Deep Learning Network Based on Improved Sparrow Search Algorithm Optimization for Rolling Bearing Fault Diagnosis
Abstract
:1. Introduction
- (1)
- A lens imaging reverse learning strategy is used to find the initial population locations, improve global search, and enhance the quality of the initial population.
- (2)
- The Gauss–Cauchy mechanism of variation introduces variance factors into populations and enhances population diversity.
- (3)
- The proposed LSSA is used to optimize the hyperparameters of the VMD-GRU network to improve the accuracy of rolling bearing fault diagnosis.
2. Related Work
2.1. Basic Sparrow Search Algorithm
2.2. Variational Modal Decomposition Algorithm (VMD)
2.3. Gated Recurrent Unit Neural Network (GRU)
3. The Proposed LSSA
3.1. Lens Imaging Reverse Learning Strategy
3.2. Gaussian Cauchy Variation Mechanism
Algorithm 1 Pseudo-code for LSSA. |
/* algorithm initialization phase */ 1. Setting the basic parameters of the algorithm 2. Population Initialization by Lens Imaging Reverse Learning Algorithm 3. while () 4. Individuals are ranked according to their fitness values and the best individual and the worst individual are identified. 5. for i=1: 6. Updated discoverer location 7. end for 8. for i=1: 9. Update follower position 10. end for 11. for i=1: 12. Updating of early warning location 13. end for 14. Calculation of fitness values of mutated individuals based on the Gauss-Corsey mutation 15. Compare the fitness values of the mutated individuals and update them to the current optimal position if the position of the mutated individuals is better 16. 17. end while 18. Output the global optimal solution |
3.3. Rolling Bearing Fault Diagnosis Method Based on LSSA-VMD-GRU
- (1)
- Signal acquisition of rolling bearings in different states to collect raw data.
- (2)
- Find the optimal solution of the objective function by LSSA and obtain the optimal parameter combination of LSSA-VMD.
- (3)
- The optimal parameters are used to obtain IMF components from the variational modal decomposition of the fault signals of the four types of rolling bearings, and the energy entropy is extracted as the feature vector of the classifier by screening the IMF components that contain obvious fault information.
- (4)
- Input the feature vectors into the GRU fault diagnosis model, train to obtain the prediction model of each state, and input the collected test signal data set into the model to realize the fault diagnosis of rolling bearings.
4. Experimental Verification and Analysis
4.1. Benchmark Experiments
4.2. Fault Diagnosis Experiment of Rolling Bearing at Casey Western Reserve University
4.3. Fault Diagnosis of Bearing at Paderborn University
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Li, W.; Chen, J.; Li, J.; Xia, K. Derivative and enhanced discrete analytic wavelet algorithm for rolling bearing fault diagnosis. Microprocess. Microsyst. 2021, 82, 103872. [Google Scholar] [CrossRef]
- Yu, H.T.; Kim, H.J.; Park, S.H.; Kim, M.H.; Jeon, I.S.; Choi, B.K. Classification of rotary machine fault considering signal differences. J. Mech. Sci. Technol. 2022, 36, 517–525. [Google Scholar] [CrossRef]
- Huo, Z.; Zhang, Y.; Jombo, G.; Shu, L. Adaptive multiscale weighted permutation entropy for rolling bearing fault diagnosis. IEEE Access 2020, 8, 87529–87540. [Google Scholar] [CrossRef]
- Yu, C.; Ning, Y.; Qin, Y.; Su, W.; Zhao, X. Multi-label fault diagnosis of rolling bearing based on meta-learning. Neural Comput. Appl. 2021, 33, 5393–5407. [Google Scholar] [CrossRef]
- Chen, T.; Li, S.; Yan, J. CS-RNN: Efficient training of recurrent neural networks with continuous skips. Neural Comput. Appl. 2022, 34, 16515–16532. [Google Scholar] [CrossRef]
- Li, C.; Li, D.; Zhang, Z.; Chu, D. MST-RNN: A Multi-Dimension Spatiotemporal Recurrent Neural Networks for Recommending the Next Point of Interest. Mathematics 2022, 10, 1838. [Google Scholar] [CrossRef]
- Hashmi, A.S.; Ahmad, T. GP-ELM-RNN: Garson-pruned extreme learning machine based replicator neural network for anomaly detection. J. King Saud-Univ. Comput. Inf. Sci. 2022, 34, 1768–1774. [Google Scholar] [CrossRef]
- An, Y.; Zhang, K.; Liu, Q.; Chai, Y.; Huang, X. Rolling bearing fault diagnosis method base on periodic sparse attention and LSTM. IEEE Sens. J. 2022, 22, 12044–12053. [Google Scholar] [CrossRef]
- Zhong, C.; Wang, J.S.; Liu, Y. Bi-LSTM fault diagnosis method for rolling bearings based on segmented interception AR spectrum analysis and information fusion. J. Intell. Fuzzy Syst. 2023, 44, 1–27. [Google Scholar] [CrossRef]
- Wang, H.; Guo, Y.; Liu, X.; Yang, J.; Zhang, X.; Shi, L. Fault diagnosis method for imbalanced data of rotating machinery based on time domain signal prediction and SC-ResNeSt. IEEE Access 2023, 11, 38875–388893. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, T.; Luo, Z.; Sun, K. A novel rolling bearing fault diagnosis and severity analysis method. Appl. Sci. 2019, 9, 2356. [Google Scholar] [CrossRef]
- Gan, X.; Lu, H.; Yang, G. Fault diagnosis method for rolling bearings based on composite multiscale fluctuation dispersion entropy. Entropy 2019, 21, 290. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Liu, W.; Zhou, L.; Hu, N.; He, Z.; Yang, C.; Jiang, J. A novel integral extension LMD method based on integral local waveform matching. Neural Comput. Appl. 2016, 27, 761–768. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, W.; Han, J.; Wang, G. A new wind turbine fault diagnosis method based on the local mean decomposition. Renew. Energy 2012, 48, 411–415. [Google Scholar] [CrossRef]
- Gao, L.; Li, X.; Yao, Y.; Wang, Y.; Yang, X.; Zhao, X.; Geng, D.; Li, Y.; Liu, L. A modal frequency estimation method of non-stationary signal under mass time-varying condition based on EMD algorithm. Appl. Sci. 2022, 12, 8187. [Google Scholar] [CrossRef]
- Cheng, X.; Mao, J.; Li, J.; Zhao, H.; Zhou, C.; Gong, X.; Rao, Z. An EEMD-SVD-LWT algorithm for denoising a lidar signal. Measurement 2021, 168, 108405. [Google Scholar] [CrossRef]
- Li, Z.; Li, S.; Mao, J.; Li, J.; Wang, Q.; Zhang, Y. A Novel Lidar Signal-Denoising Algorithm Based on Sparrow Search Algorithm for Optimal Variational Modal Decomposition. Remote Sens. 2022, 14, 4960. [Google Scholar] [CrossRef]
- Dragomiretskiy, K.; Zosso, D. Variational mode decomposition. IEEE Trans. Signal Process. 2013, 62, 531–544. [Google Scholar] [CrossRef]
- Ur Rehman, N.; Aftab, H. Multivariate variational mode decomposition. IEEE Trans. Signal Process. 2019, 67, 6039–6052. [Google Scholar] [CrossRef]
- Miao, Y.; Zhao, M.; Lin, J. Identification of mechanical compound-fault based on the improved parameter-adaptive variational mode decomposition. ISA Trans. 2019, 84, 82–95. [Google Scholar] [CrossRef]
- Ding, J.; Huang, L.; Xiao, D.; Li, X. GMPSO-VMD algorithm and its application to rolling bearing fault feature extraction. Sensors 2020, 20, 1946. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Wang, A.; Shi, H.; Guo, L. Rolling bearing incipient fault detection via optimized VMD using mode mutual information. Int. J. Control Autom. Syst. 2022, 20, 1305–1315. [Google Scholar] [CrossRef]
- Xue, J.; Shen, B. A novel swarm intelligence optimization approach: Sparrow search algorithm. Syst. Sci. Control Eng. 2020, 8, 22–34. [Google Scholar] [CrossRef]
- Ma, G.; Yue, X.; Gao, X.; Liu, F. Application of an improved sparrow search algorithm in BP network classification of strip steel surface defect images. Multimed. Tools Appl. 2023, 82, 14403–14439. [Google Scholar] [CrossRef]
- Tang, Y.; Dai, Q.; Yang, M.; Du, T.; Chen, L. Software defect prediction ensemble learning algorithm based on adaptive variable sparrow search algorithm. Int. J. Mach. Learn. Cybern. 2023, 14, 1967–1987. [Google Scholar] [CrossRef]
- Yue, X.; Ma, G.; Liu, F.; Gao, X. Research on image classification method of strip steel surface defects based on improved Bat algorithm optimized BP neural network. J. Intell. Fuzzy Syst. 2021, 41, 1509–1521. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhuang, M.; Liu, H.; Zhu, Y. Optimal control of chilled water system based on improved sparrow search algorithm. Buildings 2022, 12, 269. [Google Scholar] [CrossRef]
- Ouyang, C.; Zhu, D.; Wang, F. A learning sparrow search algorithm. Comput. Intell. Neurosci. 2021, 2021, 3946958. [Google Scholar] [CrossRef]
- Gharehchopogh, F.S.; Namazi, M.; Ebrahimi, L. Advances in sparrow search algorithm: A comprehensive survey. Arch. Comput. Methods Eng. 2023, 30, 427–455. [Google Scholar] [CrossRef]
- Zhang, C.; Ding, S. A stochastic configuration network based on chaotic sparrow search algorithm. Knowl. Based Syst. 2021, 220, 106924. [Google Scholar] [CrossRef]
- Zhu, Y.; Yousefi, N. Optimal parameter identification of PEMFC stacks using adaptive sparrow search algorithm. Int. J. Hydrogen Energy 2021, 46, 9541–9552. [Google Scholar] [CrossRef]
- Eberhart, R.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the MHS’95, Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995; pp. 39–43. [Google Scholar]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Zhang, J.; Li, L.; Zhang, H.; Wang, F.; Tian, Y. A novel sparrow search algorithm with integrates spawning strategy. Clust. Comput. 2023, 1–21. [Google Scholar] [CrossRef]
- Yao, X.; Liu, Y.; Lin, G. Evolutionary programming made faster. IEEE Trans. Evol. Comput. 1999, 3, 82–102. [Google Scholar]
- Smith, W.A.; Randall, R.B. Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study. Mech. Syst. Signal Process. 2015, 64, 100–131. [Google Scholar] [CrossRef]
- Lessmeier, C.; Kimotho, J.K.; Zimmer, D. Condition monitoring of bearing damage in electromechanical drive systems by using motor current signals of electric motors: A benchmark data set for data-driven classification. In Proceedings of the Third European Conference of the PHM Society, Bilbao, Spain, 5–8 July 2016; Volume 3. [Google Scholar]
- Hao, S.; Huang, C.; Heidari, A.A.; Chen, H.; Li, L.; Algarni, A.D.; Elmannai, H.; Xu, S. Salp swarm algorithm with iterative mapping and local escaping for multi-level threshold image segmentation: A skin cancer dermoscopic case study. J. Comput. Des. Eng. 2023, 10, 655–693. [Google Scholar] [CrossRef]
- Zhao, D.; Yu, H.; Fang, X.; Tian, L.; Han, P. A path planning method based on multi-objective cauchy mutation cat swarm optimization algorithm for navigation system of intelligent patrol car. IEEE Access 2020, 8, 151788–151803. [Google Scholar] [CrossRef]
- Pham, V.H.S.; Trang, N.T.N.; Dat, C.Q. Optimization of production schedules of multi-plants for dispatching ready-mix concrete trucks by integrating grey wolf optimizer and dragonfly algorithm. Eng. Constr. Archit. Manag. 2023. [Google Scholar] [CrossRef]
Experimental Equipment | Detailed Information |
---|---|
Operating system | Microsoft Windows 10 Professional |
Computer processor | Intel(R)Core(TM)i5-6300HQ CPU |
Memory | 12GB DDR4 |
Graphics processor | NVDIA GeForce GTX960M |
Simulation experiment platform | MATLAB R2016b |
Algorithm | Parameter Type | Parameter Values |
---|---|---|
PSO | Initial population size | NP = 20 |
Learning factor | = 1.52 | |
Learning factor | = 1.52 | |
GWO | Search scope | [0, 2] |
WOA | Initial step | S = 6 |
SSA | Initial population size | NP = 20 |
Percentage of discoverer | = 0.7 | |
Percentage of early warner | = 0.2 | |
NSSA | Initial population size | NP = 20 |
Percentage of discoverer | = 0.7 | |
Percentage of early warner | = 0.2 | |
LSSA | Initial population size | NP = 20 |
Percentage of discoverer | = 0.7 | |
Percentage of early warner | = 0.2 | |
Safety threshold | ST = 06 |
Function | Dim | Range | |
---|---|---|---|
30 | [−100, 100] | 0 | |
30 | [−10, 10] | 0 | |
30 | [−100, 100] | 0 | |
30 | [−100, 100] | 0 | |
30 | [−30, 30] | 0 | |
30 | [−30, 30] | 0 | |
30 | [−1.28, 1.28] | 0 |
Function | Dim | Range | |
---|---|---|---|
30 | [−500, 500] | −12,569.48 | |
30 | [−5.12, 5.12] | 0 | |
30 | [−32, 32] | 0 | |
30 | [−600, 600] | 0 | |
30 | [−50, 50] | 0 | |
30 | [−50, 50] | 0 |
Function | Dim | Range | |
---|---|---|---|
2 | [−65, 65] | 1 | |
4 | [−5, 5] | 0.0003 | |
2 | [−5, 5] | −1.0316 | |
2 | [−5, 5] | 0.398 | |
2 | [−2, 2] | 3 | |
3 | [1, 3] | −3.86 | |
6 | [0, 1] | −3.32 | |
4 | [0, 10] | −10.1532 | |
4 | [0, 10] | −10.4028 | |
4 | [0, 10] | −10.5363 |
Function | Item | Algorithm | |||||
---|---|---|---|---|---|---|---|
PSO | GWO | WOA | SSA | NSSA | LSSA | ||
mean | |||||||
std | |||||||
best | |||||||
mean | |||||||
std | |||||||
best | |||||||
mean | |||||||
std | |||||||
best | |||||||
mean | |||||||
std | |||||||
best | |||||||
mean | |||||||
std | |||||||
best | |||||||
mean | |||||||
std | |||||||
best | |||||||
mean | |||||||
std | |||||||
best | |||||||
mean | |||||||
std | |||||||
best | |||||||
mean | |||||||
std | |||||||
best | |||||||
mean | |||||||
std | |||||||
best | |||||||
mean | |||||||
std | |||||||
best | |||||||
mean | |||||||
std | |||||||
best | |||||||
mean | |||||||
std | |||||||
best | |||||||
mean | |||||||
std | |||||||
best | |||||||
mean | |||||||
std | |||||||
best | |||||||
mean | |||||||
std | |||||||
best | |||||||
mean | |||||||
std | |||||||
best | |||||||
mean | |||||||
std | |||||||
best | |||||||
mean | |||||||
std | |||||||
best | |||||||
mean | |||||||
std | |||||||
best | |||||||
mean | |||||||
std | |||||||
best | |||||||
mean | |||||||
std | |||||||
best | |||||||
mean | |||||||
std | |||||||
best |
Fault Location | Fault Size | Load/(hp) | Category Label |
---|---|---|---|
Normalcy | - | 0/1/2/3hp | 0001 |
Outer ring failure | 0.1778 | 0/1/2/3hp | 0010 |
Inner ring failure | 0.1778 | 0/1/2/3hp | 0100 |
Rolling body failure | 0.1778 | 0/1/2/3hp | 1000 |
Diagnostic Methods | Accuracy | Precision | Recall | F1 Score |
---|---|---|---|---|
CNN | 58.32% | 59.16% | 32.01% | 39.94% |
VMD-GRU | 71.66% | 72.42% | 31.74% | 44.14% |
LSSA-VMD-GRU | 96.61% | 93.36% | 98.49% | 92.19% |
Location of Injury | Damage Degree | Labels |
---|---|---|
Normalcy | - | 0 |
Outer ring failure | 1 | 1 |
2 | 2 | |
Inner ring failure | 1 | 3 |
2 | 4 |
Diagnostic Methods | Accuracy | Precision | Recall | F1 Score |
---|---|---|---|---|
CNN | 72.33% | 71.12% | 41.74% | 46.54% |
VMD-GRU | 74.32% | 71.15% | 50.32% | 64.32% |
LSSA-VMD-GRU | 98.45% | 97.54% | 98.32% | 91.14% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, G.; Yue, X.; Zhu, J.; Liu, Z.; Lu, S. Deep Learning Network Based on Improved Sparrow Search Algorithm Optimization for Rolling Bearing Fault Diagnosis. Mathematics 2023, 11, 4634. https://doi.org/10.3390/math11224634
Ma G, Yue X, Zhu J, Liu Z, Lu S. Deep Learning Network Based on Improved Sparrow Search Algorithm Optimization for Rolling Bearing Fault Diagnosis. Mathematics. 2023; 11(22):4634. https://doi.org/10.3390/math11224634
Chicago/Turabian StyleMa, Guoyuan, Xiaofeng Yue, Juan Zhu, Zeyuan Liu, and Shibo Lu. 2023. "Deep Learning Network Based on Improved Sparrow Search Algorithm Optimization for Rolling Bearing Fault Diagnosis" Mathematics 11, no. 22: 4634. https://doi.org/10.3390/math11224634
APA StyleMa, G., Yue, X., Zhu, J., Liu, Z., & Lu, S. (2023). Deep Learning Network Based on Improved Sparrow Search Algorithm Optimization for Rolling Bearing Fault Diagnosis. Mathematics, 11(22), 4634. https://doi.org/10.3390/math11224634