Parameter Estimation and Hypothesis Testing of The Bivariate Polynomial Ordinal Logistic Regression Model
Abstract
:1. Introduction
2. The Bivariate Polynomial Ordinal Logistic Regression (BPOLR) Model
- The cumulative logit model for
- The cumulative logit model for
- The odds ratio transformation model for and
3. Parameter Estimation of The BPOLR Model
- The first partial derivative of the ln-likelihood function to the parameter
- The first partial derivative of the ln-likelihood function to the parameter
- The first partial derivative of the ln-likelihood function to the parameter
- The first partial derivative of the ln-likelihood function to the parameter
- The first partial derivative of the ln-likelihood function to the parameter
- The first partial derivative of the ln-likelihood function to the parameter
- The first partial derivative of the ln-likelihood function to the parameter
- The first partial derivative of the ln-likelihood function to the parameter
- The first partial derivative of the ln-likelihood function to the parameter
- The first partial derivative of the ln-likelihood function to the parameter
- The first partial derivative of the ln-likelihood function to the parameter
- Step 1. Determine the initial value for
- Step 2. Calculate the gradient vector elements obtained from the first partial derivative of the ln-likelihood function for each parameter
- Step 3. Calculate the Hessian matrix that can be obtained from the following formula
- Step 4. Start the BHHH iteration process with the following formula
- Step 5. The iteration will stop if , where is a very small positive number. The last iteration produces an estimator value for each parameter.
4. Hypothesis Testing of The BPOLR Model
5. Simulation Study
- Generate three predictor variables (X1, X2 and X3) that are constructed from a standard uniform distribution
- Set the initial coefficients of the BPOLR model as follows:
- Generate two ordinal response variables (Y1 and Y2) with the following steps:
- ▪
- Determine the cumulative logit model for Y1 and Y2 as in Equations (2)–(5) and the odds ratio transformation model, as in Equations (6)–(9)
- ▪
- Determine the marginal cumulative probability for Y1 and Y2 as in Equations (10) and (11) and the joint cumulative probability as in Equation (13).
- ▪
- Determine the joint probability of Y1 and Y2
- ▪
- Generate two ordinal response variables based on the joint probabilty obtained
- Examine the independence of the response variables using the Mantel–Haenszel test to fulfill the assumption of dependence between the response variables in the bivariate model. If the response variable is independent, then the data generation process is repeated until the dependent response variable is obtained.
- Estimate the parameters of the BPOLR model based on the BHHH algorithm
- Repeat the process for up to 100 replications for each sample size
- Calculate the mean of parameter estimated and its standard error (SE)
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
AICc | Akaike’s Information Criterion Correcction |
BHHH | Berndt–Hall–Hall–Hausman |
BIC | Bayesian Information Criterion |
BPOLR | Bivariate Polynomial Ordinal Logistic Regression |
MLE | Maximum Likelihood Estimation |
MLRT | Maximum Likelihood Ratio Test. |
References
- Hosmer, D.W.; Lemeshow, S. Regression. In Applied Logistic Regression, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2000; pp. 260–288. [Google Scholar]
- Dale, J.R. Global Cross-Ratio Models for Bivariate, Discrete, Ordered Responses. Biometrics 1986, 42, 909–917. [Google Scholar] [CrossRef] [PubMed]
- Williamson, J.M.; Kim, K.M.; Lipsitz, S.R. Analyzing Bivariate Ordinal Data using a Global Odds Ratio. J. Am. Stat. Assoc. 1995, 90, 1432–1437. [Google Scholar] [CrossRef]
- Enea, M.; Lovison, G. A Penalized Approach for the Bivariate Ordered Logistic Model with Applications to Social and Medical Data. Stat. Model. 2018, 19, 467–500. [Google Scholar] [CrossRef]
- Royston, P.; Altman, D.G. Regression Using Fractional Polynomials of Continuous Covariates: Parsimonious Parametric Modelling. J. R. Stat. Soc. Ser. C Appl. Stat. 1994, 43, 429–453. [Google Scholar] [CrossRef]
- Sauerbrei, W.; Royston, P. Building Multivariable Prognostic and Diagnostic Models: Transformation of The Predictors by Using Fractional Polynomials. J. R. Stat. Soc. Ser. A Stat. Soc. 1999, 162, 71–94. [Google Scholar] [CrossRef]
- Sauerbrei, W.; Royston, P.; Binder, H. Selection of Important Variables and Determination of Functional Form for Continuous Predictors in Multivariable Model Building. Stat. Med. 2007, 26, 5512–5528. [Google Scholar] [CrossRef] [PubMed]
- Regier, M.; Parker, R.D. Smoothing Using Fractional Polynomials: An Alternative to Polynomials and Splines in Applied Research. Wiley Interdiscip. Rev. Comput. Stat. 2015, 7, 275–283. [Google Scholar] [CrossRef]
- Zhang, Z. Multivariable Fractional Polynomial Method for Regression Model. Ann. Transl. Med. 2016, 4, 174. [Google Scholar] [CrossRef] [PubMed]
- Silke, B.; Kellett, J.; Rooney, T.; Bennet, K.; O’Riordan, D. An Improved Medical Admissions Risk System using Multivariable Fractional Polynomial Logistic Regression Modelling. Q. J. Med. 2010, 103, 23–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Omer, D.; Musa, A.B. Modelling Logistic Regression using Multivariable Fractional Polynomials. Imp. J. Interdiscip. Res. 2017, 3, 8–16. [Google Scholar]
- Sohail, M.N.; Ren, J.; Muhammad, M.U.; Rizwan, T.; Iqbal, W.; Abir, S.I.; Irshad, M.; Bilal, M. Group Covariates Assessment on Real-Life Diabetes Patients by Fractional Polynomials: A Study based on Logistic Regression Modeling. J. Biotech. Res. 2019, 10, 116–125. [Google Scholar]
- Ratnasari, V.; Purhadi; Aviantholib, I.C.; Dani, A.T.R. Parameter estimation and hypothesis testing the second order of bivariate binary logistic regression (S-BBLR) model with Berndt Hall-Hall-Hausman (BHHH) iterations. Commun. Math. Biol. Neurosci. 2022, 2022, 35. [Google Scholar]
- Narendra, M.B.; Sularyo, T.S.; Soetjiningsih, S.S.; Suyitno, H.; Ranuh, I.G.N.G.; Wiradisuria, S. Tumbuh Kembang Anak dan Remaja; Sagung Seto: Jakarta, Indonesia, 2002. [Google Scholar]
- Chamidah, N.; Saifudin, T. Estimation of Children Growth Curve Based on Kernel Smoothing in Multi-Response Nonparametric Regression. Appl. Math. Sci. 2013, 7, 1839–1847. [Google Scholar] [CrossRef]
- Tilling, K.; Wallis, C.M.; Lawlor, D.A.; Hughes, R.A.; Howe, L.D. Modelling Childhood Growth Using Fractional Polynomials and Linear Splines. Ann. Nutr. Metab. 2014, 65, 129–138. [Google Scholar] [CrossRef] [PubMed]
Total | ||||
---|---|---|---|---|
1 | 2 | 3 | ||
1 | ||||
2 | ||||
3 | ||||
Total | 1 |
No. | Parameter | True Coeff. | Mean of the est. Parameter | Standard Error | ||||
---|---|---|---|---|---|---|---|---|
n = 100 | n = 200 | n = 300 | n = 100 | n = 200 | n = 300 | |||
1 | 0.05 | 0.138 | 0.097 | 0.005 | 1.193 | 0.662 | 0.519 | |
2 | 0.5 | 0.615 | 0.549 | 0.474 | 1.195 | 0.666 | 0.521 | |
3 | −1 | −1.069 | −1.176 | −0.96 | 1.144 | 0.632 | 0.501 | |
4 | 0.5 | −0.005 | 0.679 | 0.283 | 4.856 | 2.566 | 2.004 | |
5 | 2 | 3.213 | 1.949 | 2.418 | 5.492 | 2.762 | 2.169 | |
6 | 1.5 | 1.607 | 1.604 | 1.582 | 1.159 | 0.652 | 0.516 | |
7 | 0.25 | 0.382 | 0.337 | 0.236 | 1.556 | 0.777 | 0.604 | |
8 | 1.25 | 1.35 | 1.349 | 1.282 | 1.573 | 0.789 | 0.614 | |
9 | −2 | −2.34 | −2.216 | −2.032 | 1.546 | 0.826 | 0.625 | |
10 | 2 | 1.119 | 1.686 | 1.873 | 6.949 | 3.417 | 2.513 | |
11 | 2 | 4.466 | 2.928 | 2.47 | 9.294 | 4.291 | 3 | |
12 | 2 | 2.442 | 2.115 | 2.094 | 1.565 | 0.823 | 0.638 | |
13 | 0.1 | 0.636 | 0.44 | 0.155 | 5.038 | 1.941 | 1.354 | |
14 | 0.15 | 0.677 | 0.414 | 0.269 | 5.101 | 1.98 | 1.387 | |
15 | 0.25 | 0.587 | 0.461 | 0.25 | 5.047 | 1.952 | 1.354 | |
16 | 0.3 | 0.671 | 0.455 | 0.351 | 5.145 | 1.978 | 1.383 | |
17 | −1.5 | −1.926 | −1.585 | −1.662 | 5.088 | 1.992 | 1.396 | |
18 | 2 | 0.475 | 0.226 | 0.929 | 26.556 | 9.533 | 6.397 | |
19 | 3 | 7.729 | 6.204 | 5.216 | 40.777 | 13.805 | 8.713 | |
20 | 2 | 2.33 | 2.134 | 2.273 | 5.22 | 2.008 | 1.447 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rifada, M.; Ratnasari, V.; Purhadi, P. Parameter Estimation and Hypothesis Testing of The Bivariate Polynomial Ordinal Logistic Regression Model. Mathematics 2023, 11, 579. https://doi.org/10.3390/math11030579
Rifada M, Ratnasari V, Purhadi P. Parameter Estimation and Hypothesis Testing of The Bivariate Polynomial Ordinal Logistic Regression Model. Mathematics. 2023; 11(3):579. https://doi.org/10.3390/math11030579
Chicago/Turabian StyleRifada, Marisa, Vita Ratnasari, and Purhadi Purhadi. 2023. "Parameter Estimation and Hypothesis Testing of The Bivariate Polynomial Ordinal Logistic Regression Model" Mathematics 11, no. 3: 579. https://doi.org/10.3390/math11030579
APA StyleRifada, M., Ratnasari, V., & Purhadi, P. (2023). Parameter Estimation and Hypothesis Testing of The Bivariate Polynomial Ordinal Logistic Regression Model. Mathematics, 11(3), 579. https://doi.org/10.3390/math11030579