A Robust Flexible Optimization Model for 3D-Layout of Interior Equipment in a Multi-Floor Satellite
Abstract
:1. Introduction
1.1. Literature Review
No | References | Allocation Phase | Solving Method for Non-Overlap Constraints | Solving Method for Other Mechanical Constraints (Moment of Inertia, Center of Gravity, …) | Problem Dimensions | |||
---|---|---|---|---|---|---|---|---|
Ex. 1 | Ex. 2 | |||||||
Layers–Components | Component Shapes | Layers–Components | Component Shapes | |||||
1 | [11] | equally allocated | analytic geometrical and heuristics methods | dynamical equilibrium constraints | 2–26 | Cuboid and Cylinder | ||
2 | [12] | centripetal balancing method | GA to reach feasible solution near optimality, plus ACO to adjust the situation of each component | centripetal balancing method | 4–53 | Cuboid and Cylinder | ||
3 | [13] | predetermined | Heuristic artificial individuals adding rules to the initial population of GA | human-guided GA | 4–51 | Cuboid and Cylinder | ||
4 | [14] | equally allocated | differential evolution (DE) and local search for cylindrical components | combined GA and PSO | 2–14 | Cylinder | ||
5 | [15] | predetermined | Human–Algorithm knowledge based on the support of GA | 4–51 | Cuboid and Cylinder | |||
6 | [1] | Hopfield neural network (HNN) | Geometrical Analysis of Compaction and separation algorithms for nonconvex polygons | hybrid GA and PSO | 4–32 | Cuboid and Cylinder | 4–60 | Cuboid and Cylinder |
7 | [16] | predetermined | hybrid knowledge-based method on the basis of human–computer cooperative GA | 4–53 | Cuboid and Cylinder | |||
8 | [17] | predetermined | heuristic algorithm of oriented bounding box trees | cooperative co-evolutionary scatter search | 1–9 | Cylinder | 4–60 | Cuboid and Cylinder |
9 | [18] | predetermined | Human–Computer Cooperative Coevolutionary Genetic Algorithm (HCCGA) | 3–45 | Cuboid and Cylinder | |||
10 | [19] | - | Analytic Geometrical Method for two circular or two rectangular components | ACO | 1–40 | Rectangle | ||
11 | [20] | predetermined | Dual-System Variable-Grain Cooperative Coevolutionary Genetic Algorithm (DVGCCGA) to avoid “premature convergence” problem | 4–60 | Cuboid and Cylinder | 2–18 | Cylinder | |
12 | [21] | - | two quasi-physical optimization methods for solving the circle packing problem | 1–50 | Circle | |||
13 | [22] | - | VBA in Excel and SOLIDWORKS | Satellite Cabin-8 | Cuboid | |||
14 | [23] | - | MATLAB, NSGA and SOLIDWORKS | a multi-objective methodology by CAD | Satellite Cabin-27 | Cuboid and Cylinder | ||
15 | [24] | predetermined | Finite Circle Method (FCM) | simulated annealing (SA) optimization and quasi-Newton method | 2–18 | Cylinder | 3–17 | Cuboid and Cylinder |
16 | [25] | predetermined | projection and no-fit polygon methods | local search and heuristics | 4–51 | Cuboid and Cylinder | 4–53 | Cuboid and Cylinder |
17 | [26] | - | NSGA and SOLIDWORKS | Satellite Cabin-15 | Cuboid and Cylinder | |||
18 | [27] | Genetic Algorithm (GA) | heuristic positioning rule | a combined method of ACO and PSO | 4–60 | Cuboid and Cylinder | ||
19 | [28] | predetermined | Hybrid GA and gradient-based Sequential Quadratic Programming (SQP) considering natural frequency and attitude control constraints | 4–53 | Cuboid and Cylinder | |||
20 | [29] | - | Hybrid GA and gradient-based Sequential Quadratic Programming (SQP) for cylindrical and spherical shapes | 1–9 | Cylinder | |||
21 | [30] | predetermined | Analytic Geometrical Method | Dual-System Cooperative co-evolutionary detecting Particle Swarm Optimization | 4–60 | Cuboid and Cylinder | 2–29 | Cuboid and Cylinder |
22 | [31] | - | developed PSO | 1–40 | Circle | |||
23 | [32] | Genetic Algorithm (GA) and Tabu Search (TS) | differential evolution (DE) | 2–19 | Cuboid and Cylinder | |||
24 | [33] | - | the Optimal Latin Hypercube (OLH) method | Nondominated Sorting Genetic Algorithm (NSGA) | Satellite Cabin-15 | Cuboid and Cylinder | ||
25 | [34] | equally allocated | Finite Circle Method (FCM) | developed PSO | 2–18 | Cylinder | 2–16 | Cuboid and Cylinder |
26 | [35] | equally allocated | Hybrid Differential evolution (DE) and gradient-based Sequential Quadratic Programming (SQP) for cylindrical shapes | 2–14 | Cylinder | 2–40 | Cylinder | |
27 | [36] | a heuristic algorithm based on stepwise regression | a pseudo-algorithm employing differential evolution (DE) | 4–60 | Cuboid and Cylinder | |||
28 | [37] | predetermined | Developed PSO and Phi-Function Method/FCM | 4–60 | Cuboid and Cylinder | 2–16 | Cuboid and Cylinder | |
29 | [38] | equally allocated | Improved Niching Method (developed GA for cylindrical components) | 2–14 | Cylinder |
1.2. Mathematical Modeling
- Three-dimensional layout—Difficulties in placing satellite equipment arise across three dimensions, so the Z axis is considered the main part;
- Multi-layer layout—The multiple layers of a satellite represent another crucial consideration in the installation of satellite equipment. In relation to this, the model must allocate equipment to all plates or layers;
- Non-interference and overlap constraints—No interference occurs between any pieces of the components;
- Equilibrium constraint—The equilibrium error of the system should be as small as possible;
- Thermal constraints—The performance of electronic components may be directly impacted by the thermal environment. As a result, the system’s equipment is generally more efficient and reliable when heat flow is distributed uniformly.
- From a thermal point of view, each piece of equipment has an effective area that can affect the performance of other equipment. Therefore, reducing the interaction space is essential to improving the uniformity of the thermal field in the satellite. In determining the thermal effects of equipment, it is assumed that some components produce a thermal radius that forms a uniform circle around the equipment. For this reason, no intersection between virtual thermal radii between equipment is allowed;
- Obnoxious equipment limitations—Another constraint must be taken into account for some equipment types with a high amount of heat radiation, or “hot parts”, such as batteries, radio transmitters, and photo transmitters, which must be positioned at as great a distance from one another as possible in the satellite space. In other words, there needs to be limitations placed on the presence of this hot equipment on each floor of the satellite;
- Static stability constraint—The center of gravity offset of the system should be as small as possible.
1.2.1. Model Development
Model Parameters
- i—indicator of the equipment;
- j—index of the number of layers (j = 1, 2, 3, 4)
- —layer j of the satellite;
- —the cross-sectional length of the cuboid equipment i;
- —the cross-sectional width of the cuboid equipment i;
- —radius of the cross-sectional area of the cylindrical equipment i;
- —the height of the equipment i;
- —the mass of equipment i;
- —the angle between the positive direction of the x-axis and the horizontal edge of the cuboid equipment i;
- c—number of pieces of cuboid equipment;
- n—total number of equipment;
- —the number of equipment pieces located at layer j;
- —a segment of the radius of the hypothetical circumferential circle of a cross-section of cuboid equipment i;
- —optimistic value of a triangular fuzzy number for ;
- —pessimistic value of a triangular fuzzy number for ;
- —a triangular fuzzy number for ;
- —the cost of the fine for each unit of violation of the soft limit;
- —expected coordinates in the direction of the x-axis of the satellite’s center of gravity;
- —expected coordinates in the y-axis direction of the satellite’s center of gravity;
- —expected coordinates in the direction of the z-axis of the satellite’s center of gravity;
- Jxi—moment of inertia of equipment in the direction of the x-axis;
- Jyi—moment of inertia of equipment in the direction of the y-axis;
- Jzi—moment of inertia of equipment in the direction of the z-axis;
- —permissible error of deviation in the coordinates of the real center of gravity of the satellite from the expected value in the direction of the x-axis;
- —permissible error of deviation in the coordinates of the real center of gravity of the satellite from the expected value in the direction of the y-axis;
- —permissible error of deviation in the coordinates of the real center of gravity of the satellite from the expected value in the direction of the z-axis;
- —permissible error of deviation in the angle between the mass moment of inertia of the satellite in the direction of the x-axis from the axis of the coordinate of the satellite in the direction of the ox axis;
- —permissible error of deviation in the angle between the mass moment of inertia of the satellite in the direction of the y-axis and the axis of the satellite coordinates in the direction of the oy axis;
- —permissible error of deviation in the angle between the mass moment of inertia of the satellite in the direction of the z-axis from the coordinate axis of the satellite in the direction of the z-axis.
Decision Variables of the Model
- —the coordinates of equipment i in the direction of the x-axis;
- —the coordinates of equipment i in the direction of the y-axis;
- —the coordinates of equipment i in the direction of the z-axis;
- —coordinates of the center of gravity of the satellite in the direction of the x-axis;
- —the coordinates of the center of gravity of the satellite in the direction of the y-axis;
- —coordinates of the center of gravity of the satellite in the direction of the z-axis;
- —the angle between the mass moment of inertia of the satellite in the direction of the x-axis and the axis of the satellite coordinates in the direction of the x-axis;
- —the angle between the mass moment of inertia of the satellite in the direction of the y-axis and the coordinate axis of the satellite in the direction of the y-axis;
- —angle between the mass moment of inertia of the satellite in the direction of the z-axis and the axis of coordinates of the satellite in the direction of the oz axis;
- —the mass moment of inertia of the satellite in the direction of the x-axis;
- —the mass moment of inertia of the satellite in the direction of the y-axis;
- —the mass moment of inertia of the satellite in the direction of the z-axis;
- —product moment of inertia used to calculate satellite imbalance in the direction of the x and y plane;
- —product moment of inertia used to calculate satellite imbalance in the x and z plane directions;
- —product moment of inertia used to calculate satellite imbalance in the y and z plane directions;
- —the final radius of equipment i after performing the uncertainty calculations;
- —the minimum level of satisfaction in flexible constraints;
- —the space available on each layer;
- —the space occupied on each layer.
- 1.
- Oxyz reference coordinate system
- O—the center of this coordinate system is located on the geometric center of the lower plate of the satellite;
- z—the longitudinal symmetric axis of the satellite, which is positive in the upward direction;
- x—the axis perpendicular to the z-axis on the bottom plate of the satellite;
- y—the axis perpendicular to the z-axis on the bottom plate of the satellite and at a 90-degree angle to the x-axis.
- 2.
- Satellite coordinate system
- —the center of this coordinate system is located on the real center of gravity of the satellite.
- —the longitudinal symmetric axis of the satellite that coincides with or is parallel to the z-axis.
- —these two axes are parallel to the x- and y-axes, respectively.
- 3.
- The local coordinate system of the equipment
- —the center of this coordinate system is located on the center of gravity of the equipment;
- —the longitudinal symmetric axis of the equipment, which is parallel to the z-axis.
- —these two axes form an angle αi parallel to the x- and y-axes, respectively.
Optimization Model
2. Problem Statement and Implementation
2.1. Allocation and Layout
2.1.1. Allocation of Components between Layers
Heuristic Method to Allocate Equipment to Different Layers
2.1.2. Layout of Equipment in Each Layer
2.2. Robust Flexible Programming Model (RFPM)
3. Results and Discussion
- -
- Case Study 1: Investigating the work of [12]
- -
- Case Study 2: Investigating the work of [1]
- -
- Case Study 3: investigating the work of [15]
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, B.; Teng, H.F.; Shi, Y.J. Layout optimization of satellite module using soft computing techniques. Appl. Soft Comput. 2008, 8, 507–521. [Google Scholar] [CrossRef]
- Ahmadi, A.; Pishvaee, M.S.; Akbari Jokar, M.R. A survey on multi-floor facility layout problems. Comput. Ind. Eng. 2017, 107, 158–170. [Google Scholar] [CrossRef]
- Ferebee, M.J., Jr.; Powers, R.B. Optimization of Payload Mass Placement in a Dual; Keel Space Station, NASA, Langley Research Centre: Hampton, VA, USA, 1987.
- Ferebee, M.J.; Allen, C.L. Optimization of payload placement on arbitrary spacecraft. J. Spacecr. Rocket. 1991, 28, 612–614. [Google Scholar] [CrossRef]
- Rocco, E.M.; Souza, M.; Prado, A. Multi-objective optimization applied to satellite constellations I: Formulation of the smallest loss criterion. In Proceedings of the 54th International Astronautical Congress (IAC’03), Bremen, Germany, 29 September–3 October 2003. [Google Scholar]
- Cagan, J.; Shimada, K.; Yin, S. A survey of computational approaches to three-dimensional layout problems. Comput.-Aided Des. 2002, 34, 597–611. [Google Scholar] [CrossRef]
- Jang, S. A study on three-dimensional layout design by the simulated annealing method. J. Mech. Sci. Technol. 2008, 22, 2016–2023. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Wang, Y.S.; Teng, H.F.; Shi, Y.J. Parallel Dual-system Cooperative Co-Evolutionary Differential Evolution Algorithm with Human-computer Cooperation for Multi-Cabin Satellite Layout Optimization. J. Converg. Inf. Technol. 2013, 2013, 711–720. [Google Scholar]
- Zhang, Z.H.; Zhong, C.; Xu, Z.Z.; Teng, H.F. A Non-Dominated Sorting Cooperative Co-Evolutionary Differential Evolution Algorithm for Multi-Objective Layout Optimization. IEEE Access 2017, 5, 14468–14477. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Sun, X.; Hou, L.; Chen, W.; Shi, Y.; Cao, X. A Cooperative Co-Evolutionary Multi-Agent System for Multi-Objective Layout Optimization of Satellite Module. In Proceedings of the 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Banff, AB, Canada, 5–8 October 2017. [Google Scholar]
- Teng, H.F.; Sun, S.L.; Liu, D.Q.; Li, Y.Z. Layout optimization for the objects located within a rotating vessel—A three-dimensional packing problem with behavioural constraints. Comput. Oper. Res. 2001, 28, 521–535. [Google Scholar] [CrossRef]
- Sun, Z.G.; Teng, H.F. Optimal layout design of a satellite module. Eng. Opt. 2003, 35, 513–529. [Google Scholar] [CrossRef]
- Huo, J.; Shi, Y.; Teng, H.F. Layout design of a satellite module using a human-guided genetic algorithm. In Proceedings of the 2006 International Conference on Computational Intelligence and Security, Guangzhou, China, 3–6 November 2006; pp. 230–235. [Google Scholar]
- Chen, W.; Shi, Y.J.; Teng, H.F. An improved differential evolution with local search for constrained layout optimization of satellite module. Int. Conf. Intell. Comput. 2008, 5227, 742–749. [Google Scholar]
- Liu, Z.; Teng, H. Human–computer cooperative layout design method and its application. Comput. Ind. Eng. 2008, 55, 735–757. [Google Scholar] [CrossRef]
- Huo, J.Z.; Teng, H.F. Optimal layout design of a satellite module using a coevolutionary method with heuristic rules. J. Aerosp. Eng. 2009, 22, 101–111. [Google Scholar] [CrossRef]
- Wang, Y.S.; Teng, H.F.; Shi, Y.J. Cooperative co-evolutionary scatter search for satellite module layout design. Eng. Comput. 2009, 26, 761–785. [Google Scholar] [CrossRef]
- Huo, J.Z.; Teng, H.F.; Sun, W.; Chen, J. Human-computer co-operative co-evolutionary method and its application to a satellite module layout design problem. Aeronaut. J. 2010, 114, 209–223. [Google Scholar] [CrossRef]
- Xu, Y.C.; Dong, F.M.; Liu, Y.; Xiao, R.B.; Amos, M. Ant colony algorithm for the weighted item layout optimization problem. Comput. Sci. 2010, 3, 221–232. [Google Scholar]
- Teng, H.F.; Chen, Y.; Zeng, W.; Shi, Y.J.; Hu, Q.H. A dual-system variable-grain cooperative Co-evolutionary algorithm: Satellite-module layout design. IEEE Trans. Evol. Comput. 2010, 14, 438–455. [Google Scholar] [CrossRef]
- He, K.; Mo, D.; Ye, T.; Huang, W. A coarse-to-fine quasi-physical optimization method for solving the circle packing problem with equilibrium constraints. Comput. Ind. Eng. 2013, 66, 1049–1060. [Google Scholar] [CrossRef]
- Lau, V.; de Sousa, F.L.; Galski, R.L.; Rocco, E.M.; Becceneri, J.C.; Santos, W.A.; Sandri, S.A. A multidisciplinary design optimization tool for spacecraft equipment layout conception. J. Aerosp. Technol. Manag. 2014, 6, 431–446. [Google Scholar] [CrossRef]
- Cuco, A.P.C.; Sousa, F.L.D.; Silva Neto, A.J. A multi-objective methodology for spacecraft equipment layouts. Optim. Eng. 2015, 16, 165–181. [Google Scholar] [CrossRef]
- Fakoor, M.; Taghinezhad, M. Layout and configuration design for a satellite with variable mass using a hybrid optimization method. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2016, 230, 360–377. [Google Scholar] [CrossRef]
- Liu, J.; Hao, L.; Li, G.; Xue, Y.; Liu, Z.; Huang, J. Multi-objective layout optimization of a satellite module using the Wang-Landau sampling method with local search. Front. Inf. Technol. Electron. Eng. 2016, 17, 527–542. [Google Scholar] [CrossRef]
- Fakoor, M.; Ghoreishi, S.M.N.; Sabaghzadeh, H. Spacecraft Component Adaptive Layout Environment (SCALE): An efficient optimization tool. Adv. Space Res. 2016, 58, 1654–1670. [Google Scholar] [CrossRef]
- Li, Z.; Zeng, Y.; Wang, Y.; Wang, L.; Song, B. A hybrid multi-mechanism optimization approach for the payload packing design of a satellite module. Appl. Soft Comput. 2016, 45, 11–26. [Google Scholar] [CrossRef]
- Fakoor, M.; Mohammad Zadeh, P.; Momeni Eskandari, H. Developing an optimal layout design of a satellite system by considering natural frequency and attitude control constraints. Aerosp. Sci. Technol. 2017, 71, 172–188. [Google Scholar] [CrossRef]
- Shafaee, M.; Mohammadzadeh, P.; Elkaie, A.; Abbasi, S. Layout design optimization of a space propulsion system using a hybrid optimization algorithm. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2017, 231, 338–349. [Google Scholar] [CrossRef]
- Cui, F.Z.; Xu, Z.Z.; Wang, X.K.; Zhong, C.Q.; Teng, H.F. A dual-system cooperative co-evolutionary algorithm for satellite equipment layout optimization. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2018, 232, 2432–2457. [Google Scholar] [CrossRef]
- Qin, Z.; Liang, Y.G. Layout Optimization of Satellite Cabin Considering Space Debris Impact Risk. J. Spacecr. Rocket. 2017, 54, 1–5. [Google Scholar]
- Xu, Z.Z.; Zhong, C.Q.; Teng, H.F. Assignment and layout integration optimization for simplified satellite re-entry module component layout. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2019, 233, 4287–7301. [Google Scholar] [CrossRef]
- Qin, Z.; Liang, Y.; Zhou, J. An optimization tool for satellite equipment layout. Adv. Space Res. 2018, 61, 223–234. [Google Scholar] [CrossRef]
- Chen, X.; Yao, W.; Zhao, Y.; Chen, X.; Zheng, X. A practical satellite layout optimization design approach based on enhanced finite-circle method. Struct. Multidiscip. Optim. 2018, 58, 2635–2653. [Google Scholar] [CrossRef]
- Chen, X.; Yao, W.; Zhao, Y.; Chen, X.; Zhang, J.; Luo, Y. The hybrid algorithms are based on differential evolution for satellite layout optimization design. In Proceedings of the 2018 IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil, 8–13 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–8. [Google Scholar] [CrossRef]
- Zhong, C.Q.; Xu, Z.Z.; Teng, H.F. Multi-module satellite component assignment and layout optimization. Appl. Soft Comput. 2019, 75, 148–161. [Google Scholar] [CrossRef]
- Chen, X.; Yao, W.; Zhao, Y.; Chen, X.; Liu, W. A novel satellite layout optimization design method based on phi-function. Acta Astronaut. 2021, 180, 560–574. [Google Scholar] [CrossRef]
- Sun, J.; Chen, X.; Zhang, J.; Yao, W. A niching cross-entropy method for multimodal satellite layout optimization design. Complex Intell. Syst. 2021, 7, 1971–1989. [Google Scholar] [CrossRef]
- Pühlhofer, T.; Baier, H. Approaches for further rationalisation in mechanical architecture and structural design of satellites. In Proceedings of the 54th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law, Bremen, Germany, 29 September–3 October 2003. [Google Scholar]
- Cuco, A. Development of a Multi-Objective Methodology for Layout Optimization of Equipment in Artificial Satellites. Master’s Thesis, Postgraduate Course in Space Technology and Engineering, National Institute for Space Research (INPE), Sao Paulo, Brazil, 2011. [Google Scholar]
- Pühlhofer, T.; Langer, H.; Baier, H.; Huber, M.B.T. Multi-criteria and Discrete Configuration and Design Optimization with Applications for Satellites. In Proceedings of the 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Albany, NY, USA, 30 August–1 September 2004. [Google Scholar]
- Albano, A.; Sapuppo, G. Optimal allocation of two-dimensional irregular shapes using heuristic search methods. IEEE Trans. Syst. Man Cybern. 1980, 10, 242–248. [Google Scholar] [CrossRef]
- Li, Z.; Milenkovic, V. Compaction and separation algorithms for nonconvex polygons and their applications. Eur. J. Oper. Res. 1995, 84, 539–561. [Google Scholar] [CrossRef]
- Chen, S.; Xuan, M.; Xin, J.; Liu, Y.; Gu, S.; Li, J.; Zhang, L. Design and experiment of dual micro-vibration isolation system for optical satellite flywheel. Int. J. Mech. Sci. 2020, 179, 105592. [Google Scholar] [CrossRef]
- Chernov, N.; Stoyan, Y.; Romanova, T.; Pankratov, A. Phi-Functions for 2D Objects Formed by Line Segments and Circular Arcs. Adv. Oper. Res. 2012, 2012, 346358. [Google Scholar] [CrossRef]
- Galbraith, J.R. Designing Complex Organizations; Addison-Wesley Longman Publishing Co., Inc.: Reading, MA, USA, 1973. [Google Scholar]
- Mula, J.; Poler, R.; Garcia-Sabater, J.P. Material requirement planning with fuzzy constraints and fuzzy coefficients. Fuzzy Sets Syst. 2007, 158, 783–793. [Google Scholar] [CrossRef]
- Klibi, W.; Martel, A.; Guitouni, A. The design of robust value-creating supply chain networks: A critical review. Eur. J. Oper. Res. 2010, 203, 283–293. [Google Scholar] [CrossRef]
- Pishvaee, M.S.; Fazli Khalaf, M. Novel robust fuzzy mathematical programming methods. Appl. Math. Model. 2016, 40, 407–418. [Google Scholar] [CrossRef]
- Mulvey, J.; Vanderbei, R.; Zenios, S. Robust optimization of large-scale systems. Oper. Res. 1995, 43, 264–281. [Google Scholar] [CrossRef]
- Leung, S.C.H.; Tsang, S.O.S.; Ng, W.L.; Wu, Y. A robust optimization model for multi-site production planning problem in an uncertain environment. Eur. J. Oper. Res. 2007, 181, 224–238. [Google Scholar] [CrossRef]
- Yu, C.S.; Li, H.L. A robust optimization model for stochastic logistic problems. Int. J. Prod. Econ. 2000, 64, 385–397. [Google Scholar] [CrossRef]
- Ben-Tal, A.; Nemirovski, A. Robust convex optimization. Math. Oper. Res. 1998, 2, 769–805. [Google Scholar] [CrossRef]
- Ben-Tal, A.; Nemirovski, A. Robust solutions of linear programming problems contaminated with uncertain data. Math. Program. 2000, 88, 411–424. [Google Scholar] [CrossRef]
- El-Ghaoui, L.; Oustry, F.; Lebret, H. Robust solutions to uncertain semidefinite programs. SIAM J. Optim. 1998, 9, 33–52. [Google Scholar] [CrossRef]
- Pishvaee, M.S.; Razmi, J.; Torabi, S.A. Robust possibilistic programming for socially responsible supply chain network design: A new approach. Fuzzy Sets Syst. 2012, 206, 1–20. [Google Scholar] [CrossRef]
- Li, G.Q. Research on the Theory and Methods of Layout Design and Their Applications; Dalian University of Technology: Dalian, China, 2003. (In Chinese) [Google Scholar]
- Zanjirani Farahani, R.; Hekmatfar, M. Facilities Location: Concepts, Models and Applications; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Hengeveld, D.W.; Braun, J.E.; Groll, E.A.; Williams, A.D. Optimal Placement of Electronic Components to Minimize heat flux nonuniformities. J. Spacecr. Rocket. 2011, 48, 556–563. [Google Scholar] [CrossRef]
- Hengeveld, D.W.; Braun, J.E.; Groll, E.A.; Williams, A.D. Optimal Distribution of Electronic Components to Balance Environmental Fluxes. J. Spacecr. Rocket. 2011, 48, 694–697. [Google Scholar] [CrossRef]
References | Moment of Inertia | |||
---|---|---|---|---|
Ixx (kg.m2) | Iyy (kg.m2) | Izz (kg.m2) | f (kg.m2) | |
[12] | 261 | 268.5 | 225.8 | 755.3 |
[16] | 268.4 | 271.1 | 232.7 | 772.2 |
[25]—Ex. 2 | 264.4 | 261.5 | 222.2 | 748.1 |
[28] | 270 | 265.7 | 231.9 | 767.7 |
No. | Ixx (kg.m2) | Iyy (kg.m2) | Izz (kg.m2) | f (kg.m2) | No. | Ixx (kg.m2) | Iyy (kg.m2) | Izz (kg.m2) | f (kg.m2) |
---|---|---|---|---|---|---|---|---|---|
1 | 256.3 | 254.5 | 220.1 | 730.8 | 14 | 255 | 256.4 | 220.3 | 731.8 |
2 | 257.6 | 257.2 | 232.9 | 747.6 | 15 | 254.2 | 257.6 | 220.4 | 732.2 |
3 | 252.9 | 254.1 | 224.5 | 731.5 | 16 | 256.2 | 255.1 | 219.3 | 730.6 |
4 | 255.5 | 257.9 | 224.1 | 737.5 | 17 | 256.3 | 255.7 | 219.7 | 731.7 |
5 | 254.7 | 257.9 | 226.9 | 739.6 | 18 | 257.3 | 256.3 | 220.9 | 734.5 |
6 | 253.9 | 256.5 | 224.2 | 734.6 | 19 | 256.5 | 258.7 | 222.1 | 737.4 |
7 | 254.5 | 254.9 | 220.9 | 730.3 | 20 | 256.4 | 257.4 | 224.7 | 738.5 |
8 | 255.7 | 253.7 | 220.3 | 729.6 | 21 | 256.9 | 257.6 | 220.3 | 734.8 |
9 | 255.1 | 253.8 | 219.2 | 728.1 | 22 | 256.1 | 257.8 | 219.1 | 733 |
10 | 255.2 | 255.9 | 221.2 | 732.3 | 23 | 259.6 | 261.1 | 225.4 | 746.2 |
11 | 256.5 | 259.7 | 226.2 | 742.4 | 24 | 259.5 | 256.2 | 219.6 | 735.3 |
12 | 260.8 | 255.1 | 227.6 | 743.5 | 25 | 261 | 262.5 | 226.9 | 750.4 |
13 | 255.3 | 255.9 | 220.4 | 731.6 |
No | Dimenssions (mm) | Mass (kg) | Optimal Coordinates | Θi (rad) | Layer | No | Dimenssions (mm) | Mass (kg) | Optimal Coordinates | Layer | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ai/ri | bi | hi | mi | xi (mm) | yi (mm) | ri | hi | mi | xi (mm) | yi (mm) | |||||
1 | 150 | 250 | 200 | 22.50 | 329.47 | 64.86 | π/2 | 28 | 100 | 240 | 26.62 | −1.58 | −288.80 | ||
2 | 150 | 250 | 200 | 22.50 | 177.47 | 82.86 | π/2 | 29 | 100 | 240 | 26.62 | −193.90 | 49.01 | ||
3 | 150 | 250 | 200 | 22.50 | 174.13 | −285.90 | π/2 | 30 | 100 | 180 | 16.97 | −175.93 | −95.12 | ||
4 | 160 | 250 | 200 | 24.00 | 180.21 | −33.62 | π/2 | 31 | 100 | 180 | 16.97 | 189.11 | 65.10 | ||
5 | 160 | 250 | 200 | 24.00 | 341.89 | −35.46 | π/2 | 32 | 100 | 180 | 16.97 | 19.82 | 199.02 | ||
6 | 250 | 180 | 200 | 27.00 | 0.07 | 391.00 | 33 | 100 | 180 | 16.97 | −164.75 | 113.40 | |||
7 | 200 | 200 | 250 | 30.00 | −0.30 | 200.34 | 34 | 100 | 180 | 16.97 | 183.52 | −134.83 | |||
8 | 200 | 200 | 250 | 30.00 | 200.37 | 193.88 | 35 | 100 | 200 | 18.85 | 211.87 | −332.71 | |||
9 | 200 | 200 | 250 | 30.00 | −229.55 | 251.01 | π/2 | 36 | 100 | 200 | 18.85 | 333.30 | −164.84 | ||
10 | 150 | 150 | 250 | 16.88 | 118.90 | 302.23 | π/2 | 37 | 100 | 200 | 18.85 | −61.62 | −190.27 | ||
11 | 150 | 150 | 250 | 16.88 | −153.95 | 305.58 | π/2 | 38 | 100 | 200 | 18.85 | 133.97 | −148.50 | ||
12 | 150 | 150 | 250 | 16.88 | 270.27 | 283.38 | 39 | 75 | 200 | 10.60 | −324.88 | −7.36 | |||
13 | 100 | 150 | 200 | 9.00 | −250.46 | 143.29 | π/2 | 40 | 75 | 200 | 10.60 | −304.87 | 293.12 | ||
14 | 100 | 150 | 200 | 9.00 | −149.32 | 150.71 | π/2 | 41 | 75 | 200 | 10.60 | −174.88 | −6.50 | ||
15 | 100 | 100 | 150 | 4.50 | 98.32 | 140.94 | 42 | 75 | 200 | 10.60 | −230.85 | −145.67 | |||
16 | 100 | 100 | 150 | 4.50 | 153.65 | 36.60 | 43 | 50 | 200 | 4.71 | −359.25 | 112.82 | |||
17 | 200 | 185 | 150 | 16.65 | 228.81 | −111.59 | 44 | 50 | 200 | 4.71 | 67.92 | −283.18 | |||
18 | 185 | 200 | 150 | 16.65 | −86.89 | −200.66 | π/2 | 45 | 50 | 200 | 4.71 | −16.60 | −336.62 | ||
19 | 200 | 120 | 200 | 14.40 | 2.14 | 164.48 | 46 | 50 | 200 | 4.71 | −191.98 | −264.47 | |||
20 | 120 | 200 | 200 | 14.40 | −18.22 | 325.14 | π/2 | 47 | 50 | 200 | 4.71 | −116.38 | −329.92 | ||
21 | 160 | 100 | 120 | 1.92 | −261.47 | −133.58 | 48 | 50 | 200 | 4.71 | −354.70 | −128.75 | |||
22 | 160 | 100 | 120 | 1.92 | −35.20 | 159.98 | 49 | 60 | 150 | 5.09 | 67.08 | −148.29 | |||
23 | 100 | 160 | 120 | 1.92 | −165.12 | 99.19 | π/2 | 50 | 60 | 150 | 5.09 | 0.03 | 273.81 | ||
24 | 160 | 100 | 120 | 1.92 | −186.27 | −30.91 | 51 | 45 | 160 | 3.05 | −168.36 | 223.99 | |||
25 | 100 | 240 | 26.62 | −333.30 | −94.41 | 52 | 45 | 160 | 3.05 | −261.07 | 68.28 | ||||
26 | 100 | 240 | 26.62 | −139.40 | −143.42 | 53 | 100 | 180 | 16.97 | −5.59 | −199.92 | ||||
27 | 100 | 240 | 26.62 | −200.18 | −334.88 |
References | Moment of Inertia | |||
---|---|---|---|---|
Ixx (kg.m2) | Iyy (kg.m2) | Izz (kg.m2) | f (kg.m2) | |
[1] | 228.7 | 232.9 | 185.1 | 646.7 |
[17] | 227.8 | 226 | 178.2 | 632 |
[20]—Ex. 2 | 228.3 | 225.8 | 171.4 | 625.5 |
[30] | 223.5 | 220.7 | 168.4 | 612.6 |
[36] | 218.2 | 215.6 | 166.2 | 600 |
[37]—Ex. 3 | 224.1 | 228.1 | 179.7 | 631.9 |
No. | Ixx (kg.m2) | Iyy (kg.m2) | Izz (kg.m2) | f (kg.m2) | No. | Ixx (kg.m2) | Iyy (kg.m2) | Izz (kg.m2) | f (kg.m2) |
---|---|---|---|---|---|---|---|---|---|
1 | 204.8 | 208.9 | 164. 8 | 578.5 | 14 | 207.9 | 209.3 | 171.2 | 588.5 |
2 | 206.8 | 208.3 | 164.7 | 579.8 | 15 | 208.3 | 210.9 | 169.6 | 588.8 |
3 | 207.7 | 206.2 | 166.9 | 580.8 | 16 | 211.3 | 208.3 | 169.7 | 589.3 |
4 | 210.8 | 199.9 | 170.2 | 580.9 | 17 | 209.1 | 209.9 | 172.8 | 591.8 |
5 | 206.6 | 208.8 | 167.2 | 582.4 | 18 | 209 | 212.6 | 170.6 | 592.2 |
6 | 210.9 | 207.1 | 165.8 | 583.7 | 19 | 211.6 | 210.1 | 171.2 | 592.9 |
7 | 207.9 | 207.9 | 168.2 | 584 | 20 | 209.7 | 211.3 | 173.2 | 594.2 |
8 | 209.8 | 209.2 | 165.1 | 584 | 21 | 210.8 | 210.1 | 174.1 | 594.9 |
9 | 209.8 | 209.45 | 166.3 | 585.5 | 22 | 210.9 | 211.4 | 173.1 | 595.5 |
10 | 208.2 | 207.9 | 169.8 | 586 | 23 | 211.3 | 211.1 | 175.3 | 597.7 |
11 | 207.9 | 208.2 | 170.8 | 586.9 | 24 | 211.9 | 208.4 | 177.7 | 598.1 |
12 | 208.8 | 208.7 | 169.6 | 587.1 | 25 | 212.4 | 211.5 | 176.5 | 600.4 |
13 | 208.4 | 207.1 | 171.5 | 587.1 |
No. | Dimenssions (mm) | Mass (kg) | Optimal Coordinates | Layer | No. | Dimenssions (mm) | Mass (kg) | Optimal Coordinates | θi (rad) | Layer | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ri | hi | mi | xi (mm) | yi (mm) | ai/ri | bi | hi | mi | xi (mm) | yi (mm) | |||||
1 | 100 | 150 | 23.56 | −157.9 | 323 | 31 | 60 | 150 | 5.09 | 152.1 | −200.2 | ||||
2 | 100 | 160 | 23.56 | −162.3 | 119.6 | 32 | 60 | 150 | 5.09 | 254.4 | −51.7 | ||||
3 | 100 | 160 | 23.56 | −334 | 221 | 33 | 60 | 250 | 5.09 | 214.8 | 350.9 | ||||
4 | 100 | 200 | 23.56 | −184.4 | −86.5 | 34 | 60 | 250 | 5.09 | −39.9 | 294.2 | ||||
5 | 100 | 200 | 23.56 | −356 | 19.6 | 35 | 60 | 250 | 5.09 | 84.6 | 322.1 | ||||
6 | 100 | 250 | 23.56 | −342.8 | −206 | 36 | 60 | 250 | 5.09 | 174.5 | 240.1 | ||||
7 | 100 | 120 | 23.56 | −13.6 | −200.3 | 37 | 250 | 150 | 150 | 28.13 | −70.6 | −376.2 | |||
8 | 100 | 120 | 23.56 | 175.1 | −123.6 | 38 | 250 | 150 | 150 | 28.13 | 170.3 | −22.3 | π/2 | ||
9 | 100 | 200 | 18.85 | −323 | 149.9 | 39 | 250 | 150 | 150 | 28.13 | 277.3 | 229.5 | π/2 | ||
10 | 100 | 150 | 18.85 | 182.6 | 81.6 | 40 | 160 | 120 | 250 | 28.13 | 138 | −365.7 | |||
11 | 100 | 150 | 18.85 | 20.6 | 198.9 | 41 | 250 | 150 | 250 | 28.13 | 68.6 | 184.1 | |||
12 | 100 | 160 | 15.08 | −123.2 | 157.6 | 42 | 250 | 150 | 250 | 28.13 | 70.5 | 341.3 | |||
13 | 100 | 160 | 15.08 | 183.1 | 80.4 | 43 | 250 | 150 | 250 | 28.13 | 22.3 | −223.5 | |||
14 | 100 | 150 | 15.08 | −162 | 117.3 | 44 | 250 | 150 | 250 | 28.13 | 274.5 | −222.5 | |||
15 | 75 | 160 | 8.48 | −171.1 | 325.9 | 45 | 250 | 150 | 250 | 28.13 | 323.45 | −22.2 | π/2 | ||
16 | 75 | 200 | 8.48 | 48.4 | 192 | 46 | 200 | 160 | 150 | 19.20 | −349.9 | −48.2 | π/2 | ||
17 | 75 | 250 | 8.48 | 318.7 | 206.3 | 47 | 200 | 160 | 250 | 19.20 | −184 | −47.6 | π/2 | ||
18 | 75 | 150 | 8.48 | 167.3 | 51.4 | 48 | 200 | 160 | 120 | 19.20 | −204.7 | −64.5 | |||
19 | 75 | 120 | 7.95 | −149.1 | 91.6 | 49 | 160 | 120 | 250 | 15.36 | −4.2 | −181.1 | π/2 | ||
20 | 75 | 150 | 7.95 | 65.6 | 162.2 | 50 | 160 | 120 | 250 | 8.64 | −296.7 | −213.4 | |||
21 | 75 | 200 | 7.95 | 357 | 54.7 | 51 | 160 | 120 | 250 | 8.64 | −155.9 | −232.2 | π/2 | ||
22 | 75 | 250 | 7.95 | 391.5 | −93.1 | 52 | 160 | 120 | 120 | 8.64 | 347.9 | −3.8 | π/2 | ||
23 | 75 | 250 | 7.95 | −7.2 | 424.2 | 53 | 150 | 100 | 120 | 5.40 | 156.4 | 324.5 | |||
24 | 75 | 250 | 7.95 | 242 | −84.4 | 54 | 150 | 100 | 120 | 5.40 | 0.2 | 319 | |||
25 | 60 | 150 | 5.09 | 0.0 | −268.1 | 55 | 150 | 100 | 150 | 5.40 | 191.1 | 197.4 | π/2 | ||
26 | 60 | 150 | 5.09 | −154 | −43.3 | 56 | 150 | 100 | 160 | 5.40 | 290.6 | −220.1 | |||
27 | 60 | 150 | 5.09 | 41.1 | −154.6 | 57 | 150 | 100 | 160 | 5.40 | 138.3 | −281.2 | |||
28 | 60 | 150 | 5.09 | 137.9 | −80.9 | 58 | 150 | 100 | 200 | 5.40 | −16.4 | −315.2 | |||
29 | 60 | 150 | 5.09 | −79.9 | −138.6 | 59 | 150 | 100 | 250 | 5.40 | 151.7 | −388.2 | |||
30 | 60 | 150 | 5.09 | −65.9 | 203.4 | 60 | 150 | 100 | 250 | 5.40 | 114.1 | −154.6 | π/2 |
References | Moment of Inertia | |||
---|---|---|---|---|
Ixx (kg.m2) | Iyy (kg.m2) | Izz (kg.m2) | f (kg.m2) | |
[15] | 174.5 | 171.3 | 101 | 446.8 |
[25]—Ex. 1 | 163.2 | 162.9 | 93.8 | 420 |
No. | Ixx (kg.m2) | Iyy (kg.m2) | Izz (kg.m2) | f (kg.m2) | No. | Ixx (kg.m2) | Iyy (kg.m2) | Izz (kg.m2) | f (kg.m2) |
---|---|---|---|---|---|---|---|---|---|
1 | 147.7 | 149.5 | 100.7 | 397.9 | 7 | 149.9 | 150.9 | 96.8 | 397.6 |
2 | 149.2 | 150.7 | 95.7 | 395.6 | 8 | 148.5 | 149.7 | 98.9 | 397.1 |
3 | 149.4 | 150.7 | 99.8 | 399.9 | 9 | 149.9 | 150.2 | 97.6 | 397.7 |
4 | 148.5 | 150.4 | 99.6 | 398.5 | 10 | 149.2 | 150.9 | 98.5 | 398.5 |
5 | 148.6 | 150 | 101.2 | 399.8 | 11 | 153.6 | 152.1 | 102.7 | 408.4 |
6 | 149.1 | 149.4 | 100.6 | 399.1 |
No. | Dimenssions (mm) | Mass (kg) | Optimal Coordinates | Layer | No. | Dimenssions (mm) | Mass (kg) | Optimal Coordinates | θi (rad) | Layer | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ri | hi | mi | xi (mm) | yi (mm) | ai/ri | bi | hi | mi | xi (mm) | yi (mm) | |||||
1 | 100 | 240 | 15.08 | 142.4 | −140.4 | 27 | 45 | 160 | 2.04 | 137.7 | −45.4 | ||||
2 | 100 | 240 | 15.08 | 91.8 | −335.6 | 28 | 45 | 160 | 2.04 | 167.5 | 39.5 | ||||
3 | 100 | 240 | 15.08 | 286.3 | −279.3 | 29 | 100 | 180 | 11.31 | 157 | −123.9 | ||||
4 | 100 | 240 | 15.08 | 329.6 | −69.9 | 30 | 100 | 180 | 11.31 | −28.8 | −200.6 | ||||
5 | 100 | 240 | 15.08 | 187.12 | 70.4 | 31 | 100 | 200 | 12.56 | 222.2 | −328.9 | ||||
6 | 100 | 180 | 11.31 | −13. 4 | 388.6 | 32 | 250 | 150 | 200 | 15.00 | −322.9 | −148.1 | |||
7 | 100 | 180 | 11.31 | 184.8 | 329.6 | 33 | 250 | 150 | 200 | 15.00 | −233.3 | 101.5 | |||
8 | 100 | 180 | 11.31 | 35.2 | 196.9 | 34 | 150 | 250 | 200 | 15.00 | −228.9 | −51.7 | |||
9 | 100 | 100 | 11.31 | −204 | 0.0 | 35 | 250 | 150 | 200 | 15.00 | −240.9 | −256.9 | π/2 | ||
10 | 100 | 180 | 11.31 | 179.5 | 3 | 36 | 250 | 150 | 200 | 15.00 | 1.9 | 384 | |||
11 | 100 | 200 | 12.56 | 204.4 | 17.4 | 37 | 250 | 150 | 200 | 15.00 | −87.8 | −257.6 | π/2 | ||
12 | 100 | 200 | 12.56 | −97.8 | −174.2 | 38 | 200 | 200 | 250 | 20.00 | −8. | 203.9 | π/2 | ||
13 | 100 | 200 | 12.56 | 6.8 | −342.6 | 39 | 200 | 200 | 250 | 20.00 | 229.9 | 275.9 | |||
14 | 100 | 200 | 12.56 | 116.6 | −162.5 | 40 | 200 | 200 | 250 | 20.00 | −224.8 | 277.2 | |||
15 | 75 | 100 | 3.53 | −186.8 | −177.3 | 41 | 150 | 150 | 250 | 11.25 | −334.6 | 5.9 | π/2 | ||
16 | 75 | 100 | 3.53 | −36.9 | −171.1 | 42 | 150 | 150 | 250 | 11.25 | −139.2 | 160.9 | π/2 | ||
17 | 75 | 100 | 3.53 | −172.7 | −27.9 | 43 | 150 | 150 | 250 | 11.25 | −179.1 | 8.7 | π/2 | ||
18 | 75 | 100 | 3.53 | −272 | 84.5 | 44 | 150 | 100 | 200 | 6.00 | 206.5 | 179.3 | |||
19 | 50 | 200 | 3.14 | 369.1 | 167.6 | 45 | 150 | 100 | 200 | 6.00 | −171.3 | −324.5 | |||
20 | 50 | 200 | 3.14 | 375.2 | −141.9 | 46 | 100 | 100 | 150 | 3.00 | −132.7 | 107.4 | |||
21 | 50 | 200 | 3.14 | 273.4 | −134.9 | 47 | 100 | 100 | 150 | 3.00 | −14.9 | 156.1 | π/2 | ||
22 | 50 | 200 | 3.14 | 324. 7 | 258.3 | 48 | 200 | 185 | 150 | 11.10 | 138.1 | −191.6 | |||
23 | 50 | 200 | 3.14 | 354.3 | −32.7 | 49 | 200 | 185 | 150 | 11.10 | −9.9 | 203 | π/2 | ||
24 | 50 | 200 | 3.14 | 357.6 | 68.2 | 50 | 200 | 100 | 200 | 8.00 | −207.1 | 290.3 | |||
25 | 60 | 150 | 3.39 | −125.2 | 218.4 | 51 | 200 | 100 | 200 | 8.00 | −317 | 134.4 | |||
26 | 60 | 150 | 3.39 | 103 | 122.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hekmatfar, M.; Aliha, M.R.M.; Pishvaee, M.S.; Sadowski, T. A Robust Flexible Optimization Model for 3D-Layout of Interior Equipment in a Multi-Floor Satellite. Mathematics 2023, 11, 4932. https://doi.org/10.3390/math11244932
Hekmatfar M, Aliha MRM, Pishvaee MS, Sadowski T. A Robust Flexible Optimization Model for 3D-Layout of Interior Equipment in a Multi-Floor Satellite. Mathematics. 2023; 11(24):4932. https://doi.org/10.3390/math11244932
Chicago/Turabian StyleHekmatfar, Masoud, M. R. M. Aliha, Mir Saman Pishvaee, and Tomasz Sadowski. 2023. "A Robust Flexible Optimization Model for 3D-Layout of Interior Equipment in a Multi-Floor Satellite" Mathematics 11, no. 24: 4932. https://doi.org/10.3390/math11244932
APA StyleHekmatfar, M., Aliha, M. R. M., Pishvaee, M. S., & Sadowski, T. (2023). A Robust Flexible Optimization Model for 3D-Layout of Interior Equipment in a Multi-Floor Satellite. Mathematics, 11(24), 4932. https://doi.org/10.3390/math11244932