Transcendence and the Expression of the Spectral Series of a Class of Higher Order Differential Operators
Abstract
:1. Introduction
2. The Second and Third Order Differential Operators
2.1. The Second Order Case
2.2. The Third Order Case
3. The Higher Order Self-Adjoint Differential Operators
4. Conclusions and Further Work
4.1. Conclusions
4.2. Application and Further Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murty, M.R.; Weatherby, C.J. On the transcendence of certain infinite series. Int. J. Number Theory 2011, 7, 323–339. [Google Scholar] [CrossRef] [Green Version]
- Nesterenko, Y.V. Algebraic Independence; Published for the Tata Institute of Fundamental Research, Bombay; Narosa Publishing House: New Delhi, India, 2009. [Google Scholar]
- Murty, M.R.; Weatherby, C.J. A generalization of Euler’s theorem for ζ(2k). Am. Math. Mon. 2016, 123, 53–65. [Google Scholar] [CrossRef]
- Murty, M.R. Transcendental numbers and special values of Dirichlet series. Number theory related to modular curves—Momose memorial volume. Contemp. Math. 2018, 701, 193–218. [Google Scholar]
- Saradha, N.; Tijdeman, R. On the Transcendence of Infinite Sums of Values of Rational Functions. J. Lond. Math. Soc. 2003, 67, 580–592. [Google Scholar] [CrossRef]
- Weatherby, C. Transcendence of series of rational functions and a problem of Bundschuh. J. Ramanujan Math. Soc. 2013, 28, 113–139. [Google Scholar]
- Courant, R.; Hilbert, D. Methods of Mathematical Physics; John Wiley and Sons: New York, NY, USA, 1989; Volume 1. [Google Scholar]
- Xie, B.; Zhao, Y.G.; Zhao, Y.Q. Special values of spectral zeta functions of graphs and Dirichlet L-functions. arXiv 2022, arXiv:2212.13687. [Google Scholar]
- Qi, J.; Li, J.; Xie, B. Extremal problems of the density for vibrating string equations with applications to gap and ratio of eigenvalues. Qual. Theory Dyn. Syst. 2020, 19, 1–12. [Google Scholar] [CrossRef]
- Murty, M.R.; Rath, P. Transcendental Numbers; Springer: New York, NY, USA, 2014. [Google Scholar]
- Ireland, K.; Rosen, M. A Classical Introduction to Modern Number Theory, 2nd ed.; Graduate Texts in Mathematics, 84; Springer: New York, NY, USA, 1990. [Google Scholar]
- Soulé, C. Régulateurs, Astérisque. Semin. Bourbaki 1986, 133–134, 237–253. [Google Scholar]
- Ramakrishnan, D. Regulators, Algebraic cycles, and values of L-functions, Algebraic K-theory and algebraic number theory. Contemp. Math. 1987, 83, 183–310. [Google Scholar]
- Chu, J.; Meng, G. Sharp bounds for Dirichlet eigenvalue ratios of the Camassa–Holm equations. Math. Ann. 2022, 1–20. [Google Scholar] [CrossRef]
- Zhang, M.; Wen, Z.; Meng, G.; Qi, J.; Xie, B. On the number and complete continuity of weighted eigenvalues of measure differential equations. Differ. Integral Equ. 2018, 31, 761–784. [Google Scholar] [CrossRef]
- Duren, P. Invitation to Classical Analysis; American Mathematical Society: Providence, RI, USA, 2012. [Google Scholar]
- Carmona, R.; LaCroix, J. Spectral Theory of Random Schrödinger Operators; Birkhäuser: Basel, Switzerland, 1990. [Google Scholar]
- Schumayer, D.; Hutchinson, D.A.W. Physics of the Riemann hypothesis. Rev. Mod. Phys. 2011, 83, 769–796. [Google Scholar] [CrossRef]
- Bourgain, J. Green’s Function Estimates for Lattice Schrädinger Operators and Applications; Princeton University Press: Princeton, NJ, USA, 2005. [Google Scholar]
- Wainger, S. An Introduction to the Circle Method of Hardy, Littlewood, and Ramanujan. J. Geom. Anal. 2021, 31, 9113–9130. [Google Scholar] [CrossRef]
- Meiners, A.; Vertman, B. Spectral zeta function on discrete tori and Epstein-Riemann conjecture. J. Number Theory 2023, 244, 418–461. [Google Scholar] [CrossRef]
- Zagier, D. Elementary aspects of the Verlinde formula and of the Harder-Narasimhan-Atiyah-Bott formula. Isr. Math. Conf. Proc. 1996, 9, 445–462. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, B.; Li, J.; Qi, J. Transcendence and the Expression of the Spectral Series of a Class of Higher Order Differential Operators. Mathematics 2023, 11, 636. https://doi.org/10.3390/math11030636
Xie B, Li J, Qi J. Transcendence and the Expression of the Spectral Series of a Class of Higher Order Differential Operators. Mathematics. 2023; 11(3):636. https://doi.org/10.3390/math11030636
Chicago/Turabian StyleXie, Bing, Jing Li, and Jiangang Qi. 2023. "Transcendence and the Expression of the Spectral Series of a Class of Higher Order Differential Operators" Mathematics 11, no. 3: 636. https://doi.org/10.3390/math11030636
APA StyleXie, B., Li, J., & Qi, J. (2023). Transcendence and the Expression of the Spectral Series of a Class of Higher Order Differential Operators. Mathematics, 11(3), 636. https://doi.org/10.3390/math11030636