A Mathematical Analysis of 4IR Innovation Barriers in Developmental Social Work—A Structural Equation Modeling Approach
Abstract
:1. Introduction
2. Literature Review
2.1. A Resistance to Change
2.2. Knowledge and Competency in Computing
2.3. Difficulty in Understanding New 4IR Technologies
2.4. Leadership
2.5. Strategy and Investment
2.6. Quality of Data and Information
2.7. A Limited Number of Skilled Personnel
2.8. The Fragmented Nature of the Construction Industry
2.9. High Capital and Setup Cost
3. Model Development and Research Method
3.1. Model Development
3.1.1. Common Method Variance
3.1.2. Analytical Model
Convergent Validity
Discriminant Validity
Structural Model Analysis
4. Data Collection
5. Results
5.1. Exploratory Factor Analysis
5.2. SEM-PLS Model Analysis
5.2.1. Common Method Bias
5.2.2. Analytical Model
Discriminant Validity
Validation of Path Model
6. Discussion
7. Conclusions
- The study further revealed policy, structure, and acquisition barriers as the two categories that significantly influence 4IR innovations adoption.
- Policy and structure had the most substantial impacts—A bespoke empirical model based on PLS-SEM establishing the implications of the barrier categories on 4IR innovations adoption.
- The model aims to create a structured approach for addressing the barriers impeding 4IR innovation adoption for sustainable development. Therefore, this study has many contributions which can have implications concerning the adoption of 4IR innovation.
7.1. Implications and Contributions
- The PLS-SEM model is the first to predict the barriers to 4IR innovation adoption. This is the first study to present the interaction between these variables.
- The study also explored the interaction between the barriers influencing 4IR innovation and the barrier categories.
- In addition, the study classified the barriers into unique categories based on their significance. This is useful for policymakers to introduce strategic 4IR innovation policies capable of improving 4IR innovation adoption for the construction industry.
7.2. Limitations and Areas for Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qi, Y.; Huo, B.; Wang, Z.; Yeung, H.Y.J. The impact of operations and supply chain strategies on integration and performance. Int. J. Prod. Econ. 2017, 185, 162–174. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, X. Industry 4.0 and cloud manufacturing: A comparative analysis. J. Manuf. Sci. Eng. 2017, 139, 32. [Google Scholar] [CrossRef]
- Liu, C.; Xu, X. Cyber-physical machine tool–the era of machine tool 4.0. Procedia Cirp 2017, 63, 70–75. [Google Scholar] [CrossRef]
- Xu, M.; David, J.M.; Kim, S.H. The Fourth Industrial Revolution: Opportunities and Challenges. Int. J. Financial Res. 2018, 9, 90. [Google Scholar] [CrossRef] [Green Version]
- Horch, D.; Drath, D.M. The impact of the computational intelligence on higher education (he4. 0): A study of massive online open course. Br. Int. J. Educ. Soc. Sci. 2021, 8, 43–51. [Google Scholar]
- Nazarov, D.; Klarin, A. Taxonomy of Industry 4.0 research: Mapping scholarship and industry insights. Syst. Res. Behav. Sci. 2020, 37, 535–556. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, Y.H.; Tuna, C.; Dave, A.; Li, Y.; Lee, E.; Hartmann, B. HOBS: Head orientation-based selection in physical spaces. In Proceedings of the 2nd ACM Symposium on Spatial User Interaction, Honolulu, HI, USA, 4–5 October 2014; pp. 17–25. [Google Scholar]
- Leber, J. General electric pitches an industrial internet. MIT Technol. Rev. 2012, 4. [Google Scholar]
- Leber, J. General Electric’s San Ramon Software Center Takes Shape MIT Technology Review. 2012. Available online: https://www.technologyreview.com/ (accessed on 22 October 2022).
- Jin, J.; Gubbi, J.; Marusic, S.; Palaniswami, M. An Information Framework for Creating a Smart City Through Internet of Things. IEEE Internet Things J. 2014, 1, 112–121. [Google Scholar] [CrossRef]
- Sommer, L. Industrial revolution—Industry 4.0: Are German manufacturing SMEs the first victims of this revolution? J. Ind. Eng. Manag. 2015, 8, 1512–1532. [Google Scholar] [CrossRef] [Green Version]
- Gentner, S. Industry 4.0: Reality, future or just science fiction? How to convince today’s management to invest in tomorrow’s future! Successful strategies for industry 4.0 and manufacturing IT. CHIMIA Int. J. Chem. 2016, 70, 628–633. [Google Scholar] [CrossRef]
- Alaloul, W.S.; Liew, M.S.; Zawawi, N.A.W.A. Identification of coordination factors affecting building projects performance. Alex. Eng. J. 2016, 55, 2689–2698. [Google Scholar] [CrossRef] [Green Version]
- Alaloul, W.S.; Liew, M.S.; Zawawi, N.A.W.A.; Mohammed, B.S. Industry Revolution IR 4.0: Future Opportunities and Challenges in Construction Industry. MATEC Web Conf. 2018, 203, 2010. [Google Scholar] [CrossRef] [Green Version]
- Baker, K.R.; Kanet, J.J. Job shop scheduling with modified due dates. J. Oper. Manag. 1983, 4, 11–22. [Google Scholar] [CrossRef]
- Slevin, D.P.; Pinto, J.K. Balancing strategy and tactics in project implementation. Sloan Manag. Rev. 1987, 29, 33–41. [Google Scholar]
- Morris, K.S.; Hough, J.S. Lipid-Protein Interactions in Beer and Beer Foam Brewed with Wheat Flour. J. Am. Soc. Brew. Chem. 1987, 45, 43–47. [Google Scholar] [CrossRef]
- Turner, B.S. Citizenship and Social Theory; Sage: Thousand Oaks, CA, USA, 1993. [Google Scholar]
- Sadeghi, H.; Zhang, X.; Mohandes, S.R. Developing an ensemble risk analysis framework for improving the safety of tower crane operations under coupled Fuzzy-based environment. Saf. Sci. 2003, 158, 105957. [Google Scholar] [CrossRef]
- Carr, N.G. IT doesn’t matter. Educ. Rev. 2003, 38, 24–38. [Google Scholar] [CrossRef]
- Rifkin, J. The Zero Marginal Cost Society: The Internet of Things, the Collaborative Commons, and the Eclipse of Capitalism; St. Martin’s Press: New York, NY, USA, 2014. [Google Scholar]
- Yakovleva, N.; Kotilainen, J.; Toivakka, M. Reflections on the opportunities for mining companies to contribute to the United Nations Sustainable Development Goals in sub—Saharan Africa. Extr. Ind. Soc. 2017, 4, 426–433. [Google Scholar] [CrossRef] [Green Version]
- Brocklesby, M.A.; Fisher, E. Community development in sustainable livelihoods approaches—An introduction. Community Dev. J. 2003, 38, 185–198. [Google Scholar] [CrossRef]
- Darmawan, A.H.; Azizah, S. Resistance to change: Causes and strategies as an organizational challenge. In Proceedings of the 5th ASEAN Conference on Psychology, Counselling, and Humanities (ACPCH 2019), Gelugor, Malaysia, 22 October 2020; Atlantis Press: Amsterdam, The Netherlands, 2020; pp. 49–53. [Google Scholar]
- Gilley, A.; Gilley, J.W.; McMillan, H.S. Organizational change: Motivation, communication, and leadership effectiveness. Perform. Improv. Q. 2009, 21, 75–94. [Google Scholar] [CrossRef]
- Zhang, L.; Mohandes, S.R.; Tong, J.; Abadi, M.; Banihashemi, S.; Deng, B. Sustainable Project Governance: Scientometric Analysis and Emerging Trends. Sustainability 2023, 15, 2441. [Google Scholar] [CrossRef]
- Fischer, M. Formalizing construction knowledge for concurrent performance-based design. In Workshop of the European Group for Intelligent Computing in Engineering; Springer: Berlin/Heidelberg, Germany, 2006; pp. 186–205. [Google Scholar]
- Griffiths, R. Knowledge production and the research–teaching nexus: The case of the built environment disciplines. Stud. High. Educ. 2004, 29, 709–726. [Google Scholar] [CrossRef]
- Higgins, S.; Xiao, Z.; Katsipataki, M. The Impact of Digital Technology on Learning: A Summary for the Education Endowment Foundation. Full Report; Education Endowment Foundation: London, UK, 2012. [Google Scholar]
- Abbott, C. Defining assistive technologies—A discussion. J. Assist. Technol. 2007. [Google Scholar] [CrossRef]
- Chui, M.; Manyika, J.; Miremadi, M. Four fundamentals of workplace automation. McKinsey Q. 2015, 29, 1–9. [Google Scholar]
- Ntombela, S.M.; Bohlmann, H.R.; Kalaba, M.W. Greening the South Africa’s Economy Could Benefit the Food Sector: Evidence from a Carbon Tax Policy Assessment. Environ. Resour. Econ. 2019, 74, 891–910. [Google Scholar] [CrossRef]
- Maas, K.; Vermeulen, M. A Systemic View on the Impacts of Regulating Non-Financial Reporting; Erasmus School of Economics: Rotterdam, The Netherlands, 2015. [Google Scholar]
- Sommerville, J. Multivariate barriers to total quality management within the construction industry. Total. Qual. Manag. 1994, 5, 289–298. [Google Scholar] [CrossRef]
- Oosthuizen, R.M. The Fourth Industrial Revolution—Smart Technology, Artificial Intelligence, Robotics and Algorithms: Industrial Psychologists in Future Workplaces. Front. Artif. Intell. 2022, 5, 913168. [Google Scholar] [CrossRef]
- Winch, G.; Leiringer, R. Owner project capabilities for infrastructure development: A review and development of the strong owner concept. Int. J. Proj. Manag. 2016, 34, 271–281. [Google Scholar] [CrossRef] [Green Version]
- Conesa, A.; Götz, S.; García-Gómez, J.M.; Terol, J.; Talón, M.; Robles, M. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21, 3674–3676. [Google Scholar] [CrossRef] [Green Version]
- van der Vlies, R.D.; Maas, G.J. A Social Capital Perspective to Innovation Management in Construction; International Association for Automation and Robotics in Construction: Oulu, Finland, 2009. [Google Scholar]
- Langford, D.; Male, S. Synthesis of Strategic Management in Construction; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Demaid, A.; Quintas, P. Knowledge across cultures in the construction industry: Sustainability, innovation and design. Technovation 2006, 26, 603–610. [Google Scholar] [CrossRef]
- Shapiro, S.L.; Carlson, L.E.; Astin, J.A.; Freedman, B. Mechanisms of mindfulness. J. Clin. Psychol. 2006, 62, 373–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sompolgrunk, A.; Banihashemi, S.; Mohandes, S.R. Building information modelling (BIM) and the return on investment: A systematic analysis. Constr. Innov. 2023, 23, 129–154. [Google Scholar] [CrossRef]
- Guo, J.; Zhao, N.; Sun, L.; Zhang, S. Modular based flexible digital twin for factory design. J. Ambient. Intell. Humaniz. Comput. 2019, 10, 1189–1200. [Google Scholar] [CrossRef]
- Thuemmler, C.; Bai, C. Health 4.0: Application of industry 4.0 design principles in future asthma management. In Health 4.0: How Virtualization and Big Data Are Revolutionizing Healthcare; Springer: Berlin/Heidelberg, Germany, 2017; pp. 23–37. [Google Scholar]
- Roblek, V.; Meško, M.; Krapež, A. A Complex View of Industry 4.0. SAGE Open 2016, 6, 2158244016653987. [Google Scholar] [CrossRef] [Green Version]
- Xing, B.; Marwala, T. Implications of the Fourth Industrial Age on Higher Education. arXiv 2017, arXiv:1703.09643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.; Yun, J.J.; Pyka, A.; Won, D.; Kodama, F.; Schiuma, G.; Park, H.; Jeon, J.; Park, K.; Jung, K.; et al. How to Respond to the Fourth Industrial Revolution, or the Second Information Technology Revolution? Dynamic New Combinations between Technology, Market, and Society through Open Innovation. J. Open Innov. Technol. Mark. Complex. 2018, 4, 21. [Google Scholar] [CrossRef] [Green Version]
- Sutherland, E.J.P. The fourth industrial revolution–the case of South Africa. Politikon 2020, 47, 233–252. [Google Scholar] [CrossRef]
- Rüßmann, M.; Lorenz, M.; Gerbert, P.; Waldner, M.; Justus, J.; Engel, P.; Harnisch, M. Industry 4.0: The future of productivity and growth in manufacturing industries. Boston Consult. Group 2015, 9, 54–89. [Google Scholar]
- Lasi, H.; Fettke, P.; Kemper, H.-G.; Feld, T.; Hoffmann, M. Industry 4.0. Bus. Inf. Syst. Eng. 2014, 6, 239–242. [Google Scholar] [CrossRef]
- Zezulka, F.; Marcon, P.; Vesely, I.; Sajdl, O.J.I.-P. Industry 4.0–An Introduction in the phenomenon. IFAC-PapersOnLine 2016, 49, 8–12. [Google Scholar] [CrossRef]
- Tidd, J. Integrating technological market and organizational change. Manag. Innov. 2005, 23, 23. [Google Scholar]
- Liu, Y.; van Nederveen, S.; Hertogh, M. Understanding effects of BIM on collaborative design and construction: An empirical study in China. Int. J. Proj. Manag. 2017, 35, 686–698. [Google Scholar] [CrossRef]
- Kosba, A.; Miller, A.; Shi, E.; Wen, Z.; Papamanthou, C. Hawk: The Blockchain Model of Cryptography and Privacy-Preserving Smart Contracts. In Proceedings of the 2016 IEEE Symposium on Security and Privacy, Fairmont, CA, USA, 23–25 May 2016; pp. 839–858. [Google Scholar] [CrossRef]
- Fazeli, A.; Banihashemi, S.; Hajirasouli, A.; Mohandes, S.R. Automated 4D BIM development: The resource specification and optimization approach. Eng. Constr. Archit. Manag. 2022; (ahead-of-print). [Google Scholar]
- Ngowi, A.; Pienaar, E.; Talukhaba, A.; Mbachu, J. The globalisation of the construction industry—A review. Build. Environ. 2005, 40, 135–141. [Google Scholar] [CrossRef]
- Sharma, R.S.; Kshetri, N. Digital healthcare: Historical development, applications, and future research directions. Int. J. Inf. Manag. 2020, 53, 102105. [Google Scholar] [CrossRef]
- Herweijer, C.; Combes, B.; Johnson, L.; McCargow, R.; Bhardwaj, S.; Jackson, B.; Ramchandani, P. Enabling a sustainable Fourth Industrial Revolution: How G20 countries can create the conditions for emerging technologies to benefit people and the planet. Econ. Discuss. Pap. 2018, 23. [Google Scholar]
- Henseler, J.; Hubona, G.; Ray, P.A. Using PLS path modeling in new technology research: Updated guidelines. Ind. Manag. Data Syst. 2016, 116, 2–20. [Google Scholar] [CrossRef]
- Banihashemi, S.; Hosseini, M.R.; Golizadeh, H.; Sankaran, S. Critical success factors (CSFs) for integration of sustainability into construction project management practices in developing countries. Int. J. Proj. Manag. 2017, 35, 1103–1119. [Google Scholar] [CrossRef]
- Lee, C.; Hallak, R. Investigating the moderating role of education on a structural model of restaurant performance using multi-group PLS-SEM analysis. J. Bus. Res. 2018, 88, 298–305. [Google Scholar] [CrossRef]
- Hult, G.T.M.; Hair, J.F.; Proksch, D.; Sarstedt, M.; Pinkwart, A.; Ringle, C.M. Addressing Endogeneity in International Marketing Applications of Partial Least Squares Structural Equation Modeling. J. Int. Mark. 2018, 26, 1–21. [Google Scholar] [CrossRef]
- Hair, J.F., Jr.; Matthews, L.M.; Matthews, R.L.; Sarstedt, M. PLS-SEM or CB-SEM: Updated guidelines on which method to use. Int. J. Multivar. Data Anal. 2017, 1, 107–123. [Google Scholar] [CrossRef]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. PLS-SEM: Indeed a silver bullet. J. Mark. Theory Pract. 2011, 19, 139–152. [Google Scholar] [CrossRef]
- Podsakoff, P.M.; MacKenzie, S.B.; Lee, J.-Y.; Podsakoff, N.P. Common method biases in behavioral research: A critical review of the literature and recommended remedies. J. Appl. Psychol. 2003, 88, 879–903. [Google Scholar] [CrossRef]
- Glick, W.H.; Jenkins, G.D., Jr.; Gupta, N. Method versus substance: How strong are underlying relationships between job characteristics and attitudinal outcomes? Acad. Manag. J. 1986, 29, 441–464. [Google Scholar] [CrossRef]
- Strandholm, K.; Kumar, K.; Subramanian, R. Examining the interrelationships among perceived environmental change, strategic response, managerial characteristics, and organizational performance. J. Bus. Res. 2004, 57, 58–68. [Google Scholar] [CrossRef]
- Williams, L.J.; Cote, J.A.; Buckley, M.R. Lack of method variance in self-reported affect and perceptions at work: Reality or artifact? J. Appl. Psychol. 1989, 74, 462. [Google Scholar] [CrossRef]
- Harman, D.; Eddy, D.E.; Noffsinger, J. Free Radical Theory of Aging: Inhibition of Amyloidosis in Mice by Antioxidants; Possible Mechanism*. J. Am. Geriatr. Soc. 1976, 24, 203–210. [Google Scholar] [CrossRef]
- Podsakoff, P.M.; Organ, D.W. Self-Reports in Organizational Research: Problems and Prospects. J. Manag. 1986, 12, 531–544. [Google Scholar] [CrossRef]
- Al-Ashmori, Y.Y.; Othman, I.; Rahmawati, Y.; Amran, Y.H.M.; Sabah, S.H.A.; Rafindadi, A.D.; Mikić, M. BIM benefits and its influence on the BIM implementation in Malaysia. Ain Shams Eng. J. 2020, 11, 1013–1019. [Google Scholar] [CrossRef]
- Hulland, J. Use of partial least squares (PLS) in strategic management research: A review of four recent studies. Strateg. Manag. J. 1999, 20, 195–204. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Nunnally, J.C.; Bernstein, I. Psychometric Theory McGraw-Hill New York, The role of university in the development of entrepreneurial vocations: A Spanish study. Psychom. Theory 1978, 7, 387–405. [Google Scholar]
- Wong, K.K.-K. Partial least squares structural equation modeling (PLS-SEM) techniques using SmartPLS. Mark. Bull. 2013, 24, 1–32. [Google Scholar]
- Hair, J.F.; Anderson, R.E.; Babin, B.J.; Black, W.C. Multivariate Data Analysis: A Global Perspective (Vol. 7); Pearson: Upper Saddle River, NJ, USA, 2010. [Google Scholar]
- Campbell, D.T.; Fiske, D.W. Convergent and discriminant validation by the multitrait-multimethod matrix. Psychol. Bull. 1959, 56, 81–105. [Google Scholar] [CrossRef] [Green Version]
- Alkilani, S.G.R.Z. Performance Measurement and Improvement Model for Small and Medium Contractors in Developing Countries, Doctor of Philosophy, School of Construction Management and Property. Ph.D. Thesis, University of New South Wales, Sydney, Australia, 2018. [Google Scholar]
- Al-Mekhlafi, A.-B.A.; Isha, A.S.N.; Chileshe, N.; Abdulrab, M.; Kineber, A.F.; Ajmal, M. Impact of Safety Culture Implementation on Driving Performance among Oil and Gas Tanker Drivers: A Partial Least Squares Structural Equation Modelling (PLS-SEM) Approach. Sustainability 2021, 13, 8886. [Google Scholar] [CrossRef]
- Buniya, M.K.; Othman, I.; Sunindijo, R.Y.; Kineber, A.F.; Mussi, E.; Ahmad, H. Barriers to safety program implementation in the construction industry. Ain Shams Eng. J. 2020, 12, 65–72. [Google Scholar] [CrossRef]
- Kineber, A.F.; Othman, I.; Oke, A.E.; Chileshe, N.; Alsolami, B. Critical Value Management Activities in Building Projects: A Case of Egypt. Buildings 2020, 10, 239. [Google Scholar] [CrossRef]
- Olanrewaju, O.; Kineber, A.F.; Chileshe, N.; Edwards, D.J. Modelling the Impact of Building Information Modelling (BIM) Implementation Drivers and Awareness on Project Lifecycle. Sustainability 2021, 13, 8887. [Google Scholar] [CrossRef]
- Oke, A.E.; Kineber, A.F.; Al-Bukhari, I.; Famakin, I.; Kingsley, C. Exploring the benefits of cloud computing for sustainable construction in Nigeria. J. Eng. Des. Technol. 2021, 4. [Google Scholar] [CrossRef]
- Othman, I.; Kineber, A.; Oke, A.; Zayed, T.; Buniya, M. Barriers of value management implementation for building projects in Egyptian construction industry. Ain Shams Eng. J. 2020, 12, 21–30. [Google Scholar] [CrossRef]
- Azman, A.; Singh, P.S.J.; Isahaque, A. Implications for social work teaching and learning in Universiti Sains Malaysia, Penang, due to the COVID-19 pandemic: A reflection. Qual. Soc. Work. 2021, 20, 553–560. [Google Scholar] [CrossRef]
- Kineber, A.F.; Othman, I.; Oke, A.E.; Chileshe, N.; Buniya, M.K. Impact of Value Management on Building Projects Success: Structural Equation Modeling Approach. J. Constr. Eng. Manag. 2021, 147, 4021011. [Google Scholar] [CrossRef]
- Kineber, A.F.; Othman, I.; Oke, A.E.; Chileshe, N.; Zayed, T. Exploring the value management critical success factors for sustainable residential building—A structural equation modelling approach. J. Clean. Prod. 2021, 293, 126115. [Google Scholar] [CrossRef]
- Kline, R.B. Principles and Practice of Structural Equation Modeling, 3rd ed.; The Guilford Press: New York, NY, USA, 2010. [Google Scholar]
- Yin, R.K. Case Study Research: Design and Methods, 4th ed.; Applied Social Research Methods Series; Sage: Thousand Oaks, CA, USA, 2009; Volume 5. [Google Scholar]
- Kothari, C. Research Methodology Methods and Techniques, 2nd ed.; New Age International: New Delhi, India, 2009; Volume 20, p. 2018. [Google Scholar]
- Wahyuni, D. The research design maze: Understanding paradigms, cases, methods and methodologies. J. Appl. Manag. Account. Res. 2012, 10, 69–80. [Google Scholar]
- Sharma, S. Applied Multivariate Techniques; John Wiley and Sons: Hoboken, NJ, USA, 1996. [Google Scholar]
- Tabachnick, B.G.; Fidell, L.S.; Ullman, J.B. Using Multivariate Statistics; Pearson: Boston, MA, USA, 2007. [Google Scholar]
- Nunnally, J.C. Psychometric Theory 3E; Tata McGraw-Hill Education: New York, NY, USA, 1994. [Google Scholar]
- Field, A. Discovering Statistics Using SPSS (3. baskı); Sage Publications: New York, NY, USA, 2009. [Google Scholar]
- MacKenzie, S.B.; Podsakoff, P.M. Common method bias in marketing: Causes, mechanisms, and procedural remedies. J. Retail. 2012, 88, 542–555. [Google Scholar] [CrossRef]
- Harman, H.H. Modern Factor Analysis; University of Chicago Press: Chicago, IL, USA, 1967. [Google Scholar]
- Halim, N.N.A.A.; Malaysia, U.S.; Jaafar, M.H.; Kamaruddin, M.A.M.A.; Kamaruzaman, N.A.; Singh, P.S.J. The Causes of Malaysian Construction Fatalities. J. Sustain. Sci. Manag. 2020, 15, 236–256. [Google Scholar] [CrossRef]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E.; Tatham, R.L. Multivariate Data Analysis (Vol. 6); Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2006. [Google Scholar]
- Hair, J.F., Jr.; Hult, G.T.M.; Ringle, C.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM); Sage Publications: Los Angeles, CA, USA, 2016. [Google Scholar]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. Partial least squares structural equation modeling: Rigorous applications, better results and higher acceptance. Long Range Plan. 2013, 46, 1–12. [Google Scholar] [CrossRef]
- Chin, W.W.; Newsted, P.R. Structural equation modeling analysis with small samples using partial least squares. Stat. Strateg. Small Sample Res. 1999, 1, 307–341. [Google Scholar]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef] [Green Version]
- Moon, S.; Ham, N.; Kim, S.; Hou, L.; Kim, J.-H.; Kim, J.-J. Fourth industrialization-oriented offsite construction: Case study of an application to an irregular commercial building. Eng. Constr. Arch. Manag. 2020, 27, 2271–2286. [Google Scholar] [CrossRef]
- Lee, B.; Park, S.-K. A Study on the Competitiveness for the Diffusion of Smart Technology of Construction Industry in the Era of 4th Industrial Revolution. Sustainability 2022, 14, 8348. [Google Scholar] [CrossRef]
- Malomane, R.; Musonda, I.; Okoro, C.S. The Opportunities and Challenges Associated with the Implementation of Fourth Industrial Revolution Technologies to Manage Health and Safety. Int. J. Environ. Res. Public Health 2022, 19, 846. [Google Scholar] [CrossRef]
- Olanrewaju, O.I.; Kineber, A.F.; Chileshe, N.; Edwards, D.J. Modelling the relationship between Building Information Modelling (BIM) implementation barriers, usage and awareness on building project lifecycle. Build. Environ. 2022, 207, 108556. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Chatterjee, A. Digital project driven supply chains: A new paradigm. Supply Chain Manag. Int. J. 2021, 27, 283–294. [Google Scholar] [CrossRef]
- Osunsanmi, T.O.; Aigbavboa, C.O.; Thwala, W.D.; Oke, A.E. Construction Supply Chain Management Practice in Nigeria. In Construction Supply Chain Management in the Fourth Industrial Revolution Era; Emerald Publishing Limited: Bingley, UK, 2022; pp. 169–198. [Google Scholar]
- Osunsanmi, T.O.; Aigbavboa, C.O.; Thwala, W.D.; Oke, A.E. Construction Supply Chain Management Model in the Era of the Fourth Industrial Revolution. In Construction Supply Chain Management in the Fourth Industrial Revolution Era; Emerald Publishing Limited: Bingley, UK, 2022; pp. 303–324. [Google Scholar]
- Manda, M.I.; Ben Dhaou, S. Responding to the challenges and opportunities in the 4th Industrial revolution in developing countries. In Proceedings of the 12th International Conference on Theory and Practice of Electronic Governance, Melbourne, Australia, 3–5 April 2019; Volume 6, pp. 244–253. [Google Scholar] [CrossRef] [Green Version]
- Keogh, M.; Smallwood, J.J. The role of the 4th Industrial Revolution (4IR) in enhancing performance within the construction industry. IOP Conf. Series Earth Environ. Sci. 2021, 654, 12021. [Google Scholar] [CrossRef]
- Islam, T.; Azman, A.; Singh, P.; Ali, I.; Tahmina, A.; Mohd, R.; Ismail, N.; Hossain, K. Socio-economic vulnerability of riverbank erosion of displacees: Case study of coastal villages in Bangladesh. Indian J. Ecol. 2019, 46, 34–38. [Google Scholar]
- Ibrahim, F.S.B.; Ebekozien, A.; Khan, P.A.M.; Aigbedion, M.; Ogbaini, I.F.; Amadi, G.C. Appraising fourth industrial revolution technologies role in the construction sector: How prepared is the construction consultants? Facilities 2022, 40, 515–532. [Google Scholar] [CrossRef]
- Chung, H.; Kim, K. Service sector response to the Fourth Industrial Revolution: Strategies for dissemination and acceptance of new knowledge. Technol. Anal. Strat. Manag. 2022, 1–16. [Google Scholar] [CrossRef]
- Costa, A.C.F.; Santos, V.H.D.M.; de Oliveira, O.J. Towards the revolution and democratization of education: A framework to overcome challenges and explore opportunities through Industry 4.0. Informatics Educ. 2022, 21, 1–32. [Google Scholar] [CrossRef]
- Kayembe, C.; Nel, D. Challenges and opportunities for education in the Fourth Industrial Revolution. Afr. J. Public Aff. 2019, 11, 79–94. [Google Scholar]
- Durdyev, S.; Mohandes, S.R.; Mahdiyar, A.; Ismail, S. What drives clients to purchase green building? The cybernetic fuzzy analytic hierarchy process approach. Eng. Constr. Archit. Manag. 2022, 29, 4015–4039. [Google Scholar] [CrossRef]
- Olojede, O.A.; Agbola, S.B.; Samuel, K.J. Technological innovations and acceptance in public housing and service delivery in South Africa: Implications for the Fourth Industrial Revolution. J. Public Adm. 2019, 54, 162–183. [Google Scholar]
- Shi, L.; Li, S.; Fu, X. The fourth industrial revolution, technological innovation and firm wages: Firm-level evidence from OECD economies. Rev. Déconomie Ind. 2020, 169, 89–125. [Google Scholar] [CrossRef]
- Ghane, M.; Ang, M.C.; Kadir, R.A.; Ng, K.W. Technology Forecasting Model Based on Trends of Engineering System Evolution (TESE) and Big Data for 4IR. In Proceedings of the 2020 IEEE Student Conference on Research and Development (SCOReD), Batu Pahat, Malaysia, 27–29 September 2020; pp. 237–242. [Google Scholar] [CrossRef]
- Alade, K.; Windapo, A. 4IR leadership effectiveness and practical implications for construction business organisations, in The Construction Industry in the Fourth Industrial Revolution. In Proceedings of the 11th Construction Industry Development Board (CIDB) Postgraduate Research Conference, Johannesburg, South Africa, 28–30 July 2019; Springer: Berlin/Heidelberg, Germany, 2020; Volume 11, pp. 62–70. [Google Scholar]
- Ayentimi, D.T.; Burgess, J. Is the fourth industrial revolution relevant to sub-Sahara Africa? Technol. Anal. Strat. Manag. 2019, 31, 641–652. [Google Scholar] [CrossRef]
- Oke, A.; Fernandes, F.A.P. Innovations in Teaching and Learning: Exploring the Perceptions of the Education Sector on the 4th Industrial Revolution (4IR). J. Open Innov. Technol. Mark. Complex. 2020, 6, 31. [Google Scholar] [CrossRef]
Code | Name | Studies |
---|---|---|
B1 | Resistance to Change | [42,43,44,45,46,47,48,49] |
B2 | Fear | [45,46,47,48,49,50,51] |
B3 | Knowledge and competency in computing | [47,48,50,51] |
B4 | Difficulty in understanding the new technology | [48,50,51] |
B5 | Leadership | [48,51] |
B6 | Organisational Structure | [43,45,46,47,48,50,52,53,54,55,56] |
B7 | Training & Learning | [48,50,51] |
B8 | Strategy & Investment | [48,51,55,57] |
B9 | Quality of data & information | [48,50] |
B10 | Interoperability & Compatibility | [48,51] |
B11 | Limited availability of resources to SMEs | [42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58] |
B12 | High capital and setup cost | [47,51] |
B13 | Increased risk exposure | [42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58] |
B14 | A limited number of skilled personnel | [47,51] |
B15 | The fragmented nature of the construction industry | [48,49,50,53,54,56,58] |
B16 | Lack of protocols for coding objects | [46,47,48,50,52,54] |
B17 | Legal and contractual issues | [47,49,52,54,55] |
B18 | Government policies | [43,46,48] |
B19 | Difficulties in acquiring these technologies locally due to the unavailability | [47,51] |
B20 | The time spent on setting up is much | [48,51,55,57] |
B21 | The cost of maintenance is very high | [43,44,45,46,48,51,53,55,57] |
KMO Sampling Adequacy Measure | 0.771 | |
Approx. Chi-Square | 2462.539 | |
Bartlett’s Test of Sphericity | df | 210 |
Sig. | 0.000 |
Factors | Component | ||
---|---|---|---|
F1 | F2 | F3 | |
Component 1: Policy and Structure Barriers | |||
B15 | 0.738 | ||
B11 | 0.698 | ||
B3 | 0.678 | ||
B14 | 0.667 | ||
B16 | 0.635 | ||
B2 | 0.623 | ||
B21 | 0.609 | ||
B17 | 0.560 | ||
B12 | 0.504 | ||
B10 | 0.490 | ||
B4 | 0.439 | ||
B1 | 0.405 | ||
B13 | 0.402 | ||
Component 2: Readiness Barriers | |||
B7 | 0.833 | ||
B8 | 0.733 | ||
B6 | 0.729 | ||
B9 | 0.723 | ||
B5 | 0.440 | ||
Component 3: Acquisition Barriers | |||
B19 | 0.702 | ||
B20 | 0.598 | ||
B18 | 0.578 | ||
Eigenvalues | 6.764 | 4.607 | 3.042 |
Total Variance Explained (%) | 24.158 | 16.453 | 10.866 |
Constructs | Cronbach’s Alpha | Composite Reliability | AVE |
---|---|---|---|
Policy and Structure | 0.827 | 0.874 | 0.537 |
Readiness | 0.824 | 0.868 | 0.690 |
Acquisition | 0.700 | 0.813 | 0.596 |
Acquisition | Policy and Structure | Readiness | |
---|---|---|---|
Acquisition | 0.772 | ||
Policy and Structure | 0.160 | 0.733 | |
Readiness | 0.077 | 0.169 | 0.831 |
Constructs | Acquisition | Policy and Structure | Readiness |
---|---|---|---|
Acquisition | |||
Policy and Structure | 0.236 | ||
Readiness | 0.209 | 0.248 |
Paths | B | SD | p Values |
---|---|---|---|
Policy and structure → 4IR barriers | 0.924 | 0.045 | 0.000 |
Readiness → 4IR barriers | 0.161 | 0.064 | 0.000 |
Acquisition → 4IR barriers | 0.148 | 0.054 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, P.S.J.; Oke, A.E.; Kineber, A.F.; Olanrewaju, O.I.; Omole, O.; Samsurijan, M.S.; Ramli, R.A. A Mathematical Analysis of 4IR Innovation Barriers in Developmental Social Work—A Structural Equation Modeling Approach. Mathematics 2023, 11, 1003. https://doi.org/10.3390/math11041003
Singh PSJ, Oke AE, Kineber AF, Olanrewaju OI, Omole O, Samsurijan MS, Ramli RA. A Mathematical Analysis of 4IR Innovation Barriers in Developmental Social Work—A Structural Equation Modeling Approach. Mathematics. 2023; 11(4):1003. https://doi.org/10.3390/math11041003
Chicago/Turabian StyleSingh, Paramjit Singh Jamir, Ayodeji Emmanuel Oke, Ahmed Farouk Kineber, Oludolapo Ibrahim Olanrewaju, Olayinka Omole, Mohamad Shaharudin Samsurijan, and Rosfaraliza Azura Ramli. 2023. "A Mathematical Analysis of 4IR Innovation Barriers in Developmental Social Work—A Structural Equation Modeling Approach" Mathematics 11, no. 4: 1003. https://doi.org/10.3390/math11041003
APA StyleSingh, P. S. J., Oke, A. E., Kineber, A. F., Olanrewaju, O. I., Omole, O., Samsurijan, M. S., & Ramli, R. A. (2023). A Mathematical Analysis of 4IR Innovation Barriers in Developmental Social Work—A Structural Equation Modeling Approach. Mathematics, 11(4), 1003. https://doi.org/10.3390/math11041003