Improved Least-Squares Progressive Iterative Approximation for Tensor Product Surfaces
Abstract
:1. Introduction
2. Improved Least-Squares Progressive Iterative Format for Tensor Product Surfaces
3. Convergence Analysis for the Improved LSPIA
4. Implementation
4.1. Parameterization of the Initial Data Points
4.2. Selection of the Initial Control Points
4.3. Knot Vectors and Fitting Error
4.4. Algorithm Implementation
Algorithm 1. Surface fitting of the data points by the accelerated LSPIA method |
Input: The and a given iterative tolerance . |
Output. |
Step 1: according to Section 4.1. |
Step 2: according to Section 4.2. |
Step 3: Calculate the knot vectors according to Section 4.3. |
Step 4: according to (3). |
k = 0; |
do |
|
While . |
5. Numerical Examples
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, H.; Jin, S.; Liao, H.; Jian, Q. Quality guaranteed all-hex mesh generation by a constrained volume iterative fitting algorithm. Comput. Aided Des. 2015, 67, 107–117. [Google Scholar] [CrossRef]
- Martin, T.; Cohen, E.; Kirby, R. Volumetric parameterization and trivariate B-spline fitting using harmonic functions. Comput. Aided Des. 2009, 26, 648–664. [Google Scholar] [CrossRef]
- Lin, H.; Jin, S.; Hu, Q.; Liu, Z. Constructing B-spline solids from tetrahedral meshes for isogeometric analysis. Comput. Aided Geom. Des. 2015, 35, 109–120. [Google Scholar] [CrossRef]
- Kineri, Y.; Wang, M.; Lin, H.; Maekawa, T. B-spline surface fitting by iterative geometric interpolation/approximation algorithms. Comput. Aided Des. 2012, 44, 697–708. [Google Scholar] [CrossRef]
- Qi, D.; Tian, Z.; Zhang, Y.; Zheng, J.B. The method of numeric polish in curve fitting. Acta Math. Sin. 1975, 18, 173–184. (In Chinese) [Google Scholar]
- De Boor, C. How does Agee’s smoothing method work. In Proceedings of the 1979 Army Numerical Analysis and Computers Conference, ARO Report, Madison, WI, USA; 1979; pp. 79–83. [Google Scholar]
- Lin, H.; Wang, G.; Dong, C. Constructing iterative non-uniform B-spline curve and surface to fit data points. Sci. China Ser. Inf. Sci. 2004, 47, 315–331. [Google Scholar] [CrossRef]
- Lin, H.W.; Bao, H.J.; Wang, G.J. Totally positive bases and progressive iterative approximation. Comput. Math. Appl. 2005, 50, 575–586. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Maekawa, T.; Deng, C. Survey on geometric iteartive methods and their applications. Comput. Aided Des. 2018, 95, 40–51. [Google Scholar] [CrossRef]
- Lin, H. Local progressive-iterative approximation format for blending curves and patches. Comput. Aided Geom. Des. 2010, 27, 322–339. [Google Scholar] [CrossRef]
- Hu, Q.; Wang, J.; Liang, R. Weighted local progressive-iterative approximation property for triangular Bézier surfaces. Vis. Comput. 2022, 28, 2819–3830. [Google Scholar] [CrossRef]
- Lu, L. Weighted progressive iteration approximation and convergence analysis. Comput. Aided Geom. Des. 2010, 27, 129–137. [Google Scholar] [CrossRef]
- Liu, C.; Han, X.; Li, J. The Chebyshev accelerating method for progressive iterative approximation. Commun. Inf. Syst. 2017, 17, 25–43. [Google Scholar] [CrossRef]
- Liu, C.; Han, X.; Li, J. Preconditioned progressive iterative approximation for triangular Bézier patches and its application. J. Comput. Appl. Math. 2020, 366, 112389. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Loghmani, G. A composite iterative procedure with fast convergence rate for the progressive-iteration approximation of curves. J. Comput. Appl. Math. 2019, 359, 1–15. [Google Scholar] [CrossRef]
- Delgado, J.; Peña, J.M. Progressive iterative approximation and bases with the fastest convergence rates. Comput. Aided Geom. Des. 2007, 24, 10–18. [Google Scholar] [CrossRef]
- Hamza, Y.; Lin, H.; Li, Z. Implicit progressive-iterative approximation for curve and surface reconstruction. Comput. Aided Geom. Des. 2020, 77, 101817. [Google Scholar] [CrossRef] [Green Version]
- Deng, C.; Lin, H. Progressive and iterative approximation for least squares B-spline curve and surface fitting. Comput. Aided Des. 2014, 47, 32–44. [Google Scholar] [CrossRef]
- Wang, H. On extended progressive and iterative approximation for least squares fitting. Vis. Comput. 2022, 38, 591–602. [Google Scholar] [CrossRef]
- Hu, Q.; Wang, J.; Wang, G. Improved least square progressive iterative approximation format for triangular Bezier surfaces. J. Comput. Aided Des. Comput. Graph. 2022, 34, 777–783. [Google Scholar]
- Sajavičius, S. Hyperpower least squares progressive iterative approximation. J. Comput. Appl. Math. 2023, 422, 114888. [Google Scholar] [CrossRef]
- Lin, H.; Cao, Q.; Zhang, X. The convergence of least-squares progressive iterative approximation for singular least-squares fitting system. J. Syst. Sci. Complex. 2018, 31, 1618–1632. [Google Scholar] [CrossRef]
- Shi, F. Computer Aided Geometric Design with Non-Uniform Rational B-Splines; Higher Education Press: Beijing, China, 2013. (In Chinese) [Google Scholar]
- Massarwi, F.; van Sosin, B.; Elber, G. Untrimming: Precise conversion of trimmed-surfaces to tensor-product surfaces. Comput. Graph. 2018, 70, 80–91. [Google Scholar] [CrossRef]
- Vaitkus, M.; Várady, T. Parameterizing and extending trimmed regions for tensor-product surface fitting. Comput. Aided Des. 2018, 104, 125–140. [Google Scholar] [CrossRef]
- Marco, A.; Martínez, J.J. A fast and accurate algorithm for solving Bernstein–Vandermonde linear systems. Linear Algebra Appl. 2007, 422, 616–628. [Google Scholar] [CrossRef] [Green Version]
- Schulz, G. Iterative berechung der reziproken matrix. ZAMM J. Appl. Math. Mech. Z. Angew. Math. Mech. 1933, 13, 57–59. [Google Scholar] [CrossRef]
- De Boor, C. Total positivity of the spline collocation matrix. Indiana Univ. Math. J. 1976, 25, 541–551. [Google Scholar] [CrossRef]
- Penrose, R. A generalized inverse for matrices. In Mathematical Proceedings of the Cambridge Philosophical Society; Cambridge University Press: Cambridge, UK, 1955; Volume 51, pp. 406–413. [Google Scholar]
- Henderson, H.; Searle, S. The vec-permutation matrix, the vec operator and Kronecker products: A review. Linear Multilinear Algebra 1981, 9, 271–288. [Google Scholar] [CrossRef]
- Brewer, J. Kronecker products and matrix calculus in system theory. IEEE Trans. Circuits Syst. 1978, 25, 772–781. [Google Scholar] [CrossRef]
- Piegl, L.; Tiller, W. The NURBS Book; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Ray, B.; Pandyan, R. ACORD—An adaptive corner detector for planar curves. Pattern Recognit. 2003, 36, 703–708. [Google Scholar] [CrossRef]
Examples | Methods | E0 | E1 | E2 | E3 | E4 | E5 | E6 | Estop | E∞ |
---|---|---|---|---|---|---|---|---|---|---|
Ex. 1 | LSPIA | 21.96525 | 9.58174 | 6.13142 | 4.42516 | 3.39926 | 2.71392 | 2.22640 | 0.04658 | 0.00292 |
Ours | 21.96525 | 10.07568 | 2.70966 | 0.30180 | 0.01780 | 0.00355 | 0.00293 | 0.00293 | ||
Ex. 2 | LSPIA | 4.80661 | 1.10115 | 0.40587 | 0.20703 | 0.13203 | 0.09708 | 0.07782 | 0.02730 | 0.01619 |
Ours | 4.80661 | 1.92369 | 0.27769 | 0.02663 | 0.01687 | 0.01620 | ||||
Ex. 3 | LSPIA | 17.46394 | 5.96253 | 2.76524 | 1.53887 | 0.99237 | 0.71154 | 0.54684 | 0.02828 | 0.00766 |
Ours | 17.46394 | 9.37228 | 2.61701 | 0.17271 | 0.01061 | 0.00773 | 0.00766 | |||
Ex. 4 | LSPIA | 15.25581 | 5.74124 | 3.07872 | 1.97844 | 1.42757 | 1.10820 | 0.90186 | 0.07447 | 0.03950 |
Ours | 15.25581 | 7.64569 | 1.98735 | 0.18241 | 0.04691 | 0.03974 | 0.03950 | |||
Ex. 5 | LSPIA | 173,996.46 | 144,906.89 | 132,412.83 | 122,822.74 | 114,511.11 | 107,057.94 | 100,288.95 | 15.51962 | 14.63951 |
Ours | 173,996.46 | 140,489.44 | 95,713.553 | 43,647.269 | 8899.5952 | 434.91927 | 16.787049 | 14.63951 |
Examples | Methods | e0 | e1 | e2 | e3 | e4 | e5 | e6 | e7 |
---|---|---|---|---|---|---|---|---|---|
Ex. 1 | LSPIA | 4.496 × 100 | 3.406 × 100 | 2.840 × 100 | 2.454 × 100 | 2.167 × 100 | 1.943 × 100 | 1.763 × 100 | 1.615 × 100 |
Ours | 4.496 × 100 | 2.558 × 100 | 1.024 × 100 | 2.497 × 10−1 | 3.112 × 10−2 | 1.891 × 10−3 | 5.310 × 10−5 | 1.163 × 10−7 | |
Ex. 2 | LSPIA | 2.107 × 100 | 9.672 × 10−1 | 6.391 × 10−1 | 4.975 × 10−1 | 4.204 × 10−1 | 3.710 × 10−1 | 3.354 × 10−1 | 3.079 × 10−1 |
Our | 2.107 × 100 | 9.146 × 10−1 | 2.761 × 10−1 | 8.403 × 10−2 | 1.375 × 10−2 | 3.041 × 10−4 | 7.247 × 10−8 | 1.754 × 10−15 | |
Ex. 3 | LSPIA | 2.419 × 100 | 1.406 × 100 | 1.013 × 100 | 7.989 × 10−1 | 6.639 × 10−1 | 5.694 × 10−1 | 4.986 × 10−1 | 4.430 × 10−1 |
Ours | 2.419 × 100 | 1.165 × 100 | 3.351 × 10−1 | 6.330 × 10−2 | 8.403 × 10−3 | 3.900 × 10−4 | 3.268 × 10−6 | 4.527 × 10−10 | |
Ex. 4 | LSPIA | 3.026 × 100 | 2.054 × 100 | 1.632 × 100 | 1.383 × 100 | 1.215 × 100 | 1.091 × 100 | 9.940 × 10−1 | 9.148 × 10−1 |
Ours | 3.026 × 100 | 1.611 × 100 | 6.031 × 10−1 | 1.610 × 10−1 | 2.331 × 10−2 | 1.032 × 10−3 | 8.683 × 10−6 | 2.193 × 10−9 | |
Ex. 5 | LSPIA | 1.159 × 104 | 1.113 × 104 | 1.072 × 104 | 1.035 × 104 | 1.000 × 104 | 9.676 × 103 | 9.372 × 103 | 9.088 × 103 |
Ours | 1.159 × 104 | 1.043 × 104 | 7.890 × 103 | 4.187 × 103 | 1.225 × 103 | 1.295 × 102 | 3.505 × 100 | 9.999 × 10−2 |
Examples | Criterion | LSPIA | Ours | ||
---|---|---|---|---|---|
Time (s) | Iterations | Time (s) | Iterations | ||
Ex. 1 | 1 × 10−3 | 0.4640 | 80 | 0.3863 | 6 |
1 × 10−5 | 0.7520 | 350 | 0.3971 | 7 | |
1 × 10−7 | 1.2650 | 771 | 0.4210 | 8 | |
Ex. 2 | 1 × 10−3 | 0.0123 | 20 | 0.0102 | 5 |
1 × 10−5 | 0.0145 | 110 | 0.0118 | 6 | |
1 × 10−7 | 0.0346 | 712 | 0.0128 | 7 | |
Ex. 3 | 1 × 10−3 | 0.0544 | 40 | 0.0512 | 6 |
1 × 10−5 | 0.0720 | 190 | 0.0526 | 7 | |
1 × 10−7 | 0.1250 | 571 | 0.0537 | 8 | |
Ex. 4 | 1 × 10−3 | 0.1180 | 61 | 0.0951 | 6 |
1 × 10−5 | 0.1710 | 262 | 0.0962 | 7 | |
1 × 10−7 | 0.2870 | 652 | 0.0971 | 8 | |
Ex. 5 | 1 × 10−3 | 230.465 | 4076 | 7.079 | 9 |
1 × 10−5 | 533.765 | 9154 | 7.386 | 10 | |
1 × 10−7 | 1151.947 | 18,837 | 8.104 | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Q.; Wang, Z.; Liang, R. Improved Least-Squares Progressive Iterative Approximation for Tensor Product Surfaces. Mathematics 2023, 11, 670. https://doi.org/10.3390/math11030670
Hu Q, Wang Z, Liang R. Improved Least-Squares Progressive Iterative Approximation for Tensor Product Surfaces. Mathematics. 2023; 11(3):670. https://doi.org/10.3390/math11030670
Chicago/Turabian StyleHu, Qianqian, Zhifang Wang, and Ruyi Liang. 2023. "Improved Least-Squares Progressive Iterative Approximation for Tensor Product Surfaces" Mathematics 11, no. 3: 670. https://doi.org/10.3390/math11030670
APA StyleHu, Q., Wang, Z., & Liang, R. (2023). Improved Least-Squares Progressive Iterative Approximation for Tensor Product Surfaces. Mathematics, 11(3), 670. https://doi.org/10.3390/math11030670