Optimal Mission Abort Decisions for Multi-Component Systems Considering Multiple Abort Criteria
Abstract
:1. Introduction
- •
- Multi-level transition probabilities which indicate the defective components deteriorate to a worse state with higher probability than the normal components are considered in this study;
- •
- Both the number of defective components and failed components have an effect on the mission abort activity and rescue procedures;
- •
- A cost minimization model that balances the mission success reliability and system survivability is constructed to determine the optimal mission abort decision parameters.
2. Problem Formulation
3. Reliability Evaluation of the System
3.1. Mission Reliability and System Survivability
- (1)
- If , , ,
- (2)
- If , , ,
- (3)
- If , , .
- (4)
- If , , ,
- (5)
- If , , .
- (1)
- If , , ,
- (2)
- If , , ,
- (3)
- If , , ,
- (4)
- If , , ,
- (5)
- If , , ,
- (6)
- If , , ,
- (7)
- If , , ,
- (8)
- If , , .
- (1)
- If , , ,
- (2)
- If , , ,
- (3)
- If , , ,
- (4)
- If , , ,
- (5)
- If , , ,
- (6)
- If , , ,
- (7)
- If , , ,
- (8)
- If , , .
- Step 1:
- Initialize the parameters of the model;
- Step 2:
- Generate variables to simulate the shock process and the impact of the shock;
- Step 3:
- Judge whether the time exceeds ;
- Step 4:
- Simulate the shock arrival process and the changes in component states;
- Step 5:
- Judge if the system reaches the mission abort threshold;
- Step 6:
- Decide whether to abort the mission;
- Step 7:
- Judge whether the system meets the failure threshold;
- Step 8:
- Obtain the result of a round simulation;
- Step 9:
- Derive the probability of mission success and the probability of system survival based on all simulation results.
3.2. Optimization Model
4. Case Study
4.1. Background
4.2. Result Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
RP | Rescue procedure |
PM | Primary mission |
MSP | Mission success probability |
SSP | System survival probability |
References
- Qiu, Q.; Cui, L.; Gao, H.; Yi, H. Optimal allocation of units in sequential probability series systems. Reliab. Eng. Syst. Saf. 2018, 169, 351–363. [Google Scholar] [CrossRef]
- Filene, R.; Daly, W. The reliability impact of mission abort strategies on redundant flight computer systems. IEEE Trans. Comput. 1974, 100, 739–743. [Google Scholar] [CrossRef]
- Levitin, G.; Xing, L.; Dai, Y. Mission abort policy in heterogeneous nonrepairable 1-out-of-N warm standby systems. IEEE Trans. Reliab. 2018, 67, 342–354. [Google Scholar] [CrossRef]
- Levitin, G.; Finkelstein, M. Optimal mission abort policy for systems in a random environment with variable shock rate. Reliab. Eng. Syst. Saf. 2018, 169, 11–17. [Google Scholar] [CrossRef]
- De Jonge, B.; Scarf, P.A. A review on maintenance optimization. Eur. J. Oper. Res. 2020, 285, 805–824. [Google Scholar] [CrossRef]
- Keizer, M.C.O.; Flapper, S.D.P.; Teunter, R.H. Condition-based maintenance policies for systems with multiple dependent components: A review. Eur. J. Oper. Res. 2017, 261, 405–420. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, H.; Parlikad, A.K.; Xie, M. Imperfect Preventive Maintenance Policies With Unpunctual Execution. IEEE Trans. Reliab. 2020, 69, 1480–1492. [Google Scholar] [CrossRef]
- Zhao, X.; Sun, J.; Qiu, Q.; Chen, K. Optimal inspection and mission abort policies for systems subject to degradation. Eur. J. Oper. Res. 2021, 292, 610–621. [Google Scholar] [CrossRef]
- Myers, A. Probability of Loss Assessment of Critical k-Out-of-n: G Systems Having a Mission Abort Policy. IEEE Trans. Reliab. 2009, 58, 694–701. [Google Scholar] [CrossRef]
- Yang, L.; Sun, Q.; Ye, Z.S. Designing mission abort strategies based on early-warning information: Application to UAV. IEEE Trans. Ind. Inform. 2019, 16, 277–287. [Google Scholar] [CrossRef]
- Qiu, Q.; Maillart, L.M.; Prokopyev, O.A.; Cui, L. Optimal condition-based mission abort decisions. IEEE Trans. Reliab. 2022, 72, 408–425. [Google Scholar] [CrossRef]
- Levitin, G.; Finkelstein, M.; Huang, H.Z. Optimal Abort Rules for Multiattempt Missions. Risk Anal. 2019, 39, 2732–2743. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Fan, Y.; Qiu, Q.; Chen, K. Multi-criteria mission abort policy for systems subject to two-stage degradation process. Eur. J. Oper. Res. 2021, 295, 233–245. [Google Scholar] [CrossRef]
- Yang, L.; Chen, Y.; Qiu, Q.; Wang, J. Risk control of mission-critical systems: Abort decision-makings integrating health and age conditions. IEEE Trans. Ind. Inform. 2022, 18, 6887–6894. [Google Scholar] [CrossRef]
- Levitin, G.; Xing, L.; Dai, Y. Mission aborting and system rescue for multi-state systems with arbitrary structure. Reliab. Eng. Syst. Saf. 2022, 219, 108225. [Google Scholar] [CrossRef]
- Zhao, X.; Chai, X.; Sun, J.; Qiu, Q. Optimal bivariate mission abort policy for systems operate in random shock environment. Reliab. Eng. Syst. Saf. 2020, 204, 107244. [Google Scholar] [CrossRef]
- Gut, A. Cumulative shock models. Adv. Appl. Probab. 1990, 22, 504–507. [Google Scholar] [CrossRef]
- Cha, J.H.; Finkelstein, M. On new classes of extreme shock models and some generalizations. J. Appl. Probab. 2011, 48, 258–270. [Google Scholar] [CrossRef]
- Shanthikumar, J.G.; Sumita, U. General shock models associated with correlated renewal sequences. J. Appl. Probab. 1983, 20, 600–614. [Google Scholar] [CrossRef]
- Eryilmaz, S. Assessment of a multi-state system under a shock model. Appl. Math. Comput. 2015, 269, 1–8. [Google Scholar] [CrossRef]
- Mallor, F.; Omey, E.; Santos, J. Asymptotic results for a run and cumulative mixed shock model. J. Math. Sci. 2006, 138, 5410–5414. [Google Scholar] [CrossRef]
- Eryilmaz, S.; Bayramoglu, K. Life behavior of δ-shock models for uniformly distributed interarrival times. Stat. Pap. 2014, 55, 841–852. [Google Scholar] [CrossRef]
- Zhao, X.; Guo, X.; Wang, X. Reliability and maintenance policies for a two-stage shock model with self-healing mechanism. Reliab. Eng. Syst. Saf. 2018, 172, 185–194. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, S.; Wang, X.; Cai, K. A multi-state shock model with mutative failure patterns. Reliab. Eng. Syst. Saf. 2018, 178, 1–11. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Y.; Jiang, T. Dynamic selective maintenance optimization for multi-state systems over a finite horizon: A deep reinforcement learning approach. Eur. J. Oper. Res. 2020, 283, 166–181. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, S.; Wang, X.; Fan, Y. Multi-state balanced systems in a shock environment. Reliab. Eng. Syst. Saf. 2020, 193, 106592. [Google Scholar] [CrossRef]
- Levitin, G.; Finkelstein, M.; Huang, H.Z. Optimal mission abort policies for multistate systems. Reliab. Eng. Syst. Saf. 2020, 193, 106671. [Google Scholar] [CrossRef]
- Levitin, G.; Finkelstein, M.; Xiang, Y. Optimal aborting rule in multi-attempt missions performed by multicomponent systems. Eur. J. Oper. Res. 2020, 283, 244–252. [Google Scholar] [CrossRef]
- Wang, J.; Wang, R.; Han, X. Degradation modeling and reliability estimation for competing risks considering system resistance. Comput. Ind. Eng. 2023, 176, 108950. [Google Scholar] [CrossRef]
0.1 | 0.11 | 0.12 | 0.13 | 0.14 | 0.15 | 0.16 | 0.17 | 0.18 | 0.19 | 0.2 | |
---|---|---|---|---|---|---|---|---|---|---|---|
4 | 4 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chai, X.; Chen, B.; Zhao, X. Optimal Mission Abort Decisions for Multi-Component Systems Considering Multiple Abort Criteria. Mathematics 2023, 11, 4922. https://doi.org/10.3390/math11244922
Chai X, Chen B, Zhao X. Optimal Mission Abort Decisions for Multi-Component Systems Considering Multiple Abort Criteria. Mathematics. 2023; 11(24):4922. https://doi.org/10.3390/math11244922
Chicago/Turabian StyleChai, Xiaofei, Boyu Chen, and Xian Zhao. 2023. "Optimal Mission Abort Decisions for Multi-Component Systems Considering Multiple Abort Criteria" Mathematics 11, no. 24: 4922. https://doi.org/10.3390/math11244922
APA StyleChai, X., Chen, B., & Zhao, X. (2023). Optimal Mission Abort Decisions for Multi-Component Systems Considering Multiple Abort Criteria. Mathematics, 11(24), 4922. https://doi.org/10.3390/math11244922