Method of Extracting the Instantaneous Phases and Frequencies of Respiration from the Signal of a Photoplethysmogram
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of the Study and the Experimental Data
2.2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schäfer, C.; Rosenblum, M.G.; Kurths, J.; Abel, H.-H. Heartbeat synchronized with ventilation. Nature 1998, 392, 239–240. [Google Scholar] [CrossRef] [PubMed]
- Angelone, A.; Coulter, N.A. Respiratory sinus arrhythmia: A frequency dependent phenomenon. J. Appl. Physiol. 1964, 19, 479–482. [Google Scholar] [CrossRef] [PubMed]
- Song, H.-S.; Lehrer, P.M. The Effects of Specific Respiratory Rates on Heart Rate and Heart Rate Variability. Appl. Psychophysiol. Biofeedback 2003, 28, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Lotric, M.B.; Stefanovska, A. Synchronization and modulation in the human cardiorespiratory system. Phys. A Stat. Mech. Its Appl. 2000, 283, 451–461. [Google Scholar] [CrossRef]
- Rosenblum, M.G.; Kurths, J.; Pikovsky, A.; Schafer, C.; Tass, P.; Abel, H.-H. Synchronization in noisy systems and cardiorespiratory interaction. IEEE Eng. Med. Biol. Mag. 1998, 17, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, C.; Rosenblum, M.G.; Abel, H.-H.; Kurths, J. Synchronization in the human cardiorespiratory system. Phys. Rev. E 1999, 60, 857–870. [Google Scholar] [CrossRef] [PubMed]
- Mrowka, R.; Patzak, A.; Rosenblum, M. Quantitative analysis of cardiorespiratory synchronization in infants. Int. J. Bifurc. Chaos 2000, 10, 2479–2488. [Google Scholar] [CrossRef]
- Prokhorov, M.; Ponomarenko, V.; Gridnev, V.; Bodrov, M.; Bespyatov, A. Synchronization between main rhythmic processes in the human cardiovascular system. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2003, 68, 041913. [Google Scholar] [CrossRef]
- Ponomarenko, V.; Prokhorov, M.; Bespyatov, A.; Bodrov, M.; Gridnev, V. Deriving main rhythms of the human cardiovascular system from the heartbeat time series and detecting their synchronization. Chaos Solitons Fractals 2005, 23, 1429–1438. [Google Scholar] [CrossRef]
- Bartsch, R.; Kantelhardt, J.W.; Penzel, T.; Havlin, S. Experimental Evidence for Phase Synchronization Transitions in the Human Cardiorespiratory System. Phys. Rev. Lett. 2007, 98, 054102. [Google Scholar] [CrossRef]
- Borovkova, E.I.; Prokhorov, M.D.; Kiselev, A.R.; Hramkov, A.N.; Mironov, S.A.; Agaltsov, M.V.; Ponomarenko, V.I.; Karavaev, A.S.; Drapkina, O.M.; Penzel, T. Directional couplings between the respiration and parasympathetic control of the heart rate during sleep and wakefulness in healthy subjects at different ages. Front. Netw. Physiol. 2022, 2, 942700. [Google Scholar] [CrossRef] [PubMed]
- Karavaev, A.S.; Skazkina, V.V.; Borovkova, E.I.; Prokhorov, M.D.; Hramkov, A.N.; Ponomarenko, V.I.; Runnova, A.E.; Gridnev, V.I.; Kiselev, A.R.; Kuznetsov, N.V.; et al. Synchronization of the processes of autonomic control of blood circulation in humans is different in the awake state and in sleep stages. Front. Neurosci. 2022, 15, 791510. [Google Scholar] [CrossRef] [PubMed]
- Shiogai, Y.; Stefanovska, A.; McClintock, P.V.E. Nonlinear dynamics of cardiovascular ageing. Phys. Rep. 2010, 488, 51–110. [Google Scholar] [CrossRef] [PubMed]
- Bartsch, R.P.; Schumann, A.Y.; Kantelhardt, J.W.; Penzel, T.; Ivanov, P.C. Phase transitions in physiologic coupling. Proc. Natl. Acad. Sci. USA 2012, 109, 10181–10186. [Google Scholar] [CrossRef] [PubMed]
- Pietri, P.; Stefanadis, C. Cardiovascular Aging and Longevity. J. Am. Coll. Cardiol. 2021, 77, 189–204. [Google Scholar] [CrossRef] [PubMed]
- Ponomarenko, V.I.; Karavaev, A.S.; Borovkova, E.I.; Hramkov, A.N.; Kiselev, A.R.; Prokhorov, M.D.; Penzel, T. Decrease of coherence between the respiration and parasympathetic control of the heart rate with aging. Chaos 2021, 31, 073105. [Google Scholar] [CrossRef] [PubMed]
- Borovkova, E.I.; Hramkov, A.N.; Dubinkina, E.S.; Ponomarenko, V.I.; Bezruchko, B.P.; Ishbulatov, Y.M.; Kurbako, A.V.; Karavaev, A.S.; Prokhorov, M.D. Biomarkers of the psychophysiological state during the cognitive tasks estimated from the signals of the brain, cardiovascular and respiratory systems. Eur. Phys. J. Spec. Top. 2023, 232, 625–633. [Google Scholar] [CrossRef]
- Karavaev, A.S.; Prokhorov, M.D.; Ponomarenko, V.I.; Kiselev, A.R.; Gridnev, V.I.; Ruban, E.I.; Bezruchko, B.P. Synchronization of low-frequency oscillations in the human cardiovascular system. Chaos 2009, 19, 033112. [Google Scholar] [CrossRef]
- Dougherty, C.M.; Burr, R.L. Comparison of heart rate variability in survivors and nonsurvivors of sudden cardiac arrest. Am. J. Cardiol. 1992, 70, 441–448. [Google Scholar] [CrossRef]
- Karavaev, A.S.; Kiselev, A.R.; Runnova, A.E.; Zhuravlev, M.O.; Borovkova, E.I.; Prokhorov, M.D.; Hramov, A.E. Synchronization of infra-slow oscillations of brain potentials with respiration. Chaos 2018, 28, 081102. [Google Scholar] [CrossRef]
- Prokhorov, M.D.; Karavaev, A.S.; Ishbulatov, Y.M.; Ponomarenko, V.I.; Kiselev, A.R.; Kurths, J. Interbeat interval variability versus frequency modulation of heart rate. Phys. Rev. E 2021, 103, 042404. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.; Overbeck, K.; Nath, A.F.; Murray, A.; Stansby, G. A prospective comparison of bilateral photoplethysmography versus the ankle-brachial pressure index for detecting and quantifying lower limb peripheral arterial disease. J. Vasc. Surg. 2008, 47, 794–802. [Google Scholar] [CrossRef]
- Bernardi, L.; Radaelli, A.; Solda, P.L.; Coats, A.J.S.; Reeder, M.; Calciati, A.; Sleight, P. Autonomic Control of Skin Microvessels: Assessment by Power Spectrum of Photoplethysmographic Waves. Clin. Sci. 1996, 90, 345–355. [Google Scholar] [CrossRef]
- FJaved, F.; Middleton, P.M.; Malouf, P.; Chan, G.S.H.; Savkin, A.V.; Lovell, N.H.; Mackie, J. Frequency spectrum analysis of finger photoplethysmographic waveform variability during haemodialysis. Physiol. Meas. 2010, 31, 1203–1216. [Google Scholar] [CrossRef]
- Bernardi, L.; Passino, C.; Spadacini, G.; Valle, F.; Leuzzi, S.; Piepoli, M.; Sleight, P. Arterial Baroreceptors as Determinants of 0.1 Hz and Respiration-Related Changes in Blood Pressure and Heart Rate Spectra. In Studies in Health Technology and Informatics. Frontiers of Blood Pressure and Heart Rate Analysis; IOS Press: Amsterdam, The Netherlands, 1997; Volume 35, pp. 241–252. [Google Scholar] [CrossRef]
- Ishbulatov, Y.M.; Bibicheva, T.S.; Gridnev, V.I.; Prokhorov, M.D.; Ogneva, M.V.; Kiselev, A.R.; Karavaev, A.S. Contribution of Cardiorespiratory Coupling to the Irregular Dynamics of the Human Cardiovascular System. Mathematics 2022, 10, 1088. [Google Scholar] [CrossRef]
- Dash, S.; Shelley, K.H.; Silverman, D.G.; Chon, K.H. Estimation of Respiratory Rate From ECG, Photoplethysmogram, and Piezoelectric Pulse Transducer Signals: A Comparative Study of Time–Frequency Methods. IEEE Trans. Biomed. Eng. 2010, 57, 1099–1107. [Google Scholar] [CrossRef] [PubMed]
- Guyenet, P.G. Regulation of Breathing and Autonomic Outflows by Chemoreceptors. Compr. Physiol. 2014, 4, 1511–1562. [Google Scholar] [CrossRef]
- Molkov, Y.I.; Zoccal, D.B.; Baekey, D.M.; Abdala, A.P.L.; Machado, B.H.; Dick, T.E.; Rybak, I.A. Physiological and pathophysiological interactions between the respiratory central pattern generator and the sympathetic nervous system. Breath. Emot. Evol. 2014, 212, 1–23. [Google Scholar] [CrossRef]
- Brown, T.E.; Beightol, L.A.; Koh, J.; Eckberg, D.L. Important influence of respiration on human R-R interval power spectra is largely ignored. J. Appl. Physiol. 1993, 75, 2310–2317. [Google Scholar] [CrossRef]
- González, H.; Infante, O.; Lerma, C. Response to active standing of heart beat interval, systolic blood volume and systolic blood pressure: Recurrence plot analysis. In Translational Recurrences. Springer Proceedings in Mathematics & Statistics; Springer: Cham, Switzerland, 2014; Volume 103, pp. 109–123. [Google Scholar] [CrossRef]
- Charlton, P.H.; Birrenkott, D.A.; Bonnici, T.; Pimentel, M.A.F.; Johnson, A.E.W.; Alastruey, J.; Tarassenko, L.; Watkinson, P.J.; Beale, R.; Clifton, D.A. Breathing Rate Estimation from the Electrocardiogram and Photoplethysmogram: A Review. IEEE Rev. Biomed. Eng. 2018, 11, 2–20. [Google Scholar] [CrossRef]
- Lindberg, L.-G.; Ugnell, H.; Oberg, P. Monitoring of respiratory and heart rates using a fibre-optic sensor. Med. Biol. Eng. Comput. 1992, 30, 533–537. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-D.; Chien, Y.-H.; Chen, Y.-S. Wavelet-based embedded algorithm for respiratory rate estimation from PPG signal. Biomed. Signal Process. Control 2017, 36, 138–145. [Google Scholar] [CrossRef]
- Dan, G.; Li, Z.; Ding, H. A Mother Wavelet Selection Algorithm for Respiratory Rate Estimation from Photoplethysmogram. In World Congress on Medical Physics and Biomedical Engineering; Jaffray, D., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; Volume 51. [Google Scholar] [CrossRef]
- Madhav, K.V.; Krishna, E.H.; Reddy, K.A. Extraction of surrogate respiratory activity from pulse oximeter signals using SSA. In Proceedings of the International Conference on Electrical, Electronics, and Optimization Techniques, Chennai, India, 3–5 March 2016; pp. 1717–1721. [Google Scholar] [CrossRef]
- Venu, M.K.; Raghuram, M.; Krishna, E.H.; Reddy, E.; Reddy, K.A. Extraction of respiration rate from ECG and BP signals using order reduced-modified covariance AR technique. In Proceedings of the 2010 3rd International Congress on Image and Signal Processing, CISP, Yantai, China, 16–18 October 2010; Volume 9, pp. 4059–4063. [Google Scholar] [CrossRef]
- Venu, M.K.; Raghuram, M.; Krishna, E.H.; Reddy, E.; Reddy, K.A. Use of multi scale PCA for extraction of respiratory activity from photoplethysmographic signals. In Proceedings of the IEEE International Instrumentation and Measurement Technology Conference Proceedings, Graz, Austria, 13–16 May 2012. [Google Scholar] [CrossRef]
- Madhav, K.V.; Ram, M.R.; Krishna, E.H.; Komalla, N.R.; Reddy, K.A. Robust Extraction of Respiratory Activity From PPG Signals Using Modified MSPCA. IEEE Trans. Instrum. Meas. 2013, 62, 1094–1106. [Google Scholar] [CrossRef]
- Lázaro, J.; Gil, E.; Bailón, R.; Mincholé, A.; Laguna, P. Deriving Respiration from Photoplethysmographic Pulse Width. Med. Biol. Eng. Comput. 2013, 51, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Karlen, W.; Raman, S.; Ansermino, J.M.; Dumont, G.A. Multiparameter respiratory rate estimation from the photoplethysmogram. IEEE Trans. Biomed. Eng. 2013, 60, 1946–1953. [Google Scholar] [CrossRef] [PubMed]
- Orini, M.; Pelaez-Coca, M.D.; Bailon, R.; Gil, E. Estimation of spontaneous respiratory rate from photoplethysmography by cross time-frequency analysis. Comput. Cardiol. 2011, 38, 661–664. [Google Scholar]
- Addison, P.S.; Watson, J.N. A Wavelet Based Technique to Measure Heart Rate Variability Intern. J. Wavelets Multiresolut. Inf. Process. 2004, 2, 43–57. [Google Scholar] [CrossRef]
- Orphanidou, C. Derivation of respiration rate from ambulatory ECG and PPG using Ensemble Empirical Mode Decomposition: Comparison and fusion. Comput. Biol. Med. 2017, 81, 45–54. [Google Scholar] [CrossRef]
- Johansson, A. Neural network for photoplethysmographic respiratory rate monitoring. Med. Biol. Eng. Comput. 2003, 41, 242–248. [Google Scholar] [CrossRef]
- Kantz, H.; Kurths, J.; Mayer-Kress, G. Nonlinear Analysis of Physiological Data; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Stroop, J.R. Near Infrared Spectroscopic Study of Brain Activity during Cognitive Conflicts on Facial Expressions. J. Exp. Psychol. 1935, 18, 643–662. [Google Scholar] [CrossRef]
- Schneider, G.M.; Jacobs, D.W.; Gevirtz, R.N.; O’Connor, D.T.; Hum, J. Cardiovascular haemodynamic response to repeated mental stress in normotensive subjects at genetic risk of hypertension: Evidence of enhanced reactivity, blunted adaptation, and delayed recovery. J. Hum. Hypertens. 2003, 17, 829–840. [Google Scholar] [CrossRef]
- Medicom MTD: Electroencephalographic Studies “Encephalan-EEG”. Available online: https://medicom-mtd.com/ (accessed on 23 June 2023).
- Heart Rate Variability. Standards of Measurement, Physiological Interpretation, and Clinical Use. Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology. Circulation 1996, 93, 1043–1065. [Google Scholar]
- Daubechies, I. Ten Lectures on Wavelets; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1992. [Google Scholar]
- Mormann, F.; Lehnertz, K.; David, P.; Elger, C.E. Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Phys. D 2000, 144, 358–369. [Google Scholar] [CrossRef]
- Nitzan, M.; Faib, I.; Friedman, H. Respiration-induced changes in tissue blood volume distal to occluded artery, measured by photoplethysmography. J. Biomed. Opt. 2006, 11, 040506. [Google Scholar] [CrossRef] [PubMed]
- Meredith, D.J.; Clifton, D.; Charlton, P.; Brooks, J.; Pugh, C.W.; Tarassenko, L. Photoplethysmographic derivation of respiratory rate: A review of relevant physiology. J. Med. Eng. Technol. 2012, 36, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Nam, Y.; Lee, J.; Chon, K.H. Respiratory Rate Estimation from the Built-in Cameras of Smartphones and Tablets. Ann. Biomed. Eng. 2014, 42, 885–898. [Google Scholar] [CrossRef] [PubMed]
- Karlen, W.; Garde, A.; Myers, D.; Scheffer, C.; Ansermino, J.M.; Dumont, G. A Respiratory rate assessment from photoplethysmographic imaging. In Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 5397–5400. [Google Scholar] [CrossRef]
- Karlen, W.; Garde, A.; Myers, D.; Scheffer, C.; Ansermino, J.M.; Dumont, G. A Estimation of Respiratory Rate From Photoplethysmographic Imaging Videos Compared to Pulse Oximetry. IEEE J. Biomed. Health Inform. 2015, 19, 1331–1338. [Google Scholar] [CrossRef]
- Lázaro, J.; Bailón, R.; Laguna, P.; Nam, Y.; Chon, K.; Gil, E. Respiratory rate influence in the resulting magnitude of pulse photoplethysmogram derived respiration signals. In Proceedings of the Computing in Cardiology, Cambridge, MA, USA, 7–20 September 2014; pp. 289–292. [Google Scholar]
- Lázaro, J.; Nam, Y.; Gil, E.; Laguna, P.; Chon, K.H. Respiratory rate derived from smartphone-camera-acquired pulse photoplethysmographic signals. Physiol. Meas. 2015, 36, 2317–2333. [Google Scholar] [CrossRef]
- Yi, W.J.; Park, K.S. Engineering in Medicine and Biology—Derivation of respiration from ECG measured without subject’s awareness using wavelet transform. In Proceedings of the IEEE Second Joint EMBS-BMES Conference 2002 24th Annual International Conference of the Engineering in Medicine and Biology Society, Chicago, IL, USA, 30 October–2 November 2002; Volume 1, pp. 130–131. [Google Scholar] [CrossRef]
- Alam, R.; Peden, D.; Lach, J. Wearable Respiration Monitoring: Interpretable Inference with Context and Sensor Biomarkers. IEEE J. Biomed. Health Inform. 2020, 25, 1938–1948. [Google Scholar] [CrossRef]
- Mejía-Mejía, E.; May, J.M.; Kyriacou, P.A. Effects of using different algorithms and fiducial points for the detection of interbeat intervals, and different sampling rates on the assessment of pulse rate variability from photoplethysmography. Comput. Methods Programs Biomed. 2022, 218, 106724. [Google Scholar] [CrossRef]
- Sun, Y.; Thakor, N. Photoplethysmography revisited: From contact to noncontact, from point to imaging. IEEE Trans. Biomed. Eng. 2016, 63, 463–477. [Google Scholar] [CrossRef] [PubMed]
- Davis, S.; Watkinson, P.; Guazzi, A.; McCormick, K.; Tarassenko, L.; Jorge, J.; Villarroel, M.; Shenvi, A.; Green, G. Continuous non-contact vital sign monitoring in neonatal intensive care unit. Healthc. Technol. Lett. 2014, 1, 87–91. [Google Scholar] [CrossRef]
- Zaytsev, V.V.; Miridonov, S.V.; Mamontov, O.V.; Kamshilin, A.A. Contactless monitoring of the blood-flow changes in upper limbs. Biomed. Opt. Express 2018, 9, 5387–5399. [Google Scholar] [CrossRef] [PubMed]
- Sagaidachnyi, A.A.; Volkov, I.Y.; Fomin, A.V.; Zaletov, I.S.; Skripal, A.V. A Thermometric Device for Monitoring Oscillations of Peripheral Blood Filling Based on a High-Pass Filter. Biomed. Eng. 2012, 55, 157–160. [Google Scholar] [CrossRef]
- Smolyanskaya, O.A.; Lazareva, E.N.; Nalegaev, S.S.; Petrov, N.V.; Zaytsev, K.I.; Timoshina, P.A.; Tuchin, V.V. Multimodal Optical Diagnostics of Glycated Biological Tissues. Biochemistry 2019, 84, 124–143. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borovkova, E.I.; Ponomarenko, V.I.; Karavaev, A.S.; Dubinkina, E.S.; Prokhorov, M.D. Method of Extracting the Instantaneous Phases and Frequencies of Respiration from the Signal of a Photoplethysmogram. Mathematics 2023, 11, 4903. https://doi.org/10.3390/math11244903
Borovkova EI, Ponomarenko VI, Karavaev AS, Dubinkina ES, Prokhorov MD. Method of Extracting the Instantaneous Phases and Frequencies of Respiration from the Signal of a Photoplethysmogram. Mathematics. 2023; 11(24):4903. https://doi.org/10.3390/math11244903
Chicago/Turabian StyleBorovkova, Ekaterina I., Vladimir I. Ponomarenko, Anatoly S. Karavaev, Elizaveta S. Dubinkina, and Mikhail D. Prokhorov. 2023. "Method of Extracting the Instantaneous Phases and Frequencies of Respiration from the Signal of a Photoplethysmogram" Mathematics 11, no. 24: 4903. https://doi.org/10.3390/math11244903
APA StyleBorovkova, E. I., Ponomarenko, V. I., Karavaev, A. S., Dubinkina, E. S., & Prokhorov, M. D. (2023). Method of Extracting the Instantaneous Phases and Frequencies of Respiration from the Signal of a Photoplethysmogram. Mathematics, 11(24), 4903. https://doi.org/10.3390/math11244903