The Slash Half-Normal Distribution Applied to a Cure Rate Model with Application to Bone Marrow Transplantation
Abstract
:1. Introduction and Motivation
2. The SHN Distribution
- .
- Var.
- .
- .
- (A1)
- Its density function can be written in the form where C does not depend on t, and , .
- (A2)
- .
- (a)
- (b)
- (c)
- (d)
- If , and , the inverse Gaussian model is recovered. We denote it as .
- (e)
- If , and , the density function of the reciprocal of an inverse Gaussian random variable is recovered. Up to this moment, this model has not been used in a cure rate model context. We denote it as .
- (f)
- If , and , the density of the beta prime distribution is recovered (Leao et al. [23]).
3. A General Cure Rate Model and the SHN Distribution
4. Estimation
- E-step: For , compute
- M1-step: Given , find that maximizes in relation to , where
- M2-step: Given , find that maximizes in relation to , where
5. Simulation Studies
5.1. Assessing the Performance of MLE in a Finite Sample Size
5.2. Misspecification for the Time-to-Event for the Concurrent Causes
- The times related to the concurrent causes were drawn from the Weibull model with mean and variance 1. We considered three values for : 2.5, 5.0 and 7.5. For the parameterization considered in part a) from Remark 1, this corresponded to and , and and and , respectively.
- A determined number of failure times (2% of the sample size, i.e., two observations for , four observations for and eight observations for ), were imputed as , where and denote the maximum and the standard error of the failure times and . This scheme artificially simulated a distribution for the time-to-event of the concurrent causes with a heavier tail than the Weibull distribution, but not corresponding to the SHN.
6. Application to Bone Marrow Transplantation
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Parametrization Used for Some Discrete Models
Negative | ||||||
---|---|---|---|---|---|---|
Poisson | Binomial | Binomial | Logarithmic | Polylogarithm | COM-Poisson | |
Notation | Po | NB | Bin | Lo | PL | COM-Po |
- NB = Geo, i.e., the geometric distribution.
- Bin = Bern, i.e., the Bernoulli distribution.
- NB Bin, if and .
- COM-Po Bern.
- COM-Po Geo, if .
References
- Olmos, N.M.; Varela, H.; Gómez, H.W.; Bolfarine, H. An extension of the half-normal distribution. Stat. Pap. 2012, 53, 875–886. [Google Scholar] [CrossRef]
- Gómez, Y.M.; Gallardo, D.I.; De Castro, M. A regression model for positive data based on the slash half-normal distribution. Revstat 2021, 19, 553–573. [Google Scholar]
- Hardy, R.E.; Ikpeazu, E.V. Bone marrow transplantation: A review. J. Natl. Med. Assoc. 1989, 81, 518–523. [Google Scholar]
- Chinen, J.; Buckley, R.H. Transplantation immunology: Solid organ and bone marrow. J. Allergy Clin. Immunol. 2010, 125, S324–S335. [Google Scholar] [CrossRef] [Green Version]
- Simpson, E.; Dazzi, F. Bone Marrow Transplantation 1957–2019. Front. Immunol. 2019, 10, 1246. [Google Scholar] [CrossRef] [Green Version]
- The European Society for Blood and Marrow Transplantation (s.f.). The EBMT. Available online: https://www.ebmt.org (accessed on 10 December 2022).
- de Rooij, J.D.; Zwaan, C.M.; van den Heuvel-Eibrink, M. Pediatric AML: From Biology to Clinical Management. J. Clin. Med. 2015, 4, 127–149. [Google Scholar] [CrossRef] [Green Version]
- Sander, A.; Zimmermann, M.; Dworzak, M.; Fleischhack, G.; von Neuhoff, C.; Reinhardt, D.; Kaspers, G.J.; Creutzig, U. Consequent and Intensified Relapse Therapy Improved Survival in Pediatric AML: Results of Relapse Treatment In 379 Patients of Three Consecutive Aml-Bfm Trials. Leukemia 2010, 24, 1422–1428. [Google Scholar] [CrossRef] [Green Version]
- Fiocco, M.; Putter, H.; van Houwelingen, H.C. Reduced-rank proportional hazards regression and simulation-based prediction for multi-state models. Stat. Med. 2008, 27, 4340–4358. [Google Scholar] [CrossRef]
- Putter, H.; de Wreede, L.; Fiocco, M. Mstate: Data Preparation, Estimation and Prediction in Multi-State Models. R package version 2016.0-2. 2016. Available online: https://CRAN.R-project.org/package=mstate (accessed on 10 December 2022).
- Horio, T.; Morishita, E.; Mizuno, S.; Uchino, K.; Hanamura, I.; Espinoza, J.L.; Morishima, Y.; Kodera, Y.; Onizuka, M.; Kashiwase, K.; et al. Donor Heme Oxygenase-1 Promoter Gene Polymorphism Predicts Survival after Unrelated Bone Marrow Transplantation for High-Risk Patients. Cancers 2020, 12, 424. [Google Scholar] [CrossRef] [Green Version]
- Radujkovic, A.; Kordelas, L.; Bogdanov, R.; Müller-Tidow, C.; Beelen, D.W.; Dreger, P.; Luft, T. Interleukin-18 and Hematopoietic Recovery after Allogeneic Stem Cell Transplantation. Cancers 2020, 12, 2789. [Google Scholar] [CrossRef]
- Tsai, X.C.; Chen, T.T.; Gau, J.P.; Wang, P.N.; Liu, Y.C.; Lien, M.Y.; Li, C.C.; Yao, M.; Ko, B.S. Outcomes of Different Haploidentical Transplantation Strategies from the Taiwan Blood and Marrow Transplantation Registry. Cancers 2022, 14, 1097. [Google Scholar] [CrossRef]
- Sabino Pinho de Oliveira, B.; Putti, S.; Naro, F.; Pellegrini, M. Bone Marrow Transplantation as Therapy for Ataxia-Telangiectasia: A Systematic Review. Cancers 2020, 12, 3207. [Google Scholar] [CrossRef]
- Chen, M.H.; Ibrahim, J.G.; Sinha, D. A new Bayesian model for survival data with a surviving fraction. J. Am. Stat. Assoc. 1999, 94, 909–919. [Google Scholar] [CrossRef]
- Rodrigues, J.; Cancho, V.G.; de Castro, M.A.; Louzada-Neto, F. On the unification of the long-term survival models. Stat. Probab. Lett. 2009, 79, 753–759. [Google Scholar] [CrossRef]
- Pal, S.; Balakrishnan, N. Likelihood inference for COM-Poisson cure rate model with interval-censored data and Weibull lifetimes. Stat. Methods Med. Res. 2017, 26, 2093–2113. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Pal, S. Likelihood Inference for Flexible Cure Rate Models with Gamma Lifetimes. Commun. Stat. Theory Methods 2015, 19, 4007–4048. [Google Scholar] [CrossRef]
- Wiangnak, P.; Pal, S. Gamma Lifetimes and Associated Inference for Interval Censored Cure Rate Model with COM-Poisson Competing Cause. Commun. Stat. Theory Methods 2018, 47, 1491–1509. [Google Scholar] [CrossRef]
- Ortega, E.M.M.; Cordeiro, G.M.; Hashimoto, E.M.; Suzuki, A.K. Regression models generated by gamma random variables with long-term survivors. Commun. Stat. Appl. Methods 2017, 24, 43–65. [Google Scholar] [CrossRef] [Green Version]
- Balakrishnan, N.; Pal, S. Lognormal lifetimes and likelihood-based inference for flexible cure rate models based on COM-Poisson family. Comput. Stat. Data Anal. 2013, 67, 41–67. [Google Scholar] [CrossRef]
- Gallardo, D.I.; Bolfarine, H.; Pedroso-de-Lima, A.C. An EM algorithm for estimating the destructive weighted Poisson cure rate model. J. Stat. Comput. Simul. 2016, 86, 1497–1515. [Google Scholar] [CrossRef]
- Leao, J.; Bourguignon, M.; Saulo, H.; Santos-Neto, M.; Calsavara, V. The Negative Binomial Beta Prime Regression Model with Cure Rate: Application with a Melanoma Dataset. J. Stat. Theory Pract. 2021, 15, 63. [Google Scholar] [CrossRef]
- Birnbaum, Z.W.; Saunders, S.C. A new family of life distributions. J. Appl. Probab. 1969, 6, 319–327. [Google Scholar] [CrossRef]
- Birnbaum, Z.W.; Saunders, S.C. Estimation for a family of life distributions with applications to fatigue. J. Appl. Probab. 1969, 6, 328–347. [Google Scholar] [CrossRef]
- Desmond, A.F. On the relationship between two fatigue models. IEEE Trans. Reliab. 1986, 35, 167–169. [Google Scholar] [CrossRef]
- Berkson, J.; Gage, R. Survival curve for cancer patients following treatment. J. Am. Stat. Assoc. 1952, 47, 501–515. [Google Scholar] [CrossRef]
- Cancho, V.G.; Louzada, F.; Ortega, E.M. The power series cure rate model: An application to a cutaneous melanoma data. Commun. Stat. Simul. Comput. 2013, 42, 586–602. [Google Scholar] [CrossRef]
- Gallardo, D.I.; Romeo, J.S.; Meyer, R. A simplified estimation procedure based on the EM algorithm for the power series cure rate model. Commun. Stat. Simul. Comput. 2017, 46, 6342–6359. [Google Scholar] [CrossRef]
- Borchers, H.W. Pracma: Practical Numerical Math Functions. R Package Version 2.4.2. 2022. Available online: https://CRAN.R-project.org/package=pracma (accessed on 10 December 2022).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 10 December 2022).
- Sen, P.K.; Singer, J.M.; Pedroso-de-Lima, A.C. From Finite Sample to Asymptotic Methods in Statistics; Cambridge University Press: New York, NY, USA, 2010. [Google Scholar]
- Gallardo, D. PScr: Estimation for the Power Series Cure Rate Model. R Package Version 1.0. 2022. Available online: https://CRAN.R-project.org/package=PScr (accessed on 10 December 2022).
- Akaike, H. A new look at the statitstical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Conlon, A.S.; Taylor, J.M.; Sargent, D.J. Multi-state models for colon cancer recurrence and death with a cured fraction. Stat. Med. 2014, 33, 1750–1766. [Google Scholar] [CrossRef] [Green Version]
- Cox, D.R. A general definition of residuals. J. R. Stat. Soc. Ser. B 1968, 30, 248–275. [Google Scholar] [CrossRef]
- Dunn, P.K.; Smyth, G.K. Randomized quantile residuals. J. Comput. Graph. Stat. 1996, 5, 236–244. [Google Scholar]
Cure | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rate | Parameter | bias | s.e. | RMSE | CP | bias | s.e. | RMSE | CP | bias | s.e. | RMSE | CP | ||
High | 1 | 0.75 | 0.023 | 0.370 | 0.255 | 0.978 | 0.012 | 0.248 | 0.200 | 0.974 | 0.010 | 0.177 | 0.147 | 0.965 | |
−0.019 | 0.335 | 0.302 | 0.961 | −0.006 | 0.234 | 0.210 | 0.953 | −0.001 | 0.164 | 0.145 | 0.952 | ||||
0.005 | 0.165 | 0.144 | 0.963 | 0.003 | 0.116 | 0.104 | 0.958 | −0.002 | 0.081 | 0.074 | 0.949 | ||||
0.294 | 0.979 | 0.751 | 0.975 | 0.172 | 0.600 | 0.505 | 0.960 | 0.055 | 0.376 | 0.335 | 0.951 | ||||
0.082 | 0.452 | 0.372 | 0.965 | 0.052 | 0.321 | 0.276 | 0.955 | 0.015 | 0.227 | 0.206 | 0.952 | ||||
2.5 | 0.002 | 0.208 | 0.180 | 0.962 | 0.002 | 0.145 | 0.124 | 0.959 | 0.001 | 0.102 | 0.089 | 0.956 | |||
−0.014 | 0.316 | 0.281 | 0.959 | −0.013 | 0.221 | 0.192 | 0.958 | −0.008 | 0.155 | 0.140 | 0.953 | ||||
−0.011 | 0.155 | 0.140 | 0.942 | −0.005 | 0.109 | 0.103 | 0.943 | −0.003 | 0.077 | 0.071 | 0.951 | ||||
0.287 | 1.637 | 1.416 | 0.929 | 0.140 | 1.342 | 1.091 | 0.937 | 0.127 | 0.995 | 0.854 | 0.946 | ||||
−0.039 | 0.302 | 0.229 | 0.933 | −0.011 | 0.211 | 0.171 | 0.941 | −0.010 | 0.146 | 0.131 | 0.943 | ||||
3 | 0.75 | −0.140 | 0.922 | 0.307 | 0.962 | −0.125 | 0.738 | 0.250 | 0.952 | −0.101 | 0.614 | 0.212 | 0.950 | ||
0.013 | 0.371 | 0.327 | 0.960 | 0.009 | 0.258 | 0.226 | 0.954 | 0.003 | 0.181 | 0.170 | 0.953 | ||||
0.006 | 0.183 | 0.164 | 0.948 | 0.002 | 0.127 | 0.111 | 0.948 | 0.000 | 0.089 | 0.080 | 0.950 | ||||
0.687 | 1.658 | 1.304 | 0.972 | 0.657 | 1.389 | 1.269 | 0.961 | 0.584 | 1.193 | 1.169 | 0.955 | ||||
−0.269 | 1.073 | 0.846 | 0.957 | −0.088 | 0.892 | 0.719 | 0.956 | −0.040 | 0.652 | 0.602 | 0.953 | ||||
2.5 | 0.100 | 0.505 | 0.263 | 0.969 | 0.085 | 0.339 | 0.201 | 0.963 | 0.078 | 0.223 | 0.160 | 0.958 | |||
−0.011 | 0.325 | 0.295 | 0.958 | −0.009 | 0.226 | 0.201 | 0.952 | −0.008 | 0.159 | 0.144 | 0.951 | ||||
0.005 | 0.161 | 0.151 | 0.939 | 0.005 | 0.112 | 0.097 | 0.942 | 0.003 | 0.078 | 0.068 | 0.949 | ||||
−0.791 | 1.976 | 1.583 | 0.938 | −0.549 | 1.797 | 1.496 | 0.941 | −0.409 | 1.490 | 1.442 | 0.949 | ||||
−0.641 | 1.428 | 0.893 | 0.919 | −0.409 | 1.237 | 0.691 | 0.928 | −0.319 | 0.939 | 0.592 | 0.930 | ||||
Low | 1 | 0.75 | 0.013 | 0.441 | 0.296 | 0.977 | 0.009 | 0.285 | 0.226 | 0.960 | 0.005 | 0.206 | 0.172 | 0.954 | |
−0.015 | 0.413 | 0.369 | 0.960 | −0.013 | 0.289 | 0.270 | 0.952 | −0.001 | 0.202 | 0.181 | 0.951 | ||||
0.013 | 0.198 | 0.180 | 0.951 | 0.008 | 0.138 | 0.125 | 0.950 | 0.003 | 0.096 | 0.088 | 0.950 | ||||
0.293 | 1.127 | 0.747 | 0.972 | 0.262 | 0.778 | 0.632 | 0.965 | 0.094 | 0.459 | 0.391 | 0.959 | ||||
0.084 | 0.531 | 0.385 | 0.944 | 0.063 | 0.392 | 0.324 | 0.947 | 0.037 | 0.272 | 0.243 | 0.949 | ||||
2.5 | 0.004 | 0.238 | 0.210 | 0.961 | 0.002 | 0.163 | 0.144 | 0.953 | 0.001 | 0.114 | 0.104 | 0.951 | |||
−0.010 | 0.384 | 0.329 | 0.965 | −0.009 | 0.270 | 0.239 | 0.957 | −0.004 | 0.189 | 0.178 | 0.953 | ||||
0.012 | 0.185 | 0.166 | 0.960 | 0.008 | 0.129 | 0.118 | 0.959 | 0.004 | 0.091 | 0.081 | 0.951 | ||||
0.175 | 1.975 | 1.271 | 0.924 | 0.134 | 1.722 | 1.144 | 0.938 | 0.087 | 1.198 | 0.968 | 0.944 | ||||
−0.057 | 0.353 | 0.258 | 0.912 | −0.016 | 0.244 | 0.190 | 0.940 | −0.002 | 0.170 | 0.146 | 0.943 | ||||
3 | 0.75 | −0.151 | 0.999 | 0.346 | 0.941 | −0.139 | 0.805 | 0.282 | 0.948 | −0.105 | 0.679 | 0.227 | 0.950 | ||
−0.012 | 0.464 | 0.402 | 0.969 | −0.010 | 0.323 | 0.279 | 0.962 | −0.007 | 0.225 | 0.202 | 0.958 | ||||
0.012 | 0.221 | 0.206 | 0.943 | 0.010 | 0.153 | 0.140 | 0.946 | 0.004 | 0.107 | 0.098 | 0.950 | ||||
0.526 | 1.660 | 1.336 | 0.971 | 0.371 | 1.378 | 1.251 | 0.965 | 0.294 | 1.276 | 1.154 | 0.959 | ||||
−0.467 | 1.285 | 0.938 | 0.929 | −0.176 | 2.077 | 0.719 | 0.936 | −0.025 | 1.785 | 0.619 | 0.940 | ||||
2.5 | 0.107 | 0.586 | 0.295 | 0.973 | 0.093 | 0.405 | 0.225 | 0.962 | 0.086 | 0.261 | 0.177 | 0.959 | |||
0.013 | 0.398 | 0.365 | 0.955 | 0.008 | 0.276 | 0.239 | 0.954 | 0.000 | 0.194 | 0.179 | 0.951 | ||||
−0.017 | 0.192 | 0.173 | 0.965 | −0.002 | 0.133 | 0.119 | 0.961 | 0.000 | 0.093 | 0.081 | 0.959 | ||||
−0.912 | 4.181 | 1.545 | 0.934 | −0.682 | 3.910 | 1.489 | 0.936 | −0.493 | 3.601 | 1.462 | 0.942 | ||||
−0.743 | 1.490 | 0.969 | 0.961 | −0.526 | 1.287 | 0.764 | 0.960 | −0.379 | 1.038 | 0.647 | 0.958 |
Cure | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rate | Estimator | bias | s.e. | MSE | CP | bias | s.e. | MSE | CP | bias | s.e. | MSE | CP | ||
High | 1 | 0.75 | 0.025 | 0.556 | 0.391 | 0.970 | 0.008 | 0.374 | 0.278 | 0.983 | 0.006 | 0.259 | 0.219 | 0.966 | |
0.023 | 0.469 | 0.424 | 0.955 | 0.021 | 0.328 | 0.289 | 0.956 | 0.001 | 0.230 | 0.204 | 0.955 | ||||
0.004 | 0.234 | 0.213 | 0.954 | 0.003 | 0.162 | 0.150 | 0.942 | 0.001 | 0.114 | 0.106 | 0.936 | ||||
0.284 | 1.203 | 0.741 | 0.996 | 0.218 | 0.796 | 0.627 | 0.982 | 0.109 | 0.495 | 0.431 | 0.961 | ||||
0.078 | 0.546 | 0.379 | 0.949 | 0.070 | 0.394 | 0.342 | 0.950 | 0.033 | 0.280 | 0.251 | 0.948 | ||||
2.5 | −0.014 | 0.353 | 0.302 | 0.959 | −0.003 | 0.241 | 0.218 | 0.947 | 0.003 | 0.168 | 0.152 | 0.949 | |||
0.016 | 0.453 | 0.403 | 0.959 | 0.012 | 0.315 | 0.294 | 0.956 | 0.008 | 0.221 | 0.199 | 0.941 | ||||
0.006 | 0.225 | 0.200 | 0.959 | 0.004 | 0.156 | 0.143 | 0.944 | 0.002 | 0.109 | 0.100 | 0.943 | ||||
0.242 | 1.871 | 1.434 | 0.854 | 0.163 | 1.752 | 1.270 | 0.910 | 0.081 | 1.332 | 1.018 | 0.946 | ||||
−0.078 | 0.375 | 0.272 | 0.911 | −0.017 | 0.266 | 0.206 | 0.944 | −0.014 | 0.184 | 0.153 | 0.964 | ||||
3 | 0.75 | −0.153 | 0.609 | 0.417 | 0.989 | −0.135 | 0.488 | 0.329 | 0.960 | −0.111 | 0.323 | 0.262 | 0.964 | ||
−0.012 | 0.510 | 0.448 | 0.959 | −0.003 | 0.353 | 0.310 | 0.961 | −0.001 | 0.247 | 0.225 | 0.946 | ||||
−0.006 | 0.253 | 0.226 | 0.948 | −0.004 | 0.174 | 0.155 | 0.959 | −0.003 | 0.121 | 0.105 | 0.961 | ||||
0.534 | 1.577 | 1.389 | 1.000 | 0.381 | 1.402 | 1.313 | 1.000 | 0.194 | 1.356 | 1.309 | 1.000 | ||||
−0.490 | 1.302 | 0.974 | 0.910 | −0.197 | 1.153 | 0.747 | 0.972 | −0.029 | 0.825 | 0.638 | 0.987 | ||||
2.5 | 0.121 | 0.505 | 0.385 | 0.989 | 0.095 | 0.380 | 0.289 | 0.990 | 0.083 | 0.232 | 0.215 | 0.985 | |||
−0.005 | 0.460 | 0.427 | 0.961 | −0.003 | 0.321 | 0.279 | 0.961 | −0.002 | 0.225 | 0.199 | 0.957 | ||||
0.012 | 0.228 | 0.196 | 0.960 | 0.002 | 0.159 | 0.137 | 0.955 | −0.001 | 0.111 | 0.099 | 0.949 | ||||
−0.921 | 2.029 | 1.755 | 0.841 | −0.709 | 1.903 | 1.570 | 0.835 | −0.569 | 1.661 | 1.535 | 0.819 | ||||
−0.788 | 1.333 | 1.004 | 0.851 | −0.555 | 1.052 | 0.825 | 0.886 | −0.407 | 0.899 | 0.672 | 0.914 | ||||
Low | 1 | 0.75 | 0.008 | 0.477 | 0.344 | 0.981 | 0.003 | 0.338 | 0.254 | 0.969 | 0.001 | 0.226 | 0.194 | 0.971 | |
0.004 | 0.422 | 0.384 | 0.954 | 0.003 | 0.294 | 0.256 | 0.957 | 0.003 | 0.207 | 0.189 | 0.951 | ||||
−0.011 | 0.212 | 0.197 | 0.940 | −0.006 | 0.147 | 0.133 | 0.953 | −0.003 | 0.103 | 0.095 | 0.948 | ||||
0.280 | 1.043 | 0.702 | 0.998 | 0.190 | 0.693 | 0.583 | 0.981 | 0.097 | 0.441 | 0.387 | 0.957 | ||||
0.071 | 0.480 | 0.349 | 0.960 | 0.059 | 0.352 | 0.300 | 0.960 | 0.037 | 0.251 | 0.217 | 0.952 | ||||
2.5 | 0.012 | 0.309 | 0.274 | 0.954 | 0.010 | 0.213 | 0.186 | 0.956 | 0.004 | 0.149 | 0.136 | 0.953 | |||
0.010 | 0.409 | 0.360 | 0.957 | 0.007 | 0.286 | 0.247 | 0.964 | 0.003 | 0.201 | 0.180 | 0.942 | ||||
−0.007 | 0.206 | 0.190 | 0.961 | −0.005 | 0.143 | 0.125 | 0.957 | −0.002 | 0.100 | 0.084 | 0.962 | ||||
0.353 | 1.622 | 1.301 | 0.868 | 0.274 | 1.438 | 1.258 | 0.932 | 0.269 | 1.025 | 0.968 | 0.939 | ||||
−0.078 | 0.340 | 0.260 | 0.900 | −0.040 | 0.244 | 0.184 | 0.956 | −0.015 | 0.167 | 0.144 | 0.952 | ||||
3 | 0.75 | −0.155 | 0.524 | 0.379 | 0.970 | −0.128 | 0.415 | 0.284 | 0.973 | −0.109 | 0.266 | 0.240 | 0.961 | ||
0.009 | 0.448 | 0.399 | 0.963 | 0.005 | 0.311 | 0.271 | 0.962 | 0.003 | 0.219 | 0.187 | 0.956 | ||||
−0.016 | 0.223 | 0.196 | 0.965 | −0.006 | 0.155 | 0.136 | 0.959 | −0.003 | 0.109 | 0.099 | 0.950 | ||||
0.605 | 1.893 | 1.506 | 1.000 | 0.481 | 1.501 | 1.388 | 1.000 | 0.276 | 1.372 | 1.292 | 1.000 | ||||
−0.340 | 1.372 | 0.894 | 0.929 | −0.089 | 1.116 | 0.703 | 0.966 | −0.053 | 0.773 | 0.612 | 0.993 | ||||
2.5 | 0.090 | 0.607 | 0.347 | 0.987 | 0.074 | 0.439 | 0.268 | 0.990 | 0.051 | 0.282 | 0.201 | 0.982 | |||
0.011 | 0.415 | 0.378 | 0.954 | 0.005 | 0.289 | 0.270 | 0.946 | 0.001 | 0.203 | 0.180 | 0.949 | ||||
−0.005 | 0.208 | 0.187 | 0.952 | −0.001 | 0.145 | 0.135 | 0.937 | −0.001 | 0.101 | 0.094 | 0.944 | ||||
−0.865 | 1.780 | 1.612 | 0.852 | −0.630 | 1.708 | 1.517 | 0.837 | −0.449 | 1.629 | 1.462 | 0.838 | ||||
−0.695 | 1.283 | 0.927 | 0.887 | −0.492 | 1.097 | 0.762 | 0.905 | −0.341 | 0.732 | 0.605 | 0.924 |
Poisson Case | ||||||||||||||
Cure | bias | RMSE | bias | RMSE | bias | RMSE | ||||||||
Rate | Estimator | SHN | Weibull | SHN | Weibull | SHN | Weibull | SHN | Weibull | SHN | Weibull | SHN | Weibull | |
High | 2.5 | 0.059 | 0.089 | 0.394 | 0.431 | 0.053 | 0.084 | 0.248 | 0.309 | 0.051 | 0.073 | 0.168 | 0.221 | |
−0.018 | −0.066 | 0.356 | 0.430 | −0.006 | −0.049 | 0.248 | 0.316 | −0.003 | −0.048 | 0.175 | 0.227 | |||
−0.002 | −0.003 | 0.176 | 0.255 | −0.002 | −0.003 | 0.122 | 0.187 | −0.001 | −0.002 | 0.086 | 0.131 | |||
5.0 | −0.109 | −0.159 | 0.344 | 0.347 | −0.077 | −0.126 | 0.225 | 0.239 | −0.058 | −0.123 | 0.134 | 0.169 | ||
−0.014 | −0.020 | 0.402 | 0.773 | −0.007 | −0.018 | 0.280 | 0.601 | −0.005 | −0.017 | 0.197 | 0.451 | |||
−0.005 | −0.006 | 0.197 | 0.288 | −0.003 | −0.004 | 0.138 | 0.209 | 0.000 | 0.000 | 0.097 | 0.146 | |||
7.5 | −0.307 | −0.359 | 0.246 | 0.297 | −0.276 | −0.355 | 0.201 | 0.210 | −0.251 | −0.322 | 0.107 | 0.159 | ||
−0.017 | −0.025 | 0.443 | 0.933 | −0.012 | −0.015 | 0.311 | 0.773 | −0.011 | −0.013 | 0.219 | 0.650 | |||
0.011 | 0.012 | 0.218 | 0.317 | −0.003 | −0.003 | 0.152 | 0.230 | 0.001 | 0.001 | 0.107 | 0.160 | |||
Low | 2.5 | 0.087 | 0.097 | 0.287 | 0.314 | 0.070 | 0.079 | 0.181 | 0.211 | 0.058 | 0.063 | 0.139 | 0.144 | |
−0.014 | −0.069 | 0.437 | 0.448 | −0.012 | −0.061 | 0.306 | 0.334 | −0.007 | −0.052 | 0.215 | 0.228 | |||
−0.001 | 0.000 | 0.207 | 0.297 | 0.000 | 0.000 | 0.146 | 0.215 | −0.001 | −0.001 | 0.102 | 0.155 | |||
5.0 | −0.093 | −0.100 | 0.234 | 0.255 | −0.071 | −0.092 | 0.165 | 0.176 | −0.052 | −0.078 | 0.110 | 0.121 | ||
−0.029 | −0.048 | 0.489 | 0.809 | −0.022 | −0.025 | 0.344 | 0.656 | −0.008 | −0.012 | 0.244 | 0.487 | |||
−0.003 | −0.004 | 0.231 | 0.336 | −0.001 | −0.001 | 0.164 | 0.241 | −0.001 | −0.001 | 0.116 | 0.172 | |||
7.5 | −0.204 | −0.285 | 0.197 | 0.217 | −0.194 | −0.282 | 0.133 | 0.155 | −0.192 | −0.279 | 0.102 | 0.111 | ||
−0.012 | −0.018 | 0.533 | 0.893 | −0.003 | −0.014 | 0.379 | 0.742 | −0.002 | −0.004 | 0.267 | 0.583 | |||
−0.008 | −0.008 | 0.252 | 0.372 | −0.005 | −0.006 | 0.179 | 0.265 | −0.003 | −0.003 | 0.127 | 0.187 | |||
Geometric Case | ||||||||||||||
High | 2.5 | 0.071 | 0.092 | 0.196 | 0.244 | 0.053 | 0.082 | 0.163 | 0.190 | 0.031 | 0.048 | 0.124 | 0.139 | |
−0.105 | −0.127 | 0.209 | 0.281 | −0.083 | −0.094 | 0.153 | 0.218 | −0.054 | −0.056 | 0.148 | 0.164 | |||
−0.003 | −0.005 | 0.254 | 0.435 | 0.001 | 0.002 | 0.176 | 0.299 | 0.001 | 0.001 | 0.123 | 0.207 | |||
5.0 | −0.091 | −0.129 | 0.135 | 0.154 | −0.088 | −0.119 | 0.098 | 0.103 | −0.071 | −0.106 | 0.042 | 0.071 | ||
−0.089 | −0.130 | 0.352 | 0.427 | −0.080 | −0.120 | 0.287 | 0.329 | −0.057 | −0.092 | 0.172 | 0.243 | |||
0.001 | 0.000 | 0.274 | 0.478 | −0.001 | −0.001 | 0.192 | 0.330 | 0.001 | 0.001 | 0.135 | 0.229 | |||
7.5 | −0.288 | −0.333 | 0.094 | 0.125 | −0.251 | −0.311 | 0.067 | 0.082 | −0.242 | −0.271 | 0.049 | 0.059 | ||
−0.055 | −0.099 | 0.493 | 0.512 | −0.054 | −0.096 | 0.314 | 0.389 | −0.042 | −0.053 | 0.290 | 0.301 | |||
0.009 | −0.010 | 0.293 | 0.524 | 0.005 | −0.008 | 0.204 | 0.362 | 0.001 | 0.001 | 0.143 | 0.248 | |||
Low | 2.5 | −0.075 | −0.109 | 0.245 | 0.298 | −0.062 | −0.081 | 0.219 | 0.234 | −0.046 | −0.069 | 0.147 | 0.165 | |
−0.094 | −0.130 | 0.217 | 0.245 | −0.074 | −0.083 | 0.133 | 0.192 | −0.050 | −0.061 | 0.128 | 0.138 | |||
0.012 | 0.016 | 0.235 | 0.397 | 0.011 | 0.012 | 0.163 | 0.270 | 0.002 | 0.003 | 0.114 | 0.187 | |||
5.0 | −0.224 | −0.259 | 0.197 | 0.209 | −0.216 | −0.237 | 0.101 | 0.144 | −0.153 | −0.203 | 0.061 | 0.089 | ||
−0.108 | −0.126 | 0.303 | 0.385 | −0.097 | −0.106 | 0.251 | 0.283 | −0.084 | −0.099 | 0.146 | 0.207 | |||
0.002 | 0.002 | 0.253 | 0.426 | 0.002 | 0.002 | 0.176 | 0.292 | 0.001 | 0.001 | 0.123 | 0.201 | |||
7.5 | −0.260 | −0.459 | 0.116 | 0.150 | −0.256 | −0.424 | 0.096 | 0.106 | −0.202 | −0.392 | 0.042 | 0.073 | ||
−0.050 | −0.112 | 0.337 | 0.471 | −0.049 | −0.104 | 0.274 | 0.359 | −0.035 | −0.091 | 0.202 | 0.268 | |||
−0.002 | −0.004 | 0.269 | 0.456 | −0.001 | −0.002 | 0.187 | 0.315 | −0.001 | −0.001 | 0.131 | 0.216 |
Model for M | Weibull | Gamma | BS | SHN |
---|---|---|---|---|
Po | 4650.0/4672.9 | 4683.0/4706.0 | 4580.8/4603.8 | 4537.9/4560.8 |
Lo | 4628.7/4651.6 | 4639.6/4662.6 | 4628.1/4651.0 | 4547.3/4570.3 |
NB | 4561.4/4590.1 | 4547.4/4576.1 | 4583.0/4611.7 | 4540.2/4568.8 |
Bern | 4665.1/4688.0 | 4712.8/4735.8 | 4577.0/4599.9 | 4535.8/4558.8 |
COM-Po | 4639.3/4667.9 | 4659.5/4688.1 | 4578.9/4607.6 | 4537.8/4566.5 |
PL | 4612.1/4658.0 | 4615.9/4661.8 | 4585.1/4630.9 | 4545.3/4591.2 |
Parameter | ||||
---|---|---|---|---|
Estimate | ||||
s.e. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallardo, D.I.; Gómez, Y.M.; Gómez, H.J.; Gallardo-Nelson, M.J.; Bourguignon, M. The Slash Half-Normal Distribution Applied to a Cure Rate Model with Application to Bone Marrow Transplantation. Mathematics 2023, 11, 518. https://doi.org/10.3390/math11030518
Gallardo DI, Gómez YM, Gómez HJ, Gallardo-Nelson MJ, Bourguignon M. The Slash Half-Normal Distribution Applied to a Cure Rate Model with Application to Bone Marrow Transplantation. Mathematics. 2023; 11(3):518. https://doi.org/10.3390/math11030518
Chicago/Turabian StyleGallardo, Diego I., Yolanda M. Gómez, Héctor J. Gómez, María José Gallardo-Nelson, and Marcelo Bourguignon. 2023. "The Slash Half-Normal Distribution Applied to a Cure Rate Model with Application to Bone Marrow Transplantation" Mathematics 11, no. 3: 518. https://doi.org/10.3390/math11030518
APA StyleGallardo, D. I., Gómez, Y. M., Gómez, H. J., Gallardo-Nelson, M. J., & Bourguignon, M. (2023). The Slash Half-Normal Distribution Applied to a Cure Rate Model with Application to Bone Marrow Transplantation. Mathematics, 11(3), 518. https://doi.org/10.3390/math11030518