Global Value Chains and Industry 4.0 in the Context of Lean Workplaces for Enhancing Company Performance and Its Comprehension via the Digital Readiness and Expertise of Workforce in the V4 Nations
Abstract
:1. Introduction
2. Literature Review
- (1)
- Do all business sectors benefit from the deployment of Industry 4.0 components?
- (2)
- What is the level of the digital preparedness of European economies, particularly the V4 nations?
3. Materials and Methods
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kumar, S.; Raut, R.D.; Narwane, V.S.; Narkhede, B.E. Applications of industry 4.0 to overcome the COVID-19 operational challenges. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 1283–1289. [Google Scholar] [CrossRef]
- Minarik, M.; Zabojnik, S.; Pasztorova, J. Sources of Value-Added in V4 automotive GVCs: The Case of Transport and Storage Services and Firm Level Technology Absorption. Cent. Eur. Bus. Rev. 2022, 11, 12–14. [Google Scholar] [CrossRef]
- Gibson, P. Internet of Things Sensing Infrastructures and Urban Big Data Analytics in Smart Sustainable City Governance and Management. Geopolit. Hist. Int. Relat. 2021, 13, 42–52. [Google Scholar] [CrossRef]
- Kolberg, D.; Zuhkle, D. Lean Automation enabled by Industry 4.0 Technologies. IFAC-PapersOnLine 2015, 48, 1870–1875. [Google Scholar] [CrossRef]
- Zhong, R.; Xu, X.; Klotz, E.; Newman, S.T. Intelligent Manufacturing in the Context of Industry 4.0: A Review. Engineering 2021, 3, 616–630. [Google Scholar] [CrossRef]
- Schoeneman, J.; Zhou, B.L.; Desmarais, B.A. Complex dependence in foreign direct investment: Network theory and empirical analysis. Political Sci. Res. Methods 2022, 12, 243–259. [Google Scholar] [CrossRef]
- Modibbo, U.M.; Gupta, N.; Chatterjee, P.; Ali, I. A Systematic Review on the Emergence and Applications of Industry 4.0. In Computational Modelling in Industry 4.0.; Ali, I., Chatterjee, P., Shaikh, A.A., Gupta, N., AlArjani, A., Eds.; Springer: Singapore, 2022. [Google Scholar] [CrossRef]
- Stock, T.; Obenaus, M.; Kunz, S.; Kohl, H. Industry 4.0 as enabler for a sustainable development: A qualitative assessment of its ecological and social potential. Process. Saf. Environ. Prot. 2018, 118, 254–267. [Google Scholar] [CrossRef]
- Kotlebova, J.; Arendas, P.; Chovancova, B. Government expenditures in the support of technological innovations and impact on stock market and real economy: The empirical evidence from the US and Germany. Equilib.-Q. J. Econ. Econ. Policy 2020, 15, 717–734. [Google Scholar] [CrossRef]
- Cerna, I.; Elteto, A.; Folfas, P.; Kuznar, A.; Krenkova, E.; Minarik, M.; Przezdziecka, E.; Szalavetz, A.; Tury, G.; Zabojnik, S. GVCs in Central Europe—A Perspective of the Automotive Sector after COVID-19; Ekonom: Bratislava, Slovakia, 2022; Available online: https://gvcsv4.euba.sk/images/PDF/monograph.pdf (accessed on 4 June 2022).
- Hatzigeorgiou, A.; Lodefalk, M. A literature review of the nexus between migration and internationalization. J. Int. Trade Econ. Dev. 2021, 30, 319–340. [Google Scholar] [CrossRef]
- Nikulin, D.; Wolszczak-Derlacz, J.; Parteka, A. GVC and wage dispersion. Firm level evidence from employee-employer database. Equilib. Q. J. Econ. Econ. Policy 2021, 16, 357–375. [Google Scholar] [CrossRef]
- Bonab, A.-F. The Development of Competitive Advantages of Brand in the Automotive Industry (Case Study: Pars Khodro Co). J. Internet Bank. Commer. 2017, 22, S8. [Google Scholar]
- Pavlinek, P.; Zenka, J. Value creation and value capture in the automotive industry: Empirical evidence from Czechia. Environ. Plan. 2016, 48, 937–959. [Google Scholar] [CrossRef] [Green Version]
- Gereffi, G.; Humphrey, J.; Sturgeon, T. The governance of global value chains. Rev. Int. Political Econ. 2005, 12, 78–104. [Google Scholar] [CrossRef]
- Pugliese, E.; Napolitano, L.; Zaccaria, A.; Pietronero, L. Coherent diversification in corporate technological portfolios. PLoS ONE 2019, 14, e0223403. [Google Scholar] [CrossRef]
- Mondejar, M.A.; Avtar, R.; Diaz, H.L.; Dubey, R.K.; Esteban, J.; Gomez-Morales, A.; Hallam, B.; Mbungu, N.T.; Okolo, C.C.; Prasad, K.A.; et al. Digitalization to achieve sustainable development goals: Steps towards a Smart Green Planet. Sci. Total Environ. 2021, 794, 148539. [Google Scholar] [CrossRef]
- Mugge, D. International economic statistics: Biased arbiters in global affairs? Fudan J. Humanit. Soc. Sci. 2020, 13, 93–112. [Google Scholar] [CrossRef] [Green Version]
- Ye, C.S.; Ye, Q.; Shi, X.P.; Sun, Y.P. Technology gap, global value chain and carbon intensity: Evidence from global manufacturing industries. Energy Policy 2020, 137, 111094. [Google Scholar] [CrossRef]
- Gray, M.; Kovacova, M. Internet of Things Sensors and Digital Urban Governance in Data-driven Smart Sustainable Cities. Geopolit. Hist. Int. Relat. 2021, 13, 107–120. [Google Scholar]
- Kliestik, T.; Zvarikova, K.; Lazaroiu, G. Data-driven Machine Learning and Neural Network Algorithms in the Retailing Environment: Consumer Engagement, Experience, and Purchase Behaviors. Econ. Manag. Financ. Mark. 2022, 17, 57–69. [Google Scholar] [CrossRef]
- Klingenberg, C.O.; Borges, M.A.V.; Antunes, J., Jr. Industry 4.0 as a data-driven paradigm: A systematic literature review on technologies. J. Manuf. Technol. Manag. 2019, 32, 570–592. [Google Scholar] [CrossRef]
- Rogers, S.; Zvarikova, K. Big Data-driven Algorithmic Governance in Sustainable Smart Manufacturing: Robotic Process and Cognitive Automation Technologies. Anal. Metaphys. 2021, 20, 130–144. [Google Scholar]
- Ruttimann, B.G.; Stockli, M.T. Lean and Industry 4.0—Twins, Partners, or Contenders? A Due Clarification Regarding the Supposed Clash of Two Production Systems. J. Sci. Serv. Manag. 2016, 9, 485–500. [Google Scholar] [CrossRef] [Green Version]
- Dalenogare, L.; Benitez, N.; Ayala, N.F.; Frank, A.G. The expected contribution of Industry 4.0 technologies for industrial performance. Int. J. Prod. Econ. 2018, 204, 383–394. [Google Scholar] [CrossRef]
- Brioschi, M.; Bonardi, M.; Fabrizio, N.; Fuggetta, A.; Vrga, E.S.; Zuccala, M. Enabling and Promoting Sustainability through Digital API Ecosystems: An example of successful implementation in the smart city domain. Technol. Innov. Manag. Rev. 2021, 11, 4–10. [Google Scholar] [CrossRef]
- Hinds, P.S.; Vogel, R.J.; Clarke-Steffen, L. The possibilities and pitfalls of doing a secondary analysis of a qualitative data set. Qual. Health Res. 1997, 7, 408–424. [Google Scholar] [CrossRef]
- Svabova, L.; Tesarova, E.N.; Durica, M.; Strakova, L. Evaluation of the impacts of the COVID-19 pandemic on the development of the unemployment rate in Slovakia: Counterfactual before-after comparison. Equilib. Q. J. Econ. Econ. Policy 2021, 16, 261–284. [Google Scholar] [CrossRef]
- Verhof, P.C.; Broekhuizen, T.; Bart, Y.; Bhattacharya, A.; Dong, J.Q.; Fabian, N.; Haenlein, M. Digital transformation: A multidisciplinary reflection and research agenda. J. Bus. Res. 2021, 122, 889–901. [Google Scholar] [CrossRef]
- Said, M.; Shaheen, A.M.; Ginidi, A.R.; El-Sehiemy, R.A.; Mahmoud, K.; Lehtonen, M.; Darwish, M.M.F. Estimating Parameters of Photovoltaic Models Using Accurate Turbulent Flow of Water Optimizer. processes 2021, 9, 627. [Google Scholar] [CrossRef]
- Durana, P.; Krastev, V.; Buckner, K. Digital Twin Modeling, Multi-Sensor Fusion Technology, and Data Mining Algorithms in Cloud and Edge Computing-based Smart City Environments. Geopolit. Hist. Int. Relat. 2022, 14, 91–106. [Google Scholar] [CrossRef]
- Lawrence, J.; Durana, P. Artificial Intelligence-driven Big Data Analytics, Predictive Maintenance Systems, and Internet of Things-Based Real-Time Production Logistics in Sustainable Industry 4.0 Wireless Networks. J. Self-Gov. Manag. Econ. 2021, 9, 62–75. [Google Scholar]
- Zavadska, Z.; Zavadsky, J. Industry 4.0 and Intelligent Technologies in the Development of the Corporate Operation Management; Belianum: Banska Bystrica, Slovakia, 2020; pp. 130–155. [Google Scholar]
- Kordalska, A.; Olczyk, M. New patterns in the position of CEE countries in global value chains: Functional specialisation approach. Oeconomia Copernic. 2021, 12, 35–52. [Google Scholar] [CrossRef]
- Schot, J.; Steinmueller, W.E. Three frames for innovation policy: R&D, systems of innovation and transformative change. Res. Policy 2018, 47, 1554–1567. [Google Scholar]
- Lãzãroiu, G.; Harrison, A. Internet of Things Sensing Infrastructures and Data-driven Planning Technologies in Smart Sustainable City Governance and Management. Geopolit. Hist. Int. Relat. 2021, 13, 23–36. [Google Scholar]
- Sony, M. Pros and cons of implementing Industry 4.0 for the organizations: A review and synthesis of evidence. Prod. Manuf. Res. 2020, 8, 244–272. [Google Scholar] [CrossRef]
- Tao, F.; Qi, Q.; Wan, L.; Nee, A.Y.C. Digital Twins and Cyber-Physical Systems toward Smart Manufacturing and Industry 4.0: Correlation and Comparison. Engineering 2019, 5, 653–661. [Google Scholar] [CrossRef]
- Belhadi, A.; Kamble, S.; Jabbour, C.J.C.; Gunasekaran, A.; Ndubisi, N.O.; Venkatesh, M. Manufacturing and service supply chain resilience to the COVID-19 outbreak: Lessons learned from the automobile and airline industries. Technol. Forecast. Soc. Chang. 2021, 163, 120–447. [Google Scholar] [CrossRef]
- Sjodin, D.R.; Parida, V.; Leksell, M.; Petrovic, A. Smart Factory Implementation and Process Innovation. Res.-Technol. Manag. 2018, 61, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Johnson, E.; Nica, E. Connected Vehicle Technologies, Autonomous Driving Perception Algorithms, and Smart Sustainable Urban Mobility Behaviors in Networked Transport Systems. Contemp. Read. Law Soc. Justice 2021, 13, 37–50. [Google Scholar] [CrossRef]
- Kubickova, L.; Kormanakova, M.; Vesela, L.; Jelinkova, Z. The Implementation of Industry 4.0 Elements as a Tool Stimulating the Competitiveness of Engineering Enterprises. J. Compet. 2021, 13, 76–94. [Google Scholar] [CrossRef]
- Yuan, S. Analysis of Consumer Behavior Data Based on Deep Neural Network Model. Journal of Function Spaces. 2022, 4938278. [Google Scholar] [CrossRef]
- Vuong, T.K.; Mansori, S. An Analysis of the Effects of the Fourth Industrial Revolution on Vietnamese Enterprises. Manag. Dyn. Knowl. Econ. 2021, 9, 447–459. [Google Scholar]
- Chang, B.G.; Wu, K.S. The nonlinear relationship between financial flexibility and enter-prise risk-taking during the COVID-19 pandemic in Taiwan’s semiconductor industry. Oeconomia Copernic. 2021, 12, 307–333. [Google Scholar] [CrossRef]
- Lãzãroiu, G.; Kliestik, T.; Novak, A. Internet of Things Smart Devices, Industrial Artificial Intelligence, and Real-Time Sensor Networks in Sustainable Cyber-Physical Production Systems. J. Self-Gov. Manag. Econ. 2021, 9, 20–30. [Google Scholar] [CrossRef]
- Sierra-Perez, J.; Teixeira, J.G.; Romero-Piqueras, C.; Patricio, L. Designing sustainable services with the ECO-Service design method: Bridging user experience with environmental performance. J. Clean. Prod. 2021, 305, 127228. [Google Scholar] [CrossRef]
- Li, D.X.; Eric, L.X.; Ling, L. Industry 4.0: State of the art and future trends. Int. J. Prod. Res. 2018, 8, 2941–2962. [Google Scholar] [CrossRef] [Green Version]
- Lowe, R. Networked and Integrated Sustainable Urban Technologies in Internet of Things-enabled Smart City Governance. Geopolit. Hist. Int. Relat. 2021, 13, 75–85. [Google Scholar] [CrossRef]
- Adams, D.; Novak, A.; Kliestik, T.; Potcovaru, A.M. Sensor-based Big Data Applications and Environmentally Sustainable Urban Development in Internet of Things-enabled Smart Cities. Geopolit. Hist. Int. Relat. 2021, 13, 108–118. [Google Scholar] [CrossRef]
- Skare, M.; Gil-Alana, L.A.; Claudio-Quiroga, G.; Prziklas Druzeta, R. Income inequality in China 1952–2017: Persistence and main determinants. Oeconomia Copernic. 2021, 12, 863–888. [Google Scholar] [CrossRef]
- Clayton, E.; Kral, P. Autonomous Driving Algorithms and Behaviors, Sensing and Computing Technologies, and Connected Vehicle Data in Smart Transportation Networks. Contemp. Read. Law Soc. Justice 2021, 13, 9–22. [Google Scholar]
- Womack, J.; Jones, D. From lean production to the lean enterprise. Harward Business Review. 1994, 2, 93–103. [Google Scholar]
- Liker, J. Tak to Dela Toyota: 14 Zasad Rizeni Najvetsiho Vyrobce; Management Press: Praha, Czech Republic, 2004; pp. 30–35. [Google Scholar]
- Shah, R.; Ward, P. Lean manufacturing: Context, practise bundles, and performance. J. Oper. Manag. 2003, 21, 129–149. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Gu, S. Industry 4.0, a revolution that requires technology and national strategies. Complex Intell. Syst. 2021, 7, 1311–1325. [Google Scholar] [CrossRef]
- Galbraith, A.; Podhorska, I. Artificial Intelligence Data-driven Internet of Things Systems, Robotic Wireless Sensor Networks, and Sustainable Organizational Performance in Cyber-Physical Smart Manufacturing. Econ. Manag. Financ. Mark. 2021, 16, 56–69. [Google Scholar]
- Martinez-Noya, A.; Garcia-Canal, E. International evidence on R&D services outsourcing practices by technological firms. Multinatl. Bus. Rev. 2014, 22, 372–393. [Google Scholar]
- Andronie, M.; Lãzãroiu, G.; Iatagan, M.; Uța, C.; Ștefãnescu, R.; Cocoșatu, M. Artificial Intelligence-Based Decision-Making Algorithms, Internet of Things Sensing Networks, and Deep Learning-Assisted Smart Process Management in Cyber-Physical Production Systems. Electronics 2021, 10, 2497. [Google Scholar] [CrossRef]
- Bednarikova, M. Uvod do Metodologie Vied, 1st ed.; FFTU: Trnava, Slovak Republic, 2013; pp. 18–72. [Google Scholar]
- Mehmann, J.; Teuteberg, F. The fourth-party logistics service provider approach to support sustainable development goals in transportation—A case study of the German agricultural bulk logistics sector. J. Clean. Prod. 2016, 126, 382–393. [Google Scholar] [CrossRef]
- Hamilton, S. Deep Learning Computer Vision Algorithms, Customer Engagement Tools, and Virtual Marketplace Dynamics Data in the Metaverse Economy. J. Self-Gov. Manag. Econ. 2022, 10, 37–51. [Google Scholar] [CrossRef]
- Adler, P.; Goldoftas, B.; Levine, D. Flexibility Versus Efficiency? A Case Study of Model Changeovers in the Toyota Production System. Organ. Sci. 1999, 10, 43–68. [Google Scholar] [CrossRef]
- Vinerean, S.; Budac, C.; Baltador, L.A.; Dabija, D.-C. Assessing the Effects of the COVID-19 Pandemic on M-Commerce Adoption: An Adapted UTAUT2 Approach. Electronics 2022, 11, 1269. [Google Scholar] [CrossRef]
- Hermann, M.; Pentek, T.; Otto, B. Design Principles for Industry 4.0 Scenarios: A Literature Review. Technische Universitat Dortmund. 2015. Available online: http://www.snom.mb.tu-dortmund.de/cms/de/forschung/Arbeitsberichte/Design-Principles-for-Industrie-4_0-Scenarios.pdf (accessed on 2 May 2022).
- Krykavskyy, A.; Pokhylchenko, O.; Hayvanovych, N. Supply chain development drivers in industry 4.0 in Ukrainian enterprises. Oeconomia Copernic. 2019, 10, 273–290. [Google Scholar] [CrossRef]
- Krulicky, T.; Horak, J. Business performance and financial health assessment through artificial intelligence. Ekon.-Manaz. Spektrum 2021, 15, 38–51. [Google Scholar] [CrossRef]
- Kovacova, M.; Lewis, E. Smart Factory Performance, Cognitive Automation, and Industrial Big Data Analytics in Sustainable Manufacturing Internet of Things. J. Self-Gov. Manag. Econ. 2021, 9, 9–21. [Google Scholar]
- Hoffmann, M. Smart Agents for the Industry 4.0; Springer: Berlin, Germany, 2019; pp. 226–297. [Google Scholar]
- Pisar, P.; Bilkova, D. Controlling as a tool for SME management with an emphasis on innovations in the context of Industry 4.0. Equilib.-Q. J. Econ. Econ. Policy 2019, 14, 763–785. [Google Scholar] [CrossRef] [Green Version]
- Bankowska, K.; Ferrando, A.; Garcia, A. Access to finance for small and medium-sized enterprises since the financial crisis: Evidence from survey data. ECB Econ. Bull. 2020, 4, 5–12. [Google Scholar]
- Zabojnik, S. Selected Problems of International Trade and International Business; Econom: Bratislava, Slovakia, 2015; pp. 28–61. [Google Scholar]
- Lyons, N. Deep Learning-based Computer Vision Algorithms, Immersive Analytics and Simulation Software, and Virtual Reality Modeling Tools in Digital Twin-Driven Smart Manufacturing. Econ. Manag. Financ. Mark. 2022, 17, 67–81. [Google Scholar] [CrossRef]
- Glogovețan, A.I.; Dabija, D.-C.; Fiore, M.; Pocol, C.B. Consumer Perception and Understanding of European Union Quality Schemes: A Systematic Literature Review. Sustainability 2022, 14, 1667. [Google Scholar] [CrossRef]
- Poliak, M.; Poliakova, A.; Svabova, L.; Zhuravleva, A.N.; Nica, E. Competitiveness of Price in International Road Freight Transport. J. Compet. 2021, 13, 83–98. [Google Scholar] [CrossRef]
- Hopkins, E.; Siekelova, A. Internet of Things Sensing Networks, Smart Manufacturing Big Data, and Digitized Mass Production in Sustainable Industry 4.0. Econ. Manag. Financ. Mark. 2021, 16, 28–41. [Google Scholar]
- Konecny, V.; Barnett, C.; Poliak, M. Sensing and Computing Technologies, Intelligent Vehicular Networks, and Big Data-Driven Algorithmic Decision-Making in Smart Sustainable Urbanism. Contemp. Read. Law Soc. Justice 2021, 13, 30–39. [Google Scholar] [CrossRef]
- Kovacova, M.; Lãzãroiu, G. Sustainable Organizational Performance, Cyber-Physical Production Networks, and Deep Learning-assisted Smart Process Planning in Industry 4.0-based Manufacturing Systems. Econ. Manag. Financ. Mark. 2021, 16, 41–54. [Google Scholar] [CrossRef]
- Wallace, S.; Lãzãroiu, G. Predictive Control Algorithms, Real-World Connected Vehicle Data, and Smart Mobility Technologies in Intelligent Transportation Planning and Engineering. Contemp. Read. Law Soc. Justice 2021, 13, 79–92. [Google Scholar] [CrossRef]
- Durana, P.; Perkins, N.; Valaskova, K. Artificial Intelligence Data-driven Internet of Things Systems, Real-Time Advanced Analytics, and Cyber-Physical Production Networks in Sustainable Smart Manufacturing. Econ. Manag. Financ. Mark. 2021, 16, 20–30. [Google Scholar]
- Franklin, K.; Potcovaru, A.M. Autonomous Vehicle Perception Sensor Data in Sustainable and Smart Urban Transport Systems. Contemp. Read. Law Soc. Justice 2021, 13, 101–110. [Google Scholar] [CrossRef]
- Valaskova, K.; Nagy, M.; Zabojnik, S.; Lãzãroiu, G. Industry 4.0 Wireless Networks and Cyber-Physical Smart Manufacturing Systems as Accelerators of Value-Added Growth in Slovak Exports. Mathematics 2022, 10, 2452. [Google Scholar] [CrossRef]
- Michulek, J.; Krizanova, A. Analysis of Internal Marketing Communication Tools of a Selected Company in Industry 4.0 Using McKinsey 7S Analysis. Manag. Dyn. Knowl. Econ. 2022, 10, 154–166. [Google Scholar] [CrossRef]
- Ionescu, L. Leveraging Green Finance for Low-Carbon Energy, Sustainable Economic Development, and Climate Change Mitigation during the COVID-19 Pandemic. Rev. Contemp. Philos. 2021, 20, 175–186. [Google Scholar] [CrossRef]
- Lãzãroiu, G.; Andronie, M.; Iatagan, M.; Geamãnu, M.; Ștefãnescu, R.; Dijmãrescu, I. Deep Learning-Assisted Smart Process Planning, Robotic Wireless Sensor Networks, and Geospatial Big Data Management Algorithms in the Internet of Manufacturing Things. ISPRS Int. J. Geo-Inf. 2022, 11, 277. [Google Scholar] [CrossRef]
- Gajdosikova, D.; Valaskova, K. The Impact of Firm Size on Corporate Indebtedness: A Case Study of Slovak Enterprises. Folia Oeconomica Stetinensia 2022, 22, 63–84. [Google Scholar] [CrossRef]
- Cazazian, R. Blockchain Technology Adoption in Artificial Intelligence-based Digital Financial Services, Accounting Information Systems, and Audit Quality Control. Rev. Contemp. Philos. 2022, 21, 55–71. [Google Scholar] [CrossRef]
- Nica, E.; Kliestik, T.; Valaskova, K.; Sabie, O.-M. The Economics of the Metaverse: Immersive Virtual Technologies, Consumer Digital Engagement, and Augmented Reality Shopping Experience. Smart Gov. 2022, 1, 21–34. [Google Scholar] [CrossRef]
- Kral, P.; Janoskova, K.; Dawson, A. Virtual Skill Acquisition, Remote Working Tools, and Employee Engagement and Retention on Blockchain-based Metaverse Platforms. Psychosociol. Issues Hum. Resour. Manag. 2022, 10, 92–105. [Google Scholar] [CrossRef]
- Andronie, M.; Lãzãroiu, G.; Ștefãnescu, R.; Uțã, C.; Dijmãrescu, I. Sustainable, Smart, and Sensing Technologies for Cyber-Physical Manufacturing Systems: A Systematic Literature Review. Sustainability 2021, 13, 5495. [Google Scholar] [CrossRef]
- Durana, P.; Krulicky, T.; Taylor, E. Working in the Metaverse: Virtual Recruitment, Cognitive Analytics Management, and Immersive Visualization Systems. Psychosociological Issues Hum. Resour. Manag. 2022, 10, 135–148. [Google Scholar] [CrossRef]
- Lãzãroiu, G.; Ionescu, L.; Andronie, M.; Dijmãrescu, I. Sustainability Management and Performance in the Urban Corporate Economy: A Systematic Literature Review. Sustainability 2020, 12, 7705. [Google Scholar] [CrossRef]
- Rovnak, M.; Kalistova, A.; Stofejova, L.; Benko, M.; Salabura, D. Management of Sustainable Mobility and The Perception of The Concept of Electric Vehicle Deployment. Pol. J. Manag. Stud. 2022, 25, 266–281. [Google Scholar]
- Rovnak, M.; Tokarcik, A.; Stofejova, L.; Novotny, R.; Adamisin, P.; Bakon, M. Design of the model of optimization of energy efficiency management processes at the regional level of Slovakia. Energies 2021, 20, 502. [Google Scholar] [CrossRef]
- Durana, P.; Valaskova, K. The Nexus between Smart Sensors and the Bankruptcy Protection of SMEs. Sensors 2022, 22, 8671. [Google Scholar] [CrossRef]
- Gajdosikova, D.; Valaskova, K.; Kliestik, T.; Machova, V. COVID-19 Pandemic and Its Impact on Challenges in the Construction Sector: A Case Study of Slovak Enterprises. Mathematics 2022, 10, 3130. [Google Scholar] [CrossRef]
- Valaskova, K.; Androniceanu, A.-M.; Zvarikova, K.; Olah, J. Bonds Between Earnings Management and Corporate Financial Stability in the Context of the Competitive Ability of Enterprises. J. Compet. 2021, 13, 167–184. [Google Scholar] [CrossRef]
- Kliestik, T.; Poliak, M.; Popescu, G.H. Digital Twin Simulation and Modeling Tools, Computer Vision Algorithms, and Urban Sensing Technologies in Immersive 3D Environments. Geopolit. Hist. Int. Relat. 2022, 14, 9–25. [Google Scholar] [CrossRef]
- Dawson, A. Data-driven Consumer Engagement, Virtual Immersive Shopping Experiences, and Blockchain-based Digital Assets in the Retail Metaverse. Journal of Self-Governance and Management Economics. 2022, 10, 52–66. [Google Scholar] [CrossRef]
- Blake, R. Metaverse Technologies in the Virtual Economy: Deep Learning Computer Vision Algorithms, Blockchain-based Digital Assets, and Immersive Shared Worlds. Smart Gov. 2022, 1, 35–48. [Google Scholar] [CrossRef]
- Papik, M.; Papikova, L. Impacts of crisis on SME bankruptcy prediction models’ performance. Expert Systems with Applications. 2023, 214, 119072. [Google Scholar] [CrossRef]
- Balcerzak, A.P.; Nica, E.; Rogalska, E.; Poliak, M.; Kliestik, R.; Sabie, O.M. Blockchain Technology and Smart Contracts in Decentralized Governance Systems. Adm. Sci. 2022, 12, 96. [Google Scholar] [CrossRef]
- Valaskova, K.; Vochozka, M.; Lăzăroiu, G. Immersive 3D Technologies, Spatial Computing and Visual Perception Algorithms, and Event Modeling and Forecasting Tools on Blockchain-based Metaverse Platforms. Anal. Metaphys. 2022, 21, 74–90. [Google Scholar] [CrossRef]
- Zvarikova, K.; Horak, J.; Bradley, P. Machine and Deep Learning Algorithms, Computer Vision Technologies, and Internet of Things-based Healthcare Monitoring Systems in COVID-19 Prevention, Testing, Detection, and Treatment. Am. J. Med. Res. 2022, 9, 145–160. [Google Scholar] [CrossRef]
- Nemțeanu, S.M.; Dabija, D.C.; Gazzola, P.; Vătămanescu, E.M. Social Reporting Impact on Non-Profit Stakeholder Satisfaction and Trust during the COVID-19 Pandemic on an Emerging Market. Sustainability 2022, 14, 13153. [Google Scholar] [CrossRef]
- Zvarikova, K.; Rowland, Z.; Nica, E. Multisensor Fusion and Dynamic Routing Technologies, Virtual Navigation and Simulation Modeling Tools, and Image Processing Computational and Visual Cognitive Algorithms across Web3-powered Metaverse Worlds. Anal. Metaphys. 2022, 21, 125–141. [Google Scholar] [CrossRef]
- Koveschnikov, A.; Dabija, D.C.; Inkpen, A.; Vătămănescu, E.M. Not Running Out of Steam after 30 Years: The Enduring Relevance of Central and Eastern Europe for International Management Scholarship. J. Int. Manag. 2022, 28, 100973. [Google Scholar] [CrossRef]
- Kovacova, M.; Horak, J.; Popescu, G.H. Haptic and Biometric Sensor Technologies, Deep Learning-based Image Classification Algorithms, and Movement and Behavior Tracking Tools in the Metaverse Economy. Anal. Metaphys. 2022, 21, 176–192. [Google Scholar] [CrossRef]
- Vătămănescu, E.-M.; Brătianu, C.; Dabija, D.-C.; Popa, S. Capitalizing Online Knowledge Networks: From Individual Knowledge Acquisition towards Organizational Achievements. J. Knowledge Manag. 2022. ahead of print. [Google Scholar] [CrossRef]
- Durana, P.; Musova, Z.; Cuțitoi, A.-C. Digital Twin Modeling and Spatial Awareness Tools, Acoustic Environment Recognition and Visual Tracking Algorithms, and Deep Neural Network and Vision Sensing Technologies in Blockchain-based Virtual Worlds. Anal. Metaphys. 2022, 21, 261–277. [Google Scholar] [CrossRef]
- Stone, D.; Michalkova, L.; Machova, V. Machine and Deep Learning Techniques, Body Sensor Networks, and Internet of Things-based Smart Healthcare Systems in COVID-19 Remote Patient Monitoring. Am. J. Med. Res. 2022, 9, 97–112. [Google Scholar] [CrossRef]
- Crișan-Mitra, C.; Stanca, L.; Dabija, D.C. Corporate Social Performance: An Assessment Model on an Emerging Market. Sustainability 2020, 12, 4077. [Google Scholar] [CrossRef]
- Zvarikova, K.; Cug, J.; Hamilton, S. Virtual Human Resource Management in the Metaverse: Immersive Work Environments, Data Visualization Tools and Algorithms, and Behavioral Analytics. Psychosociol. Issues Hum. Resour. Manag. 2022, 10, 7–20. [Google Scholar] [CrossRef]
- Kliestik, T.; Novak, A.; Lăzăroiu, G. Live Shopping in the Metaverse: Visual and Spatial Analytics, Cognitive Artificial Intelligence Techniques and Algorithms, and Immersive Digital Simulations. Linguist. Philos. Investig. 2022, 21, 187–202. [Google Scholar] [CrossRef]
- Grupac, M.; Lăzăroiu, G. Image Processing Computational Algorithms, Sensory Data Mining Techniques, and Predictive Customer Analytics in the Metaverse Economy. Rev. Contemp. Philos. 2022, 21, 205–222. [Google Scholar] [CrossRef]
- Blake, R.; Frajtova Michalikova, K. Deep Learning-based Sensing Technologies, Artificial Intelligence-based Decision-Making Algorithms, and Big Geospatial Data Analytics in Cognitive Internet of Things. Anal. Metaphys. 2021, 20, 159–173. [Google Scholar] [CrossRef]
- Pera, A. The Moral Decision-Making Capacity of Autonomous Mobility Technologies: Route Planning Algorithms, Simulation Modeling Tools, and Intelligent Traffic Monitoring Systems. Contemp. Read. Law Soc. Justice 2022, 14, 136–153. [Google Scholar] [CrossRef]
- Popescu, G.H.; Ciurlău, C.F.; Stan, C.I.; Băcănoiu, C.; Tănase, A. Virtual Workplaces in the Metaverse: Immersive Remote Collaboration Tools, Behavioral Predictive Analytics, and Extended Reality Technologies. Psychosociol. Issues Hum. Resour. Manag. 2022, 10, 21–34. [Google Scholar] [CrossRef]
- Kral, P.; Janoskova, K.; Potcovaru, A.-M. Digital Consumer Engagement on Blockchain-based Metaverse Platforms: Extended Reality Technologies, Spatial Analytics, and Immersive Multisensory Virtual Spaces. Linguist. Philos. Investig. 2022, 21, 252–267. [Google Scholar] [CrossRef]
- Valaskova, K.; Horak, J.; Bratu, S. Simulation Modeling and Image Recognition Tools, Spatial Computing Technology, and Behavioral Predictive Analytics in the Metaverse Economy. Rev. Contemp. Philos. 2022, 21, 239–255. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kliestik, T.; Nagy, M.; Valaskova, K. Global Value Chains and Industry 4.0 in the Context of Lean Workplaces for Enhancing Company Performance and Its Comprehension via the Digital Readiness and Expertise of Workforce in the V4 Nations. Mathematics 2023, 11, 601. https://doi.org/10.3390/math11030601
Kliestik T, Nagy M, Valaskova K. Global Value Chains and Industry 4.0 in the Context of Lean Workplaces for Enhancing Company Performance and Its Comprehension via the Digital Readiness and Expertise of Workforce in the V4 Nations. Mathematics. 2023; 11(3):601. https://doi.org/10.3390/math11030601
Chicago/Turabian StyleKliestik, Tomas, Marek Nagy, and Katarina Valaskova. 2023. "Global Value Chains and Industry 4.0 in the Context of Lean Workplaces for Enhancing Company Performance and Its Comprehension via the Digital Readiness and Expertise of Workforce in the V4 Nations" Mathematics 11, no. 3: 601. https://doi.org/10.3390/math11030601
APA StyleKliestik, T., Nagy, M., & Valaskova, K. (2023). Global Value Chains and Industry 4.0 in the Context of Lean Workplaces for Enhancing Company Performance and Its Comprehension via the Digital Readiness and Expertise of Workforce in the V4 Nations. Mathematics, 11(3), 601. https://doi.org/10.3390/math11030601