Fuzzy Differential Subordination Associated with a General Linear Transformation
Abstract
:1. Introduction and Definitions
2. Preliminaries
3. Main Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Dzitac, I.; Filip, F.G.; Manolescu, M.J. Fuzzy logic is not fuzzy: World-renowned Computer Scientist Lotfi A. Zadeh. Int. J. Comput. Commun. Control 2017, 12, 748–789. [Google Scholar] [CrossRef]
- Dzitac, S.; Nădăban, S. Soft computing for decision-making in fuzzy environments: A Tribute to Professor Ioan Dzitac. Mathematics 2021, 9, 1701. [Google Scholar] [CrossRef]
- Zadeh, L.A.; Tufis, D.; Filip, F.G.; Dzitac, I. From Natunal Language to Soft Computing: New Paradigms in Artificial Intelligence; Editing House of Romanian Academy: Bucharest, Romania, 2008. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations: Theory and Applications; Marcel Dekker, Inc.: New York, NY, USA; Basel, Switzerland, 2000. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Second order-differential inequalities in the complex plane. J. Math. Anal. Appl. 1978, 65, 298–305. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential subordinations and univalent functions. Michig. Math. J. 1981, 28, 157–171. [Google Scholar] [CrossRef]
- Oros, G.I.; Oros, G. Fuzzy differential subordinations. Acta Univ. Apulensis 2012, 30, 55–64. [Google Scholar] [CrossRef]
- Oros, G.I.; Oros, G. Dominant and bestdominant for fuzzy differential subordinations. Stud. Univ. Babes-Bolyai Math. 2012, 57, 239–248. [Google Scholar]
- Alb Lupas, A. On a certain subclass of analytic functions defined by Sălăgean and Ruscheweyh operators. J. Math. Appl. 2009, 31, 67–76. [Google Scholar]
- Alb Lupąs, A.; Oros, G.I. New applications of Sălăgean and Ruscheweyh operators for obtaining fuzzy differential subordinations. Mathematics 2021, 9, 2000. [Google Scholar] [CrossRef]
- Khan, K.; Ro, J.S.; Tchier, F.; Khan, N. Applications of fuzzy differential subordination for a new subclass of analytic functions. Axioms 2023, 12, 745. [Google Scholar] [CrossRef]
- Oros, G.I.; Oros, G. The notion of subordination in fuzzy sets theory. Gen. Math. 2011, 19, 97–103. [Google Scholar]
- Baleanu, D.; Jajarmi, A.; Mohammadi, H.; Rezapour, S. A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative. Chaos Solitons Fract. 2020, 134, 109705. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Jan, R.; Jan, A.; Deebai, W.; Shutaywi, M. Fractional-calculus analysis of the transmission dynamics of the dengue infection. Chaos 2021, 31, 053130. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wu, L.; Zhang, H. A space-time spectral order sinc-collocation method for the fourth-order nonlocal heat model arising in viscoelasticity. Appl. Math. Comput. 2023, 457, 128192. [Google Scholar] [CrossRef]
- Jiang, X.; Wan, J.; Wang, W.; Zhang, X. A predictor–corrector compact difference scheme for a nonlinear fractional differential equation. Fractal Fract. 2023, 7, 521. [Google Scholar] [CrossRef]
- Mohamed, O.K.S.K.; Mustafa, A.O.; Bakery, A.A. Decision-making on the solution of non-linear dynamical systems of Kannan non-expansive type in Nakano sequence space of fuzzy numbers. J. Math. Comput. Sci. 2023, 31, 162–187. [Google Scholar] [CrossRef]
- Bani Issa, M.S.; Hamoud, A.A.; Ghadle, K.P. Numerical solutions of fuzzy integro-differential equations of the second kind. J. Math. Comput. Sci. 2021, 23, 67–74. [Google Scholar] [CrossRef]
- Park, J.H.; Srivastava, H.M.; Cho, N.E. Univalence and convexity conditions for certain integral operators associated with the Lommel function of the first kind. AIMS Math. 2021, 6, 11380–11402. [Google Scholar] [CrossRef]
- Babalola, K.O. New subclasses of analytic and univalent functions involving certain convolution operator. Math. Tome 2008, 50, 3–12. [Google Scholar]
- Ruscheweyh, S.T. New criteria for univalent functions. Proc. Am. Math. Soc. 1975, 49, 109–115. [Google Scholar] [CrossRef]
- Al-Oboudi, F.M. On univalent functions defined by a generalized Salagean operator. Ind. J. Math. Math. Sci. 2004, 27, 1429–1436. [Google Scholar] [CrossRef]
- Alb Lupąs, A. On special differential subordinations using Sălăgean and Ruscheweyh operators. Math. Inequal. Appl. 2009, 12, 781–790. [Google Scholar] [CrossRef]
- Alb Lupas, A.; Oros, G. On special fuzzy differential subordinations using Sălăgean and Ruscheweyh operators. Appl. Math. Comput. 2015, 261, 119–127. [Google Scholar]
- Oros, G.I. New fuzzy differential subordinations. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021, 70, 229–240. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malik, S.N.; Khan, N.; Tawfiq, F.M.O.; Khan, M.F.; Ahmad, Q.Z.; Xin, Q. Fuzzy Differential Subordination Associated with a General Linear Transformation. Mathematics 2023, 11, 4582. https://doi.org/10.3390/math11224582
Malik SN, Khan N, Tawfiq FMO, Khan MF, Ahmad QZ, Xin Q. Fuzzy Differential Subordination Associated with a General Linear Transformation. Mathematics. 2023; 11(22):4582. https://doi.org/10.3390/math11224582
Chicago/Turabian StyleMalik, Sarfraz Nawaz, Nazar Khan, Ferdous M. O. Tawfiq, Mohammad Faisal Khan, Qazi Zahoor Ahmad, and Qin Xin. 2023. "Fuzzy Differential Subordination Associated with a General Linear Transformation" Mathematics 11, no. 22: 4582. https://doi.org/10.3390/math11224582
APA StyleMalik, S. N., Khan, N., Tawfiq, F. M. O., Khan, M. F., Ahmad, Q. Z., & Xin, Q. (2023). Fuzzy Differential Subordination Associated with a General Linear Transformation. Mathematics, 11(22), 4582. https://doi.org/10.3390/math11224582