A Distributed Blocking Flowshop Scheduling with Setup Times Using Multi-Factory Collaboration Iterated Greedy Algorithm
Abstract
:1. Introduction
2. Problem-Specific Characteristics
2.1. Mathematical Model
2.2. Example Instance
2.3. Improved Rapid Evaluation Criteria
3. Proposed IG Algorithm for DBFSP_SDST
3.1. Algorithm Description
Algorithm 1: The proposed mIG |
Input: is the probability value. 01: 02: 03: while (the current CPU time <terminate time) do 04: if 05: 06: else 07: 08: end if 09: 10: end while Output: |
3.2. Solution Representation
3.3. Initialization Solution
Algorithm 2:Refresh_NEH_en |
Input: an initial solution . 01: 02: (Sort jobs according to decreasing ) 03: for to do %% uniformly allocate the jobs to the factories 04: Take job from the set of jobs and assign it in 05: end for 06: for to do 07: for to do 08: Insert in all positions in and calculate the corresponding makespan by using refresh accelerated calculation 09: and 10: end for 11: %% is the best position of factory with minimal makespan 12: Insert into position of 13: Randomly select a job from or of 14: Measure job in all positions using refresh accelerated calculation 15: Insert job in the position with minimum makespan 16: end for Output: the initial solution |
3.4. Multi-Neighborhood Structures Search
Algorithm 3: |
Input: is the initial solution. 01: Find a critical factory and secondary factory and record their scheduling sequences and , respectively. 02: and 03: do { 04: if 05: 06: else 07: 08: end if 09: if is improved 10: 11: 12: else 13: 14: end if 15: } while 16: end while Output: |
3.5. Two Iterative Processes
Algorithm 4:iterative process I |
Input: is the current primary solution; is the total number of jobs in . 01: Find a critical factory and secondary factory and record their scheduling sequence and , respectively. 02: %% Algorithm 5 03: for to do 04: %% subSection 3.4 05: if is improved 06: 07: end if 08: end for Output: |
Algorithm 5: |
Input: is the current primary solution; is the number of removed jobs from , = 01: Find a critical factory and record its scheduling sequence /* Destruction */ 02: 03: for to do 04: Select a random job from 05: and 06: end for 07: while do %% refers to the number of jobs in 08: Randomly select a job from %% is the sequence of factory 09: and 10: end while /* Reconstruction based on jumpy insertion and refresh accelerated calculation */ 11: for to do 12: for to do 13: 0 and 14: while do 15: Measure job at position of using refresh accelerated calculation 16: if is improved 17: Insert job at of , and 18: else 19: 20: end if 21: 22: end while 23: end for 24: end for Output: |
Algorithm 6:iterative process II |
Input: the current solution , counter 01: Find a critical factory and secondary factory and a factory with minimal makespan . Record their scheduling sequence , , and , respectively. /* cross-factory */ 02: for to do %% is the length of 03: 04: switch () 05: case 1: %% Section 3.5 06: break; 07: case 2: 08: break; 09: case 3: %% Section 3.4 10: break; 11: case 4: 12: break; 13: if is improved 14: 15: Record the value in 16: end for 17: for to 18: = 19: end for 20: for to do 21: = 22: end for /* inner-factory */ 23: for to do 24: 25: if is improved 26: 27: end if 28: end for Output: |
3.6. The Computational Complexity of mIG
4. Numerical Experiment and Analysis
4.1. Test Data and Performance Metric
4.2. Correctness Verification of MILP
4.3. Parameter Calibration
4.4. Evaluation of the Proposed Problem-Specific mVND Operator
4.5. Evaluation of mIG with Other Efficient Algorithms
4.6. Evolutionary Curves and Interactions for the Compared Algorithms
4.7. Friedman Tests
5. Conclusions and Future Research
- 1.
- A refresh acceleration calculation is proposed to reduce the complexity of the algorithm from to .
- 2.
- A rapid evaluation mechanism, Refresh_NEH_en, is designed to reduce the computational complexity of the initialization process.
- 3.
- Iterative process I and II strategies are designed, and each iterative process is adopted by a certain probability to enhance the diversity of solutions from a global perspective.
- 4.
- According to characteristics of the distributed pattern, cross-factory and inner-factory strategies are presented to allocate the appropriate number and sequence of jobs for each factory, which balance the exploration and exploitation of the proposed mIG algorithm.
- 5.
- The proposed mIG algorithm obtains best solutions for a total of 270 instances when comparing to five state-of-the-art algorithms. The average makespan and RPI values of mIG are 1.93% and 78.35% better than the five comparison algorithms on average, respectively. The comprehensive results prove that the proposed mIG contains dual advantages of high quality and efficient solutions, which are more suitable for solving the DBFSP_SDST.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, L.; Shen, W. Process Planning and Scheduling for Distributed Manufacturing (Springer Series in Advanced Manufacturing); Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Koen, P.A. The PDMA Handbook of New Product Development; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Naderi, B.; Ruiz, R. The Distributed Permutation Flowshop Scheduling Problem. Comput. Oper. Res. 2010, 37, 754–768. [Google Scholar] [CrossRef]
- Liu, H.; Gao, L. A Discrete Electromagnetism-Like Mechanism Algorithm for Solving Distributed Permutation Flowshop Scheduling Problem. In Proceedings of the 2010 International Conference on Manufacturing Automation, Hong Kong, China, 13–15 December 2010; pp. 156–163. [Google Scholar]
- Gao, J.; Chen, R.; Deng, W.; Liu, Y. Solving Multi-Factory Flowshop Problems with a Novel Variable Neighbourhood Descent Algorithm. J. Comput. Inf. Syst. 2012, 8, 2025–2032. [Google Scholar]
- Gao, J.; Chen, R.; Deng, W. An Efficient Tabu Search Algorithm for the Distributed Permutation Flowshop Scheduling Problem. Int. J. Prod. Res. 2012, 51, 641–651. [Google Scholar] [CrossRef]
- Wang, S.; Wang, L.; Liu, M.; Xu, Y. An Effective Estimation of Distribution Algorithm for Solving the Distributed Permutation Flow-Shop Scheduling Problem. Int. J. Prod. Econ. 2013, 145, 387–396. [Google Scholar] [CrossRef]
- Naderi, B.; Ruiz, R. A Scatter Search Algorithm for the Distributed Permutation Flowshop Scheduling Problem. Eur. J. Oper. Res. 2014, 239, 323–334. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Viagas, V.; Framinan, J.M. A Bounded-Search Iterated Greedy Algorithm for the Distributed Permutation Flowshop Scheduling Problem. Int. J. Prod. Res. 2015, 53, 1111–1123. [Google Scholar] [CrossRef]
- Komaki, M.; Malakooti, B. General Variable Neighborhood Search Algorithm to Minimize Makespan of the Distributed No-Wait Flow Shop Scheduling Problem. Prod. Eng. Res. Devel. 2017, 11, 315–329. [Google Scholar] [CrossRef]
- Ruiz, R.; Pan, Q.-K.; Naderi, B. Iterated Greedy Methods for the Distributed Permutation Flowshop Scheduling Problem. Omega 2019, 83, 213–222. [Google Scholar] [CrossRef]
- Pan, Q.-K.; Gao, L.; Wang, L. An Effective Cooperative Co-Evolutionary Algorithm for Distributed Flowshop Group Scheduling Problems. IEEE Trans. Cybern. 2022, 52, 5999–6012. [Google Scholar] [CrossRef]
- Li, W.; Chen, X.; Li, J.; Sang, H.; Han, Y.; Du, S. An Improved Iterated Greedy Algorithm for Distributed Robotic Flowshop Scheduling Withorderconstraints. Comput. Ind. Eng. 2022, 164, 107907. [Google Scholar] [CrossRef]
- Fernandez-Viagas, V.; Perez-Gonzalez, P.; Framinan, J.M. The Distributed Permutation Flow Shop to Minimise the Total Flowtime. Comput. Ind. Eng. 2018, 118, 464–477. [Google Scholar] [CrossRef]
- Huang, J.-P.; Pan, Q.-K.; Gao, L. An Effective Iterated Greedy Method for the Distributed Permutation Flowshop Scheduling Problem with Sequence-Dependent Setup Times. Swarm Evol. Comput. 2020, 59, 100742. [Google Scholar] [CrossRef]
- Han, X.; Han, Y.; Chen, Q.; Li, J.; Sang, H.; Liu, Y.; Pan, Q.; Nojima, Y. Distributed Flow Shop Scheduling with Sequence-Dependent Setup Times Using an Improved Iterated Greedy Algorithm. Complex Syst. Model. Simul. 2021, 1, 198–217. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Gao, L.; Zhang, B.; Pan, Q.-K.; Tasgetiren, M.F.; Meng, L. A Discrete Artificial Bee Colony Algorithm for Distributed Hybrid Flowshop Scheduling Problem with Sequence-Dependent Setup Times. Int. J. Prod. Res. 2021, 59, 3880–3899. [Google Scholar] [CrossRef]
- Huang, J.-P.; Pan, Q.-K.; Miao, Z.-H.; Gao, L. Effective Constructive Heuristics and Discrete Bee Colony Optimization for Distributed Flowshop with Setup Times. Eng. Appl. Artif. Intell. 2021, 97, 104016. [Google Scholar] [CrossRef]
- Karabulut, K.; Öztop, H.; Kizilay, D.; Tasgetiren, M.F.; Kandiller, L. An Evolution Strategy Approach for the Distributed Permutation Flowshop Scheduling Problem with Sequence-Dependent Setup Times. Comput. Oper. Res. 2022, 142, 105733. [Google Scholar] [CrossRef]
- Song, H.-B.; Lin, J. A Genetic Programming Hyper-Heuristic for the Distributed Assembly Permutation Flow-Shop Scheduling Problem with Sequence Dependent Setup Times. Swarm Evol. Comput. 2021, 60, 100807. [Google Scholar] [CrossRef]
- Companys, R.; Ribas, I. Efficient Constructive Procedures for the Distributed Blocking Flow Shop Scheduling Problem. In Proceedings of the 2015 International Conference on Industrial Engineering and Systems Management (IESM), Seville, Spain, 21–23 October 2015; pp. 92–98. [Google Scholar]
- Zhang, G.; Liu, B.; Wang, L.; Yu, D.; Xing, K. Distributed Co-Evolutionary Memetic Algorithm for Distributed Hybrid Differentiation Flowshop Scheduling Problem. IEEE Trans. Evol. Comput. 2022, 26, 1043–1057. [Google Scholar] [CrossRef]
- Ying, K.-C.; Lin, S.-W. Minimizing Makespan in Distributed Blocking Flowshops Using Hybrid Iterated Greedy Algorithms. IEEE Access 2017, 5, 15694–15705. [Google Scholar] [CrossRef]
- Zhang, G.; Xing, K.; Cao, F. Discrete Differential Evolution Algorithm for Distributed Blocking Flowshop Scheduling with Makespan Criterion. Eng. Appl. Artif. Intell. 2018, 76, 96–107. [Google Scholar] [CrossRef]
- Shao, Z.; Pi, D.; Shao, W. Hybrid Enhanced Discrete Fruit Fly Optimization Algorithm for Scheduling Blocking Flow-Shop in Distributed Environment. Expert Syst. Appl. 2020, 145, 113147. [Google Scholar] [CrossRef]
- Zhao, F.; Zhao, L.; Wang, L.; Song, H. An Ensemble Discrete Differential Evolution for the Distributed Blocking Flowshop Scheduling with Minimizing Makespan Criterion. Expert Syst. Appl. 2020, 160, 113678. [Google Scholar] [CrossRef]
- Han, X.; Han, Y.; Zhang, B.; Qin, H.; Li, J.; Liu, Y.; Gong, D. An Effective Iterative Greedy Algorithm for Distributed Blocking Flowshop Scheduling Problem with Balanced Energy Costs Criterion. Appl. Soft Comput. 2022, 129, 109502. [Google Scholar] [CrossRef]
- Ruiz, R.; Stützle, T. A Simple and Effective Iterated Greedy Algorithm for the Permutation Flowshop Scheduling Problem. Eur. J. Oper. Res. 2007, 177, 2033–2049. [Google Scholar] [CrossRef]
- Lin, S.-W.; Ying, K.-C.; Huang, C.-Y. Minimising Makespan in Distributed Permutation Flowshops Using a Modified Iterated Greedy Algorithm. Int. J. Prod. Res. 2013, 51, 5029–5038. [Google Scholar] [CrossRef]
- Pan, Q.-K.; Ruiz, R. An Effective Iterated Greedy Algorithm for the Mixed No-Idle Permutation Flowshop Scheduling Problem. Omega 2014, 44, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Ying, K.-C.; Lin, S.-W.; Cheng, C.-Y.; He, C.-D. Iterated Reference Greedy Algorithm for Solving Distributed No-Idle Permutation Flowshop Scheduling Problems. Comput. Ind. Eng. 2017, 110, 413–423. [Google Scholar] [CrossRef]
- Huang, Y.-Y.; Pan, Q.-K.; Huang, J.-P.; Suganthan, P.; Gao, L. An Improved Iterated Greedy Algorithm for the Distributed Assembly Permutation Flowshop Scheduling Problem. Comput. Ind. Eng. 2021, 152, 107021. [Google Scholar] [CrossRef]
- Mao, J.; Pan, Q.; Miao, Z.; Gao, L. An Effective Multi-Start Iterated Greedy Algorithm to Minimize Makespan for the Distributed Permutation Flowshop Scheduling Problem with Preventive Maintenance. Expert Syst. Appl. 2021, 169, 114495. [Google Scholar] [CrossRef]
- Ribas, I.; Companys, R.; Tort-Martorell, X. An Iterated Greedy Algorithm for Solving the Total Tardiness Parallel Blocking Flow Shop Scheduling Problem. Expert Syst. Appl. 2019, 121, 347–361. [Google Scholar] [CrossRef]
- Qin, H.; Han, Y.; Chen, Q.; Li, J.; Sang, H. A Double Level Mutation Iterated Greedy Algorithm for Blocking Hybrid Flow Shop Scheduling. Control Decis. 2022, 37, 2323–2332. [Google Scholar] [CrossRef]
- Chen, S.; Pan, Q.-K.; Gao, L. Production Scheduling for Blocking Flowshop in Distributed Environment Using Effective Heuristics and Iterated Greedy Algorithm. Robot. Comput. Integr. Manuf. 2021, 71, 102155. [Google Scholar] [CrossRef]
- Öztop, H.; Fatih Tasgetiren, M.; Eliiyi, D.T.; Pan, Q.-K. Metaheuristic Algorithms for the Hybrid Flowshop Scheduling Problem. Comput. Oper. Res. 2019, 111, 177–196. [Google Scholar] [CrossRef]
- Taillard, E. Some Efficient Heuristic Methods for the Flow Shop Sequencing Problem. Eur. J. Oper. Res. 1990, 47, 65–74. [Google Scholar] [CrossRef]
- Missaoui, A.; Ruiz, R. A Parameter-Less Iterated Greedy Method for the Hybrid Flowshop Scheduling Problem with Setup Times and Due Date Windows. Eur. J. Oper. Res. 2022, 303, 99–113. [Google Scholar] [CrossRef]
- Karabulut, K.; Kizilay, D.; Tasgetiren, M.F.; Gao, L.; Kandiller, L. An Evolution Strategy Approach for the Distributed Blocking Flowshop Scheduling Problem. Comput. Ind. Eng. 2022, 163, 107832. [Google Scholar] [CrossRef]
- Meng, L.; Zhang, C.; Ren, Y.; Zhang, B.; Lv, C. Mixed-Integer Linear Programming and Constraint Programming Formulations for Solving Distributed Flexible Job Shop Scheduling Problem. Comput. Ind. Eng. 2020, 142, 106347. [Google Scholar] [CrossRef]
- Meng, L.; Gao, K.; Ren, Y.; Zhang, B.; Sang, H.; Chaoyong, Z. Novel MILP and CP Models for Distributed Hybrid Flowshop Scheduling Problem with Sequence-Dependent Setup Times. Swarm Evol. Comput. 2022, 71, 101058. [Google Scholar] [CrossRef]
- Zhao, F.; Di, S.; Wang, L. A Hyperheuristic With Q-Learning for the Multiobjective Energy-Efficient Distributed Blocking Flow Shop Scheduling Problem. IEEE Trans. Cybern. 2022, 1–14. [Google Scholar] [CrossRef]
11 | 3 | 11 | 12 | 9 | |
25 | 3 | 13 | 5 | 17 |
7 | 14 | 6 | 21 | 5 | 24 | 1 | 22 | 12 | 10 | ||
- | 11 | 16 | 10 | 20 | - | 13 | 18 | 3 | 20 | ||
12 | - | 12 | 9 | 23 | 8 | - | 20 | 19 | 1 | ||
0 | 5 | - | 23 | 16 | 16 | 3 | - | 18 | 23 | ||
4 | 3 | 11 | - | 0 | 20 | 22 | 15 | - | 17 | ||
15 | 23 | 6 | 2 | - | 9 | 13 | 7 | 5 | - |
MILP | mIG | |||
---|---|---|---|---|
Makespan | Time (s) | Makespan | Time (s) | |
2_2_2 | 115 | 0.00 | 115 | 0.02 |
2_5_2 | 135 | 0.02 | 135 | 0.05 |
2_8_2 | 198 | 0.14 | 198 | 0.08 |
2_10_2 | 214 | 2.43 | 214 | 0.10 |
2_12_2 | 243 | 23.04 | 243 | 0.12 |
2_20_2 | 424 | 3600 | 424 | 0.20 |
2_35_2 | 763 | 3600 | 742 | 0.35 |
2_40_2 | 879 | 3600 | 844 | 0.40 |
Parameters | Parameter Level | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
0 | 0.1 | 0.2 | 0.3 | |
0.6 | 0.7 | 0.8 | 0.9 |
Experiment Number | Parameters | Response (ARPI) | |
---|---|---|---|
1 | 0 | 0.6 | 1.27 |
2 | 0 | 0.7 | 1.33 |
3 | 0 | 0.8 | 1.23 |
4 | 0 | 0.9 | 1.30 |
5 | 0.1 | 0.6 | 1.39 |
6 | 0.1 | 0.7 | 1.08 |
7 | 0.1 | 0.8 | 1.15 |
8 | 0.1 | 0.9 | 1.26 |
9 | 0.2 | 0.6 | 1.27 |
10 | 0.2 | 0.7 | 1.34 |
11 | 0.2 | 0.8 | 1.39 |
12 | 0.2 | 0.9 | 1.34 |
13 | 0.3 | 0.6 | 1.30 |
14 | 0.3 | 0.7 | 1.25 |
15 | 0.3 | 0.8 | 1.28 |
16 | 0.3 | 0.9 | 1.31 |
Level | ||
---|---|---|
1 | 1.282 | 1.310 |
2 | 1.221 | 1.249 |
3 | 1.335 | 1.260 |
4 | 1.285 | 1.304 |
Delta | 0.114 | 0.061 |
Rank | 1 | 2 |
Factory | J_M | Time (s) | Algorithms | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EA | DDE | DABC | IGR | ES | mIG0 | mIG | ||||||||||
Avg | ARPI | Avg | ARPI | Avg | ARPI | Avg | ARPI | Avg | ARPI | Avg | ARPI | Avg | ARPI | |||
100_5 | 2.5 | 4464 | 1.80 | 4506 | 2.63 | 4478 | 2.05 | 4572 | 4.20 | 4537 | 3.44 | 4497 | 2.44 | 4416 | 0.62 | |
100_8 | 4 | 5030 | 2.01 | 5116 | 3.78 | 5060 | 2.62 | 5138 | 4.20 | 5113 | 3.68 | 5079 | 2.90 | 4976 | 0.90 | |
100_10 | 5 | 5170 | 1.45 | 5241 | 2.93 | 5184 | 1.77 | 5268 | 3.44 | 5255 | 3.12 | 5211 | 2.26 | 5139 | 0.83 | |
200_5 | 5 | 8775 | 1.83 | 8839 | 2.57 | 8833 | 2.54 | 8907 | 3.34 | 8797 | 2.12 | 8710 | 1.13 | 8688 | 0.75 | |
200_8 | 8 | 9726 | 1.34 | 9844 | 2.54 | 9799 | 2.11 | 9891 | 3.05 | 9761 | 1.69 | 9701 | 1.05 | 9647 | 0.47 | |
200_10 | 10 | 10,057 | 1.06 | 10,134 | 1.85 | 10,099 | 1.50 | 10,193 | 2.44 | 10,113 | 1.59 | 10,070 | 1.14 | 10,003 | 0.45 | |
300_5 | 7.5 | 13,106 | 1.99 | 13,182 | 2.59 | 13,388 | 4.14 | 13,221 | 2.87 | 13,054 | 1.59 | 12,939 | 0.66 | 12,920 | 0.50 | |
300_8 | 12 | 14,373 | 1.57 | 14,388 | 1.68 | 14,595 | 3.09 | 14,453 | 2.15 | 14,352 | 1.40 | 14,267 | 0.81 | 14,245 | 0.61 | |
300_10 | 15 | 14,929 | 1.80 | 15,005 | 2.36 | 15,154 | 3.28 | 15,070 | 2.79 | 14,905 | 1.58 | 14,781 | 0.77 | 14,771 | 0.68 | |
400_5 | 10 | 17,195 | 1.60 | 17,300 | 2.15 | 18,135 | 6.95 | 17,371 | 2.58 | 17,251 | 1.84 | 17,073 | 0.81 | 17,041 | 0.61 | |
400_8 | 16 | 18,864 | 1.77 | 18,935 | 2.15 | 19,483 | 5.03 | 18,989 | 2.45 | 18,766 | 1.20 | 18,665 | 0.67 | 18,608 | 0.35 | |
400_10 | 20 | 19,771 | 1.68 | 19,868 | 2.15 | 20,300 | 4.30 | 19,953 | 2.57 | 19,697 | 1.26 | 19,602 | 0.74 | 19,525 | 0.35 | |
500_5 | 12.5 | 21,294 | 2.12 | 21,374 | 2.52 | 23,006 | 10.13 | 21,435 | 2.82 | 21,293 | 2.09 | 20,995 | 0.66 | 20,921 | 0.28 | |
500_8 | 20 | 23,561 | 1.73 | 23,608 | 1.96 | 24,675 | 6.50 | 23,662 | 2.19 | 23,439 | 1.18 | 23,291 | 0.53 | 23,270 | 0.44 | |
500_10 | 25 | 24,559 | 1.42 | 24,660 | 1.84 | 25,590 | 5.61 | 24,733 | 2.12 | 24,505 | 1.14 | 24,349 | 0.52 | 24,348 | 0.51 | |
Mean | - | 14,058 | 1.68 | 14,133 | 2.38 | 14,518 | 4.11 | 14,190 | 2.88 | 14,056 | 1.93 | 13,949 | 1.14 | 13,901 | 0.56 | |
Percentage | - | 1.11% | 66.67% | 1.64% | 76.47% | 4.25% | 86.37% | 2.04% | 80.56% | 1.10% | 70.98% | 0.03% | 50.88% | - | - | |
100_5 | 2.5 | 3072 | 3.24 | 3122 | 4.85 | 3060 | 2.82 | 3146 | 5.69 | 3117 | 4.68 | 3074 | 3.23 | 3001 | 0.88 | |
100_8 | 4 | 3425 | 2.19 | 3464 | 3.38 | 3419 | 2.08 | 3488 | 4.08 | 3464 | 3.40 | 3425 | 2.16 | 3364 | 0.37 | |
100_10 | 5 | 3630 | 2.54 | 3650 | 3.14 | 3619 | 2.26 | 3675 | 3.83 | 3675 | 3.81 | 3628 | 2.43 | 3562 | 0.63 | |
200_5 | 5 | 5852 | 2.21 | 5874 | 2.65 | 5854 | 2.18 | 5925 | 3.50 | 5875 | 2.55 | 5828 | 1.72 | 5766 | 0.60 | |
200_8 | 8 | 6539 | 2.44 | 6615 | 3.62 | 6523 | 2.14 | 6633 | 3.91 | 6548 | 2.58 | 6506 | 1.85 | 6428 | 0.59 | |
200_10 | 10 | 6883 | 1.91 | 6968 | 3.18 | 6879 | 1.83 | 6991 | 3.51 | 6927 | 2.52 | 6881 | 1.84 | 6793 | 0.49 | |
300_5 | 7.5 | 8793 | 2.19 | 8850 | 2.87 | 8876 | 3.04 | 8875 | 3.14 | 8778 | 1.95 | 8731 | 1.40 | 8671 | 0.66 | |
300_8 | 12 | 9734 | 1.66 | 9759 | 1.97 | 9776 | 2.07 | 9793 | 2.27 | 9697 | 1.26 | 9658 | 0.84 | 9625 | 0.45 | |
300_10 | 15 | 10,070 | 1.54 | 10,122 | 2.04 | 10,102 | 1.83 | 10,157 | 2.39 | 10,065 | 1.44 | 10,026 | 1.04 | 9971 | 0.47 | |
400_5 | 10 | 11,705 | 1.93 | 11,749 | 2.34 | 11,941 | 3.84 | 11,807 | 2.84 | 11,671 | 1.56 | 11,596 | 0.92 | 11,529 | 0.30 | |
400_8 | 16 | 12,812 | 1.91 | 12,832 | 2.07 | 12,985 | 3.25 | 12,884 | 2.47 | 12,761 | 1.46 | 12,700 | 1.00 | 12,642 | 0.51 | |
400_10 | 20 | 13,263 | 1.69 | 13,313 | 2.12 | 13,408 | 2.78 | 13,353 | 2.40 | 13,242 | 1.50 | 13,180 | 1.03 | 13,104 | 0.40 | |
500_5 | 12.5 | 14,443 | 2.11 | 14,467 | 2.27 | 14,983 | 5.81 | 14,518 | 2.62 | 14,353 | 1.48 | 14,284 | 1.00 | 14,231 | 0.53 | |
500_8 | 20 | 15,879 | 2.13 | 15,898 | 2.31 | 16,271 | 4.54 | 15,953 | 2.64 | 15,795 | 1.53 | 15,725 | 1.05 | 15,649 | 0.53 | |
500_10 | 25 | 16,482 | 1.52 | 16,541 | 1.94 | 16,818 | 3.49 | 16,588 | 2.21 | 16,442 | 1.17 | 16,391 | 0.89 | 16,304 | 0.31 | |
Mean | - | 9505 | 2.08 | 9548 | 2.72 | 9634 | 2.93 | 9586 | 3.17 | 9494 | 2.19 | 9442 | 1.49 | 9376 | 0.51 | |
Percentage | - | 1.36% | 75.48% | 1.80% | 81.25% | 2.68% | 82.59% | 2.19% | 83.91% | 1.24% | 76.71% | 0.70% | 65.77% | - | - | |
100_5 | 2.5 | 2353 | 3.38 | 2387 | 4.98 | 2325 | 2.14 | 2397 | 5.38 | 2387 | 4.84 | 2337 | 2.67 | 2301 | 1.09 | |
100_8 | 4 | 2674 | 3.46 | 2702 | 4.57 | 2653 | 2.61 | 2696 | 4.32 | 2703 | 4.56 | 2648 | 2.47 | 2607 | 0.87 | |
100_10 | 5 | 2824 | 3.04 | 2851 | 4.11 | 2809 | 2.50 | 2860 | 4.35 | 2850 | 4.01 | 2797 | 2.05 | 2758 | 0.66 | |
200_5 | 5 | 4473 | 2.62 | 4473 | 2.60 | 4454 | 2.32 | 4514 | 3.52 | 4486 | 2.87 | 4462 | 2.26 | 4389 | 0.57 | |
200_8 | 8 | 5040 | 2.51 | 5092 | 3.51 | 5030 | 2.26 | 5093 | 3.55 | 5054 | 2.76 | 5021 | 2.08 | 4953 | 0.66 | |
200_10 | 10 | 5253 | 1.86 | 5290 | 2.52 | 5251 | 1.87 | 5332 | 3.34 | 5280 | 2.42 | 5244 | 1.73 | 5183 | 0.53 | |
300_5 | 7.5 | 6691 | 2.58 | 6713 | 2.91 | 6697 | 2.61 | 6732 | 3.17 | 6687 | 2.47 | 6651 | 1.90 | 6574 | 0.64 | |
300_8 | 12 | 7373 | 1.62 | 7407 | 2.16 | 7391 | 1.77 | 7429 | 2.44 | 7378 | 1.65 | 7356 | 1.28 | 7299 | 0.44 | |
300_10 | 15 | 7703 | 1.69 | 7752 | 2.35 | 7710 | 1.78 | 7773 | 2.62 | 7727 | 1.98 | 7690 | 1.49 | 7615 | 0.45 | |
400_5 | 10 | 8755 | 2.13 | 8769 | 2.29 | 8835 | 2.98 | 8794 | 2.57 | 8707 | 1.57 | 8672 | 1.12 | 8609 | 0.33 | |
400_8 | 16 | 9681 | 2.08 | 9720 | 2.49 | 9730 | 2.56 | 9760 | 2.90 | 9642 | 1.62 | 9635 | 1.52 | 9556 | 0.65 | |
400_10 | 20 | 10,162 | 1.84 | 10,201 | 2.24 | 10,210 | 2.27 | 10,227 | 2.51 | 10,142 | 1.58 | 10,133 | 1.52 | 10,030 | 0.44 | |
500_5 | 12.5 | 10,797 | 2.01 | 10,835 | 2.42 | 11,025 | 4.04 | 10,866 | 2.69 | 10,756 | 1.58 | 10,715 | 1.14 | 10,629 | 0.30 | |
500_8 | 20 | 11,995 | 1.47 | 12,041 | 1.85 | 12,178 | 2.91 | 12,076 | 2.14 | 11,974 | 1.19 | 11,957 | 1.09 | 11,867 | 0.26 | |
500_10 | 25 | 12,477 | 1.59 | 12,489 | 1.71 | 12,598 | 2.55 | 12,527 | 2.01 | 12,427 | 1.16 | 12,404 | 0.95 | 12,339 | 0.40 | |
Mean | - | 7217 | 2.26 | 7248 | 2.85 | 7260 | 2.48 | 7272 | 3.17 | 7213 | 2.42 | 7182 | 1.68 | 7114 | 0.55 | |
Percentage | - | 1.43% | 75.66% | 1.85% | 80.70% | 2.01% | 77.82% | 2.17% | 82.65% | 1.37% | 77.27% | 0.95% | 67.26% | - | - | |
100_5 | 2.5 | 1928 | 4.61 | 1945 | 5.50 | 1902 | 3.13 | 1946 | 5.61 | 1934 | 4.95 | 1894 | 2.71 | 1862 | 1.00 | |
100_8 | 4 | 2182 | 3.77 | 2189 | 4.10 | 2152 | 2.35 | 2200 | 4.62 | 2198 | 4.52 | 2150 | 2.22 | 2125 | 1.07 | |
100_10 | 5 | 2329 | 3.45 | 2357 | 4.67 | 2305 | 2.28 | 2359 | 4.73 | 2356 | 4.64 | 2303 | 2.24 | 2270 | 0.80 | |
200_5 | 5 | 3650 | 3.09 | 3656 | 3.30 | 3630 | 2.50 | 3675 | 3.79 | 3646 | 2.99 | 3617 | 2.05 | 3568 | 0.69 | |
200_8 | 8 | 4050 | 2.76 | 4070 | 3.33 | 4024 | 2.11 | 4073 | 3.35 | 4057 | 2.96 | 4026 | 2.14 | 3960 | 0.49 | |
200_10 | 10 | 4289 | 2.48 | 4313 | 3.08 | 4263 | 1.87 | 4329 | 3.42 | 4311 | 2.98 | 4272 | 2.09 | 4207 | 0.46 | |
300_5 | 7.5 | 5297 | 2.32 | 5302 | 2.43 | 5309 | 2.49 | 5323 | 2.81 | 5304 | 2.39 | 5269 | 1.70 | 5207 | 0.45 | |
300_8 | 12 | 5949 | 2.68 | 5966 | 3.00 | 5913 | 2.06 | 5987 | 3.33 | 5938 | 2.47 | 5907 | 1.90 | 5826 | 0.45 | |
300_10 | 15 | 6239 | 2.12 | 6293 | 3.04 | 6229 | 1.90 | 6311 | 3.36 | 6244 | 2.19 | 6225 | 1.85 | 6132 | 0.29 | |
400_5 | 10 | 7030 | 5.97 | 7059 | 2.41 | 7080 | 2.67 | 7080 | 2.71 | 7007 | 1.67 | 6991 | 1.38 | 6928 | 0.41 | |
400_8 | 16 | 7807 | 2.06 | 7826 | 2.31 | 7816 | 2.17 | 7845 | 2.56 | 7778 | 1.68 | 7757 | 1.40 | 7687 | 0.42 | |
400_10 | 20 | 8153 | 1.57 | 8193 | 2.09 | 8188 | 1.97 | 8217 | 2.38 | 8141 | 1.37 | 8130 | 1.22 | 8056 | 0.26 | |
500_5 | 12.5 | 8781 | 2.27 | 8785 | 2.32 | 8895 | 3.54 | 8814 | 2.63 | 8738 | 1.79 | 8689 | 1.21 | 8636 | 0.48 | |
500_8 | 20 | 9669 | 1.72 | 9714 | 2.27 | 9743 | 2.42 | 9735 | 2.48 | 9652 | 1.48 | 9643 | 1.38 | 9555 | 0.41 | |
500_10 | 25 | 10,139 | 1.91 | 10,183 | 2.37 | 10,156 | 2.06 | 10,198 | 2.53 | 10,110 | 1.61 | 10,084 | 1.36 | 10,008 | 0.48 | |
Mean | - | 5833 | 2.85 | 5857 | 3.08 | 5840 | 2.37 | 5873 | 3.35 | 5828 | 2.65 | 5797 | 1.79 | 5735 | 0.54 | |
Percentage | - | 1.68% | 81.05% | 2.08% | 82.47% | 1.80% | 54.43% | 2.35% | 83.88% | 1.60% | 79.62% | 1.07% | 69.83% | - | - | |
100_5 | 2.5 | 1632 | 5.14 | 1637 | 5.41 | 1587 | 2.26 | 1636 | 5.42 | 1632 | 5.11 | 1593 | 2.64 | 1564 | 0.75 | |
100_8 | 4 | 1851 | 3.84 | 1851 | 3.87 | 1811 | 1.61 | 1858 | 4.21 | 1861 | 4.38 | 1818 | 2.01 | 1795 | 0.75 | |
100_10 | 5 | 2036 | 4.32 | 2053 | 5.22 | 1997 | 2.34 | 2047 | 4.90 | 2048 | 4.93 | 2005 | 2.75 | 1970 | 1.01 | |
200_5 | 5 | 3223 | 3.23 | 3081 | 3.46 | 3049 | 2.32 | 3091 | 3.84 | 3072 | 3.23 | 3046 | 2.21 | 2998 | 0.62 | |
200_8 | 8 | 3434 | 3.60 | 3456 | 4.24 | 3401 | 2.58 | 3477 | 4.87 | 3447 | 3.97 | 3403 | 2.55 | 3352 | 1.06 | |
200_10 | 10 | 3638 | 2.92 | 3659 | 3.58 | 3598 | 1.79 | 3670 | 3.89 | 3650 | 3.29 | 3609 | 2.10 | 3553 | 0.51 | |
300_5 | 7.5 | 4458 | 2.95 | 4473 | 3.28 | 4446 | 2.62 | 4489 | 3.65 | 4442 | 2.56 | 4427 | 2.18 | 4363 | 0.63 | |
300_8 | 12 | 5033 | 2.44 | 5051 | 2.89 | 5025 | 2.27 | 5063 | 3.11 | 5033 | 2.43 | 5012 | 1.94 | 4937 | 0.45 | |
300_10 | 15 | 5242 | 2.03 | 5267 | 2.46 | 5233 | 1.83 | 5290 | 2.92 | 5248 | 2.12 | 5228 | 1.69 | 5166 | 0.52 | |
400_5 | 10 | 5908 | 2.52 | 5928 | 2.89 | 5929 | 2.76 | 5939 | 3.10 | 5892 | 2.19 | 5855 | 1.57 | 5811 | 0.70 | |
400_8 | 16 | 6600 | 2.19 | 6615 | 2.42 | 6575 | 1.78 | 6636 | 2.74 | 6580 | 1.84 | 6567 | 1.65 | 6498 | 0.49 | |
400_10 | 20 | 6917 | 2.21 | 6945 | 2.68 | 6915 | 2.18 | 6953 | 2.80 | 6904 | 2.00 | 6873 | 1.55 | 6809 | 0.56 | |
500_5 | 12.5 | 7300 | 2.19 | 7302 | 2.21 | 7393 | 3.36 | 7326 | 2.53 | 7291 | 2.01 | 7260 | 1.53 | 7198 | 0.59 | |
500_8 | 20 | 8144 | 1.94 | 8155 | 2.09 | 8184 | 2.37 | 8172 | 2.31 | 8125 | 1.68 | 8096 | 1.29 | 8040 | 0.50 | |
500_10 | 25 | 8487 | 2.05 | 8519 | 2.48 | 8502 | 2.19 | 8526 | 2.55 | 8444 | 1.51 | 8421 | 1.25 | 8353 | 0.37 | |
Mean | - | 4927 | 2.90 | 4933 | 3.28 | 4910 | 2.28 | 4945 | 3.52 | 4911 | 2.88 | 4881 | 1.93 | 4827 | 0.63 | |
Percentage | - | 2.02% | 78.28% | 2.15% | 80.79% | 1.69% | 72.37% | 2.39% | 82.10% | 1.71% | 78.13% | 1.10% | 67.36% | - | - | |
100_5 | 2.5 | 1406 | 4.28 | 1409 | 4.44 | 1381 | 2.39 | 1413 | 4.80 | 1418 | 5.17 | 1375 | 1.98 | 1359 | 0.83 | |
100_8 | 4 | 1630 | 4.50 | 1642 | 5.28 | 1591 | 2.03 | 1636 | 4.91 | 1631 | 4.63 | 1594 | 2.19 | 1572 | 0.82 | |
100_10 | 5 | 1781 | 3.89 | 1795 | 4.69 | 1743 | 1.71 | 1785 | 4.10 | 1790 | 4.43 | 1746 | 1.90 | 1728 | 0.89 | |
200_5 | 5 | 2670 | 3.50 | 2672 | 3.65 | 2640 | 2.26 | 2685 | 4.08 | 2655 | 3.02 | 2639 | 2.29 | 2601 | 0.81 | |
200_8 | 8 | 3001 | 3.29 | 3012 | 3.72 | 2972 | 2.27 | 3020 | 3.99 | 3015 | 3.76 | 2972 | 2.24 | 2924 | 0.64 | |
200_10 | 10 | 3201 | 2.93 | 3212 | 3.33 | 3153 | 1.42 | 3208 | 3.17 | 3206 | 3.08 | 3168 | 1.84 | 3126 | 0.54 | |
300_5 | 7.5 | 3868 | 2.64 | 3880 | 2.94 | 3861 | 2.43 | 3899 | 3.45 | 3877 | 2.88 | 3842 | 1.94 | 3789 | 0.50 | |
300_8 | 12 | 4329 | 2.78 | 4340 | 3.02 | 4315 | 2.35 | 4352 | 3.31 | 4315 | 2.40 | 4294 | 1.89 | 4232 | 0.41 | |
300_10 | 15 | 4573 | 2.43 | 4592 | 2.93 | 4552 | 1.93 | 4603 | 3.13 | 4559 | 2.15 | 4540 | 1.67 | 4483 | 0.38 | |
400_5 | 10 | 5120 | 2.65 | 5131 | 2.88 | 5135 | 2.82 | 5136 | 2.99 | 5091 | 2.05 | 5072 | 1.64 | 5024 | 0.59 | |
400_8 | 16 | 5725 | 2.43 | 5745 | 2.80 | 5716 | 2.19 | 5753 | 2.94 | 5706 | 2.07 | 5684 | 1.67 | 5615 | 0.36 | |
400_10 | 20 | 5970 | 2.24 | 5982 | 2.44 | 5963 | 2.10 | 5990 | 2.57 | 5959 | 2.05 | 5930 | 1.53 | 5872 | 0.50 | |
500_5 | 12.5 | 6323 | 2.31 | 6359 | 2.83 | 6362 | 2.83 | 6368 | 3.00 | 6285 | 1.69 | 6273 | 1.46 | 6213 | 0.39 | |
500_8 | 20 | 6986 | 1.88 | 7005 | 2.17 | 7009 | 2.15 | 7029 | 2.49 | 6965 | 1.53 | 6951 | 1.31 | 6888 | 0.34 | |
500_10 | 25 | 7369 | 1.90 | 7411 | 2.53 | 7382 | 2.07 | 7418 | 2.61 | 7344 | 1.53 | 7322 | 1.23 | 7264 | 0.37 | |
Mean | - | 4263 | 2.91 | 4279 | 3.31 | 4252 | 2.20 | 4286 | 3.44 | 4254 | 2.83 | 4227 | 1.79 | 4179 | 0.56 | |
Percentage | - | 1.97% | 80.76% | 2.34% | 83.08% | 1.72% | 74.55% | 2.50% | 83.72% | 1.76% | 80.21% | 1.14% | 68.72% | - | - |
Algorithms | Ranks | CN | Mean | Std. Deviation | Min | Max |
---|---|---|---|---|---|---|
EA | 3.96 | 270 | 2.934 | 1.1850 | 0.49 | 6.39 |
DDE | 5.36 | 270 | 3.469 | 1.3126 | 0.74 | 7.38 |
DABC | 4.49 | 270 | 3.254 | 1.2517 | 1.13 | 11.29 |
IGR | 6.49 | 270 | 3.789 | 1.2246 | 1.18 | 7.21 |
ES | 4.24 | 270 | 3.014 | 1.3478 | 0.61 | 6.93 |
mIG0 | 2.41 | 270 | 2.160 | 0.8912 | 0.28 | 4.93 |
mIG | 1.04 | 270 | 0.578 | 0.2708 | 0.11 | 1.53 |
p-value | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Han, Y.; Wang, Y.; Li, J.; Gao, K. A Distributed Blocking Flowshop Scheduling with Setup Times Using Multi-Factory Collaboration Iterated Greedy Algorithm. Mathematics 2023, 11, 581. https://doi.org/10.3390/math11030581
Zhang C, Han Y, Wang Y, Li J, Gao K. A Distributed Blocking Flowshop Scheduling with Setup Times Using Multi-Factory Collaboration Iterated Greedy Algorithm. Mathematics. 2023; 11(3):581. https://doi.org/10.3390/math11030581
Chicago/Turabian StyleZhang, Chenyao, Yuyan Han, Yuting Wang, Junqing Li, and Kaizhou Gao. 2023. "A Distributed Blocking Flowshop Scheduling with Setup Times Using Multi-Factory Collaboration Iterated Greedy Algorithm" Mathematics 11, no. 3: 581. https://doi.org/10.3390/math11030581
APA StyleZhang, C., Han, Y., Wang, Y., Li, J., & Gao, K. (2023). A Distributed Blocking Flowshop Scheduling with Setup Times Using Multi-Factory Collaboration Iterated Greedy Algorithm. Mathematics, 11(3), 581. https://doi.org/10.3390/math11030581