Topological Structure and Existence of Solutions Set for q-Fractional Differential Inclusion in Banach Space
Abstract
:1. Introduction
2. Preliminaries
3. Existence Results
4. An Example
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ahmad, B.; Otero-Espinar, V. Existence of Solutions for Fractional Differential Inclusions with Antiperiodic Boundary Conditions. Bound. Value Probl. 2009, 2009, 625347. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.-K.; Nieto, J.J. Some new existence results for fractional differential inclusions with boundary conditions. Math. Comput. Model. 2009, 49, 605–609. [Google Scholar] [CrossRef]
- Rezaiguia, A.; Kelaiaia, S. Existence of Solution, Filippov’s Theorem and Compactness of the Set of Solutions for a Third-Order Differential Inclusion with Three- Point Boundary Conditions. Mathematics 2018, 6, 40. [Google Scholar] [CrossRef] [Green Version]
- Tarasov, V.E. Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media; Springer: Heidelberg, Germany; Higher Education Press: Beijing, China, 2010. [Google Scholar]
- Stojiljkovic, V. A new conformable fractional derivative and applications (Una nueva derivada fraccionaria conforme y aplicaciones). Sel. Mat. 2022, 9, 370–380. [Google Scholar] [CrossRef]
- Abbas, A.; Ahmad, B.; Benchohra, M.; Ntouyas, S.K. Weak solutions for caputo-pettis fractional q-difference inclusion. Fract. Differ. Calc. 2020, 10, 141–152. [Google Scholar] [CrossRef]
- Allouch, N.; Graef, J.R.; Hamani, S. Boundary Value Problem for Fractional q-Difference Equations with Integral Conditions in Banach Spaces. Fractal Fract. 2022, 6, 237. [Google Scholar] [CrossRef]
- Alqahtani, B.; Abbas, S.; Benchohra, M.; Salem Alzaid, S. Fractional q-Difference Inclusions in Banach Spaces. Mathematics 2020, 8, 91. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, B.; Etemad, S.; Ettefagh, M.; Rezapour, S. On the existence of solutions for fractional q-difference inclusions with q-antiperiodic boundary conditions. Bull. Math. Soc. Sci. Math. Roum. 2016, 59, 119–134. [Google Scholar]
- Bragdi, M.; Debbouche, A.; Baleanu, D. Existence of Solutions for Fractional Differential Inclusions with Separated Boundary Conditions in Banach Space. Adv. Math. Phys. 2013, 2013, 426061. [Google Scholar] [CrossRef] [Green Version]
- El-Shahed, M.; Hassan, H.A. Positive solutions of q-difference equation. Proc. Amer. Math. Soc. 2010, 138, 1733–1738. [Google Scholar] [CrossRef] [Green Version]
- Gefter, S.L.; Piven, A.L. Implicit Linear q-Difference Equations in Banach Spaces. J. Math. Sci. 2020, 251, 787–796. [Google Scholar] [CrossRef]
- Liang, S.; Samei, M.E. New approach to solutions of a class of singular fractional q-differential problem via quantum calculus. Adv. Differ. Equ. 2020, 2020, 14. [Google Scholar] [CrossRef] [Green Version]
- Rezaiguia, A. Existence Results For q-Fractional Differential Inclusion With Non-Convex Right Hand Side. Acta Math. Univ. 2021, 90, 277–288. [Google Scholar]
- Aubin, J.P.; Cellina, A. Differential Inclusions; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
- Castaing, C.; Valadier, M. Convex Analysis and Measurable Multifunctions. In Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1977. [Google Scholar]
- Aubin, J.P.; Frankowska, H. Set-Valued Analysis; Birkhauser: Boston, MA, USA, 1990. [Google Scholar]
- Deimling, K. Multivalued Differential Equations; Walter De Gruyter: Berlin, Germany, 1992. [Google Scholar]
- Gorniewicz, L. Topological Fixed Point Theory of Multivalued Map pings. In Mathematics and Its Applications; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999. [Google Scholar]
- Papageorgiou, N.; Hu, S. Handbook of Multivalued Analysis, Volume I: Theory; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 1997. [Google Scholar]
- Banas, J.; Goebel, K. Measures of Noncompactness in Banach Spaces; Marcel Dekker: New York, NY, USA, 1980. [Google Scholar]
- Toledano, J.M.A.; Benavides, T.D.; Acedo, G.L. Measures of Noncompactness in Metric Fixed Point Theory, Operator Theory, Advances and Applications; Birkhauser: Basel, Switzerland; Boston, MA, USA; Berlin, Germany, 1997; Volume 99. [Google Scholar]
- Al-Salam, W.A. Some fractional q-integrals and q-derivatives. Proc. Edinb. Math. Soc. 1966, 15, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.P. Certain fractional q-integrals and q-derivatives. Proc. Cambridge Philos. Soc. 1969, 66, 365–370. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.K.; Tariboon, J. Quantum Calculus. New Concepts, Impulsive IVPs and BVPs, Inequalities. Trends in Abstract and Applied Analysis; World Scientific Publishing Co., Pte. Ltd.: Hackensack, NJ, USA, 2016. [Google Scholar]
- Etemad, S.; Sotiris, K. Ntouyas and Bashir Ahmad Existence Theory for a Fractional q-Integro-Difference Equation with q-Integral Boundary Conditions of Different Orders. Mathematics 2019, 7, 659. [Google Scholar] [CrossRef] [Green Version]
- Kac, V.; Cheung, P. Quantum Calculus; Springer: New York, NY, USA, 2002. [Google Scholar]
- Rajkovic, P.M.; Marinkovic, S.D.; Stankovic, M.S. On q-analogues of Caputo derivative and Mittag-Leffler function. Fract. Calc. Appl. Anal. 2007, 10, 359–373. [Google Scholar]
- Dhage, B.C. Some generalization of multi-valued version of Schauderís fixed point theorem with applications. Cubo 2010, 12, 139–151. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rezaiguia, A.; Hassan, T.S. Topological Structure and Existence of Solutions Set for q-Fractional Differential Inclusion in Banach Space. Mathematics 2023, 11, 683. https://doi.org/10.3390/math11030683
Rezaiguia A, Hassan TS. Topological Structure and Existence of Solutions Set for q-Fractional Differential Inclusion in Banach Space. Mathematics. 2023; 11(3):683. https://doi.org/10.3390/math11030683
Chicago/Turabian StyleRezaiguia, Ali, and Taher S. Hassan. 2023. "Topological Structure and Existence of Solutions Set for q-Fractional Differential Inclusion in Banach Space" Mathematics 11, no. 3: 683. https://doi.org/10.3390/math11030683
APA StyleRezaiguia, A., & Hassan, T. S. (2023). Topological Structure and Existence of Solutions Set for q-Fractional Differential Inclusion in Banach Space. Mathematics, 11(3), 683. https://doi.org/10.3390/math11030683