Research of the Solutions Proximity of Linearized and Nonlinear Problems of the Biogeochemical Process Dynamics in Coastal Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mathematical Model of Biological Kinetics and Geochemical Cycles
2.2. Continuous Model Linearization
3. Investigation of the Proximity of Solutions to the Linearized and Original Initial-Boundary Value Problems by the Energy Method
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Filatov, N.N.; Menshutkin, V.V. Problems of assessing changes in ecosystems of large stratified water bodies under the influence of climate and anthropogenic factors. Sci. Notes Russ. State Hydrometeorol. Univ. 2017, 48, 120–147. [Google Scholar]
- Menshutkin, V.V.; Rukhovets, L.A.; Filatov, N.N. Ecosystem modeling of freshwater lakes (review): 2. Models of freshwater lake’s ecosystem. Water Resour. 2014, 41, 32–45. [Google Scholar] [CrossRef]
- Falkowski, P.G.; Oliver, M.J. Mix and match: How climate selects phytoplankton. Nat. Rev. Microbiol. 2007, 5, 813–819. [Google Scholar] [CrossRef]
- Berdnikov, S.V.; Selyutin, V.V.; Surkov, F.A.; Tyutyunov, Y.V. Modeling of marine ecosystems: Experience, modern approaches, directions of development (review). part 2. population and trophodynamic models. Phys. Oceanogr. 2022, 29, 182–203. [Google Scholar] [CrossRef]
- Lewis, N.D.; Breckels, M.N.; Steinke, M.; Codling, E.A.; Morozov, A.; Tyutyunov, Y.V. Multitrophic interactions in the sea: Assessing the effect of infochemical–mediated foraging in a 1–D spatial model. Math. Model. Nat. Phenom. 2013, 8, 25–44. [Google Scholar] [CrossRef]
- Marchuk, G.I.; Chavro, A.I.; Uvarov, N.V.; Sokolov, A.A. Methods for solving direct and inverse problems of satellite meteorology. Sci.-Intensive Technol. 2017, 18, 36–44. [Google Scholar]
- Marchuk, G.I. Selected Works: In 5 Volumes; RAS: Moscow, Russia, 2018. [Google Scholar]
- Rusanov, I.I.; Ivanov, M.V.; Lein, A.Y.; Makkaveev, P.N.; Klyuvitkin, A.A.; Kravchishina, M.D.; Flint, M.V. Seasonal dynamics of biogeochemical processes in the water column of the northeastern Black Sea. Oceanology 2018, 58, 57–70. [Google Scholar] [CrossRef]
- Tikhonova, E.; Tarnovetskii, I.; Malakhova, T.; Gulin, M.; Merkel, A.; Pimenov, N. Identification of Aerobic Methane-Oxidizing Bacteria in Coastal Sediments of the Crimean Peninsula. Microbiology 2020, 89, 740–749. [Google Scholar] [CrossRef]
- Radchenko, I.G.; Ilyash, L.V.; Shevchenko, V.P.; Novigatsky, A.N.; Politova, N.V.; Zdorovennov, R.E.; Tolstikov, A.V. Spatial distribution of phytoplankton in the subarctic estuary (Kem’ River, the White Sea). Oceanology 2019, 59, 305–315. [Google Scholar] [CrossRef]
- Shiganova, T.A.; Alekseenko, E.; Kazmin, A.S. Predicting range expansion of invasive ctenophore Mnemiopsis leidyi A. agassiz 1865 under current environmental conditions and future climate change scenarios Estuarine. Coast. Shelf Sci. 2019, 227, 106347. [Google Scholar] [CrossRef]
- Balykin, P.A.; Kutsyn, D.N.; Orlov, A.M. Changes in salinity and species composition of the ichthyofauna in the Azov Sea. Oceanology 2019, 59, 396–404. [Google Scholar] [CrossRef]
- Korotaev, G.K.; Tolstosheev, A.P.; Lunev, E.G.; Motyzhev, S.V.; Dykman, V.Z.; Pryakhina, S.F. Long-Term Autonomous Observations of Sea Water Salinity in the Surface Layer of the Black Sea. Earth Sci. Rep. 2022, 503, 215–219. [Google Scholar] [CrossRef]
- Yakushev, E.V.; Pollehne, F.; Jost, G.; Kuznetsov, I.; Schneider, B.; Umlauf, L. Analysis of the water column oxic/anoxic interface in the Black and Baltic seas with a numerical model. Mar. Chem. 2007, 107, 388–410. [Google Scholar] [CrossRef]
- Yakushev, E.V.; Wallhead, P.; Renaud, P.E.; Ilinskaya, A.; Protsenko, E.; Yakubov, S.; Pakhomova, S.; Sweetman, A.K.; Dunlop, K.; Berezina, A.; et al. Understanding the biogeochemical impacts of fish farms using a benthic-pelagic model. Water 2020, 12, 2384. [Google Scholar] [CrossRef]
- MARS. Système de Modélisation de l’Environnement Côtier. Available online: https://wwz.ifremer.fr/mars3d (accessed on 1 October 2022).
- Rheinheimer, G. Aquatic Microbiology; Wiley: New York, NY, USA, 1994. [Google Scholar]
- Ménesguen, A.; Dussauze, M.; Dumas, F.; Thouvenin, B.; Garnier, V.; Lecornu, F.; Répécaud, M. Ecological model of the Bay of Biscay and English Channel shelf for environmental status assessment part 1: Nutrients, phytoplankton and oxygen. Ocean Model. 2019, 133, 56–78. [Google Scholar] [CrossRef] [Green Version]
- Filiz, N.; Işkın, U.; Beklioğlu, M.; Öğlü, B.; Cao, Y.; Davidson, T.A.; Søndergaard, M.; Lauridsen, T.L.; Jeppesen, E. Phytoplankton Community Response to Nutrients, Temperatures, and a Heat Wave in Shallow Lakes: An Experimental Approach. Water 2020, 12, 3394. [Google Scholar] [CrossRef]
- Andersen, T.K.; Nielsen, A.; Jeppesen, E.; Bolding, K.; Johansson, L.S.; Søndergaard, M.; Trolle, D. Simulating shifting ecological states in a restored, shallow lake with multiple single-model ensembles: Lake Arreskov, Denmark. Environ. Model. Softw. 2022, 156, 105501. [Google Scholar] [CrossRef]
- Fennel, K.; Mattern, J.P.; Doney, S.C.; Bopp, L.; Moore, A.M.; Wang, B.; Yu, L. Ocean biogeochemical modelling. Nat. Rev. Methods Prim. 2022, 2, 76. [Google Scholar] [CrossRef]
- Bondur, V.G.; Zhurbas, V.M.; Grebenyuk, Y.V. Mathematical modeling of turbulent jets of deep-water sewage discharge into coastal basins. Oceanology 2006, 46, 757–771. [Google Scholar] [CrossRef]
- Qaraad, B.; Bazighifan, O.; Nofal, T.A.; Ali, A.H. Neutral differential equations with distribution deviating arguments: Oscillation conditions. J. Ocean Eng. Sci. 2022, in press. [CrossRef]
- Sukhinov, A.; Chistyakov, A.; Kuznetsova, I.; Belova, Y.; Rahimbaeva, E. Solving Hydrodynamic Problems Based on a Modified Upwind Leapfrog Scheme in Areas with Complex Geometry. Mathematics 2022, 10, 3248. [Google Scholar] [CrossRef]
- Ali, A.H.; Jaber, A.S.; Yaseen, M.T.; Rasheed, M.; Bazighifan, O.; Nofal, T.A. A Comparison of Finite Difference and Finite Volume Methods with Numerical Simulations: Burgers Equation Model. Complexity 2022, 2022, 9367638. [Google Scholar] [CrossRef]
- Abdul-Hassan, N.; Ali, A.H.; Park, C. A new fifth-order iterative method free from second derivative for solving nonlinear equations. J. Appl. Math. Comput. 2022, 5, 2877–2886. [Google Scholar] [CrossRef]
- Sukhinov, A.; Belova, Y.; Chistyakov, A.; Beskopylny, A.; Meskhi, B. Mathematical Modeling of the Phytoplankton Populations Geographic Dynamics for Possible Scenarios of Changes in the Azov Sea Hydrological Regime. Mathematics 2021, 9, 3025. [Google Scholar] [CrossRef]
- Sukhinov, A.; Belova, Y.; Nikitina, A.; Sidoryakina, V. Sufficient Conditions for the Existence and Uniqueness of the Solution of the Dynamics of Biogeochemical Cycles in Coastal Systems Problem. Mathematics 2022, 10, 2092. [Google Scholar] [CrossRef]
- Michaelis, L.; Menten, M.L. Die Kinetik der Invertinwirkung. Biochem. Z. 1913, 49, 333–369. [Google Scholar]
- Sukhinov, A.I.; Chistyakov, A.E.; Alekseenko, E.V. Numerical realization of the three-dimensional model of hydrodynamics for shallow water basins on a high-performance system. Math. Model. Comput. Simul. 2011, 3, 562–574. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sukhinov, A.; Belova, Y.; Panasenko, N.; Sidoryakina, V. Research of the Solutions Proximity of Linearized and Nonlinear Problems of the Biogeochemical Process Dynamics in Coastal Systems. Mathematics 2023, 11, 575. https://doi.org/10.3390/math11030575
Sukhinov A, Belova Y, Panasenko N, Sidoryakina V. Research of the Solutions Proximity of Linearized and Nonlinear Problems of the Biogeochemical Process Dynamics in Coastal Systems. Mathematics. 2023; 11(3):575. https://doi.org/10.3390/math11030575
Chicago/Turabian StyleSukhinov, Alexander, Yulia Belova, Natalia Panasenko, and Valentina Sidoryakina. 2023. "Research of the Solutions Proximity of Linearized and Nonlinear Problems of the Biogeochemical Process Dynamics in Coastal Systems" Mathematics 11, no. 3: 575. https://doi.org/10.3390/math11030575
APA StyleSukhinov, A., Belova, Y., Panasenko, N., & Sidoryakina, V. (2023). Research of the Solutions Proximity of Linearized and Nonlinear Problems of the Biogeochemical Process Dynamics in Coastal Systems. Mathematics, 11(3), 575. https://doi.org/10.3390/math11030575