seyedali, M. Mountain Gazelle Optimizer: A new Nature-inspired Metaheuristic Algorithm for Global Optimization Problems. Adv. Eng. Softw. 2022, 174, 103282. [Google Scholar]
- Aoufi, B.; Hachana, O.; Sid, M.A.; Giuseppe, M.T. Precise and fast parameter identification of monocrystalline, polycrystalline, and mono-facial photovoltaic modules using a new Bat Artificial Bee Colony optimizer. J. Comput. Electron. 2022, 21, 491–512. [Google Scholar] [CrossRef]
- Nunes, H.G.G.; Silva, P.N.C.; Pombo, J.A.N.; Mariano, S.J.P.S.; Calado, M.R.A. Multiswarm spiral leader particle swarm optimisation algorithm for PV parameter identification. Energy Convers. Manag. 2020, 225, 113388. [Google Scholar] [CrossRef]
- Nunes, H.G.G.; Pombo, J.A.N.; Mariano, S.J.P.S.; Calado, M.R.A. Suitable mathematical model for the electrical characterization of different photovoltaic technologies: Experimental validation. Energy Convers. Manag. 2021, 231, 113820. [Google Scholar] [CrossRef]
- Liao, Z.; Chen, Z.; Li, S. Parameters Extraction of Photovoltaic Models Using Triple-Phase Teaching-Learning-Based Optimization. IEEE Access 2020, 8, 69937–69952. [Google Scholar] [CrossRef]
- Wang, D.; Sun, X.; Kang, H.; Shen, Y.; Chen, Q. Heterogeneous differential evolution algorithm for parameter estimation of solar photovoltaic models. Energy Rep. 2022, 8, 15249–15285. [Google Scholar] [CrossRef]
- Yousri, D.; Thanikanti, S.B.; Allam, D.; Ramachandaramurthy, V.K.; Eteiba, M.B. Fractional chaotic ensemble particle swarm optimizer for identifying the single, double, and three diode photovoltaic models’ parameters. Energy 2020, 195, 116979. [Google Scholar] [CrossRef]
- Manoharan, P.; Chandrasekaran, K.; Thankkapan, D.; Somasundaram; David, T.S.J.; Pradeep, J.; Hassan, H.A. A reliable optimization framework using ensembled successive history adaptive differential evolutionary algorithm for optimal power flow problems. IET Gener. Transm. Distrib. 2023, 17, 1333–1357. [Google Scholar]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Mohit, J.; Vijander, S.; Asha, R. A novel nature-inspired algorithm for optimization: Squirrel search algorithm. Swarm Evol. Comput. 2019, 44, 148–175. [Google Scholar]
- Palestine Mountain Gazelle Officially an Endangered Species. Available online: https://www.newarab.com/news/palestine-mountain-gazelle-officially-endangered-species (accessed on 16 June 2023).
- Chandrasekaran, K.; Thaveedhu, A.S.R.; Manoharan, P.; Vijayarajan, P. Optimal estimation of parameters of the three-diode commercial solar photovoltaic model using an improved Berndt-Hall-Hall-Hausman method hybridized with an augmented mountain gazelle optimizer. Environ. Sci. Pollut. Res. 2023, 30, 57683–57706. [Google Scholar] [CrossRef]
Parameters | Photowatt -PWP201 | STP6-40/36 | ||
---|---|---|---|---|
0 | 2 | 0 | 2 | |
0 | 50 | 0 | 50 | |
0 | 2 | 0 | 0.36 | |
0 | 2000 | 0 | 1000 | |
1 | 50 | 1 | 60 |
Model | Algorithms | Parameters | RMSE | |||||||
---|---|---|---|---|---|---|---|---|---|---|
(A) | (A) | (A) | () | () | ||||||
SDM | BABCO [78] | 1.032382 | 2.512893 | - | 1.239289 | 744.712668 | 47.422839 | - | - | 2.046524 |
BA [78] | 1.044856 | 37.14342 | - | 1.318087 | 1495.40620 | 60.819912 | - | - | 9.771899 | |
M-SLPSO [79] | 1.032382 | 2.512927 | - | 1.239287 | 744.715807 | 01.317305 | - | - | 2.046535 | |
TPTLBO [81] | 1.030500 | 3.482300 | - | 1.201300 | 981.982200 | 48.642800 | - | - | 2.425100 | |
CCNMGBO [82] | 1.030514 | 3.48 | - | 1.201271 | 981.981900 | 48.642830 | - | - | 2.425074 | |
OBLWOA [82] | 1.030514 | 3.48 | - | 1.201271 | 981.984500 | 48.642840 | - | - | 2.425074 | |
DE | 1.030515 | 3.443584 | - | 1.202534 | 976.587000 | 48.599900 | - | - | 2.854231 | |
GWO | 1.028367 | 4.9185403 | - | 1.158806 | 1544.30824 | 50.000000 | - | - | 2.714233 | |
SSA | 1.029777 | 3.529950 | - | 1.200619 | 1062.66958 | 48.693308 | - | - | 2.423290 | |
MGO | 1.030231 | 3.604135 | - | 1.198040 | 1033.45081 | 48.774295 | - | - | 2.042717 | |
DDM | BABCO [78] | 1.034753 | 0.132561 | 0.312026 | 1.999999 | 591.476886 | - | 47.821141 | 42.201067 | 1.397480 |
BA [78] | 0.591915 | 32.63274 | 45.26637 | 0.141905 | 1706.06090 | - | 37.685352 | 2.455933 | 9.635400 | |
M-SLPSO [79] | 1.032382 | 2.512910 | 1.00 | 1.239288 | 744.713773 | - | 1.317304 | 2.499659 | 2.046535 | |
CCNMGBO [82] | 1.030514 | 2.67 | 3.48 | 1.20127 | 981.998700 | - | 49.301220 | 48.642860 | 2.425000 | |
OBLWOA [82] | 1.030514 | 2.17 | 3.48 | 1.201271 | 981.983200 | - | 49.9817404 | 48.642830 | 2.427000 | |
DE | 1.029337 | 2.425199 | 1.1064803 | 1.206851 | 1113.0658 | - | 49.585175 | 47.312278 | 2.879032 | |
GWO | 1.027243 | 4.787116 | 32.994732 | 1.166377 | 1901.8138 | - | 50.0000 | 44.840739 | 2.736613 | |
SSA | 1.030626 | 3.311942 | 4.928627 | 1.207096 | 953.657 | - | 48.45034 | 36.9958 | 2.430466 | |
MGO | 1.030179 | 3.258267 | 35.384629 | 1.1979727 | 1039.3818 | - | 48.868761 | 48.080506 | 1.387641 |
Model | Algorithms | Parameters | RMSE | |||||||
---|---|---|---|---|---|---|---|---|---|---|
(A) | (A) | (A) | () | () | ||||||
SDM | BABCO [78] | 1.663903 | 2.048509 | - | 0.004267 | 15.93149 | 1.520463 | - | - | 1.721921 |
GCPSO [80] | 1.663904 | 1.738656 | - | 0.153855 | 573.1486 | 1.520302 | - | - | 1.729814 | |
TPTLOBO [81] | 1.663900 | 1.738700 | - | 0.004300 | 15.92830 | 1.520300 | - | - | 1.729800 | |
DE | 1.661559 | 5.682411 | - | 0.001573 | 785.9564 | 59.84265 | - | - | 2.891765 | |
GWO | 1.663878 | 5.848076 | - | 0.003536 | 791.0496 | 52.56819 | - | - | 3.646006 | |
SSA | 1.663668 | 1.908620 | - | 0.143125 | 590.8344 | 55.10250 | - | - | 1.723619 | |
MGO | 1.663931 | 1.722884 | - | 0.154881 | 571.6459 | 54.69487 | - | - | 1.719946 | |
DDM | BABCO [78] | 1.663963 | 0.241206 | 6.596730 | 0.296972 | 621.1424226 | - | 1.363856 | 1.917464 | 1.686275 |
BA [78] | 1.497952 | 13.006836 | 47.796001 | 0.067902 | 929.420389 | - | 17.920435 | 3.956525 | 3.716638 | |
GCPSO [80] | 1.663948 | 3.0995227 | 2.50 | 0.295269 | 617.024493 | - | 1.636433 | 0.972892 | 1.688361 | |
DE | 1.674689 | 4.774236 | 45.00142 | 0.09731012 | 530.006 | - | 59.84157 | 56.85469 | 2.819434 | |
GWO | 1.661477 | 5.693952 | 5.023007 | 0.0225408 | 999.3609 | - | 60.00000 | 54.7395 | 3.591568 | |
SSA | 1.660818 | 4.362375 | 1.246851 | 0.07989438 | 983.4837 | - | 59.73068 | 59.10384 | 1.759782 | |
MGO | 1.664853 | 1.577101 | 0.390000 | 0.1657537 | 548.3743 | - | 57.39241 | 51.57719 | 1.686104 |
Model | Algorithms | RMSE | |||
---|---|---|---|---|---|
SDM | BABCO [78] | 2.046524 | 2.046424 | 2.046524 | 9.434855 |
BA [78] | 9.771899 | 1.718934 | 3.859675 . | 4.450036 | |
M-SLPSO [79] | 2.046535 | 2.046535 | 2.046535 | 3.527834 | |
TPTLBO [81] | 2.425100 | 2.425100 | 2.425100 | 1.200000 | |
DE | 2.854231 | 9.453298 | 4.909067 | 1.809489 | |
GWO | 2.714233 | 2.752705 | 4.983853 | 9.312518 | |
SSA | 2.432902 | 2.742507 | 4.272723 | 8.299818 | |
MGO | 2.042717 | 2.0558335 | 2.045717 | 1.650466 | |
DDM | BABCO [78] | 1.397480 | 1.397488 | 1.397481 | 2.907850 |
BA [78] | 9.635465 | 4.404159 | 2.362236 | 1.850432 | |
M-SLPSO [79] | 2.046535 | 2.051405 | 2.046600 | 5.093012 | |
ED | 2.879032 | 2.463344 | 9.559961 | 5.874627 | |
GWO | 2.736613 | 9.989661 | 1.287483 | 2.133245 | |
SSA | 2.430466 | 2.742507 | 7.527784 | 1.088360 | |
MGO | 1.387641 | 1.397421 | 1.3902611 | 2.992436 |
Model | Algorithms | RMSE | |||
---|---|---|---|---|---|
SDM | BABCO [78] | 1.721921 | 1.721921 | 1.721921 | 1.637363 |
BA [78] | 4.316935 | 3.589394 | 2.805906 | 1.214878 | |
TPTLOBO [81] | 1.729800 | 1.729800 | 1.728800 | 4.960000 | |
DE | 2.891765 | 4.961929 | 3.406166 | 3.888576 | |
GWO | 3.646006 | 2.404023 | 9.813445 | 5.675926 | |
SSA | 1.743619 | 3.107574 | 1.367193 | 5.612953 | |
MGO | 1.719946 | 1.729499 | 1.718746 | 7.535025 | |
DDM | BABCO [78] | 1.686275 | 1.698849 | 1.6912799 | 3.481031 |
BA [78] | 3.716638 | 3.536434 | 1.847427E | 1.390727 | |
FC-EPSO1 [83] | 1.772100 | - | - | 3.071900 | |
DE | 2.819434 | 7.931632 | 4.289150 | 1.061135 | |
GWO | 3.591568 | 2.317158 | 1.179205 | 6.004844 | |
SSA | 1.759782 | 3.107574 | 1.836926 | 5.674788 | |
MGO | 1.686104 | 1.781279 | 1.69973 | 4.873634 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbassi, R.; Saidi, S.; Urooj, S.; Alhasnawi, B.N.; Alawad, M.A.; Premkumar, M. An Accurate Metaheuristic Mountain Gazelle Optimizer for Parameter Estimation of Single- and Double-Diode Photovoltaic Cell Models. Mathematics 2023, 11, 4565. https://doi.org/10.3390/math11224565
Abbassi R, Saidi S, Urooj S, Alhasnawi BN, Alawad MA, Premkumar M. An Accurate Metaheuristic Mountain Gazelle Optimizer for Parameter Estimation of Single- and Double-Diode Photovoltaic Cell Models. Mathematics. 2023; 11(22):4565. https://doi.org/10.3390/math11224565
Chicago/Turabian StyleAbbassi, Rabeh, Salem Saidi, Shabana Urooj, Bilal Naji Alhasnawi, Mohamad A. Alawad, and Manoharan Premkumar. 2023. "An Accurate Metaheuristic Mountain Gazelle Optimizer for Parameter Estimation of Single- and Double-Diode Photovoltaic Cell Models" Mathematics 11, no. 22: 4565. https://doi.org/10.3390/math11224565
APA StyleAbbassi, R., Saidi, S., Urooj, S., Alhasnawi, B. N., Alawad, M. A., & Premkumar, M. (2023). An Accurate Metaheuristic Mountain Gazelle Optimizer for Parameter Estimation of Single- and Double-Diode Photovoltaic Cell Models. Mathematics, 11(22), 4565. https://doi.org/10.3390/math11224565