A Multi-Dimensional Covert Transaction Recognition Scheme for Blockchain
Abstract
:1. Introduction
- We first analyze two CNN-based covert communication recognition schemes and one attention-based covert communication recognition scheme, and we explain why these three schemes have different values of precision and recall for different covert communication schemes. That is, we explore the deep relationship between the appropriate feature extraction and the embedded fields of covert transactions through an experimental analysis.
- We further propose a multi-dimensional covert transaction recognition (M-CTR) scheme. This hybrid M-CTR scheme extracts both one dimension and two dimensions of the features.
- Our experiments demonstrate that the precision and recall of the covert transaction recognition are higher than those of existing schemes for four different blockchain-based covert communication schemes.
2. Related Works
2.1. The Construction of Covert Communications
2.2. The Recognition of Covert Transactions
3. Preliminaries
3.1. TextCNN for Classification
3.2. ResNet for Classification
3.3. Swin Transformer for Classification
3.4. The TextCNN [7] and BPNN for Covert Transaction Recognition
4. The Relationship between the Dimensions of Features and Covert Communication Construction
- Accuracy: The proportion of correct predictions.
- Precision: The number of true positives divided by the sum of the number of true positive and false positive samples.
- Recall: The number of true positives divided by the sum of the number of true positive and false negative samples.
- F1-score: Represents the harmonic mean of the precision and recall.
5. Multi-Dimensional Covert Transaction Recognition
6. Performance Analysis
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lampson, B.W. A Note on the Confinement Problem. Commun. ACM 1973, 16, 613–615. [Google Scholar] [CrossRef]
- Schmidbauer, T.; Keller, J.; Wendzel, S. Challenging Channels: Encrypted Covert Channels within Challenge-Response Authentication. In Proceedings of the 17th International Conference on Availability, Reliability and Security, Vienna, Austria, 23–26 August 2022. [Google Scholar]
- Partala, J. Provably Secure Covert Communication on Blockchain. Cryptography 2018, 2, 18. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.; Zhu, L.; Gai, K.; Zhang, C.; Liu, S. Achieving a Covert Channel over an Open Blockchain Network. IEEE Netw. 2020, 34, 6–13. [Google Scholar] [CrossRef]
- Guo, Z.; Shi, L.; Xu, M.; Yin, H. MRCC: A Practical Covert Channel over Monero with Provable Security. IEEE Access 2021, 9, 31816–31825. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Z.; He, J.; Gao, F.; Li, M.; Xu, S.; Zhu, L. Practical Blockchain-Based Steganographic Communication Via Adversarial AI: A Case Study In Bitcoin. Comput. J. 2022, 65, 2926–2938. [Google Scholar] [CrossRef]
- Kim, Y. Convolutional Neural Networks for Sentence Classification. Master’s Thesis, University of Waterloo, Waterloo, ON, Canada, 2014; pp. 1746–1751. [Google Scholar]
- Zhang, L.; Zhang, Z.; Wang, W.; Waqas, R.; Chen, H. A Covert Communication Method Using Special Bitcoin Addresses Generated by Vanitygen. Comput. Mater. Contin. 2020, 65, 495–510. [Google Scholar]
- Huang, S.; Zhang, W.; Yu, X.; Wang, J.; Song, W.; Li, B. Covert Communication Scheme Based on Bitcoin Transaction Mechanism. Secur. Commun. Netw. 2021, 2021, 3025774. [Google Scholar] [CrossRef]
- Cao, H.; Yin, H.; Gao, F.; Zhang, Z.; Khoussainov, B.; Xu, S.; Zhu, L. Chain-Based Covert Data Embedding Schemes in Blockchain. IEEE Internet Things J. 2022, 9, 14699–14707. [Google Scholar] [CrossRef]
- Xiangyang, L.; Pei, Z.; Mingliang, Z.; Hao, L.; Cheng, Q. A Novel Covert Communication Method Based on Bitcoin Transaction. IEEE Trans. Ind. Inform. 2022, 18, 2830–2839. [Google Scholar] [CrossRef]
- Tian, J.; Gou, G.; Liu, C.; Chen, Y.; Xiong, G.; Li, Z. DLchain: A Covert Channel over Blockchain Based on Dynamic Labels. In Information and Communications Security, Proceedings of the 21st International Conference, ICICS 2019, Beijing, China, 15–17 December 2019; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; Volume 11999 LNCS, pp. 814–830. [Google Scholar]
- Fionov, A. Exploring Covert Channels in Bitcoin Transactions. In Proceedings of the 2019 International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON), Novosibirsk, Russia, 21–27 October 2019; pp. 59–64. [Google Scholar]
- Ali, S.T.; McCorry, P.; Lee, P.H.J.; Hao, F. ZombieCoin 2.0: Managing next-generation botnets using Bitcoin. Int. J. Inf. Secur. 2018, 17, 411–422. [Google Scholar] [CrossRef] [Green Version]
- Frkat, D.; Annessi, R.; Zseby, T. ChainChannels: Private Botnet Communication over Public Blockchains. In Proceedings of the 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Halifax, NS, Canada, 30 July–3 August 2018; pp. 1244–1252. [Google Scholar]
- Lan, Y.; Zhang, F.; Tian, H. Using Monero to realize covert communication. Xi’an Dianzi Keji Daxue Xuebao/J. Xidian Univ. 2020, 47, 19–27. [Google Scholar]
- Basuki, A.I.; Rosiyadi, D. Joint Transaction-Image Steganography for High Capacity Covert Communication. In Proceedings of the 2019 International Conference on Computer, Control, Informatics and its Applications (IC3INA), Tangerang, Indonesia,, 23–24 October 2019; pp. 41–46. [Google Scholar]
- Zhang, L.; Zhang, Z.; Wang, W.; Jin, Z.; Su, Y.; Chen, H. Research on a Covert Communication Model Realized by Using Smart Contracts in Blockchain Environment. IEEE Syst. J. 2022, 16, 2822–2833. [Google Scholar] [CrossRef]
- Abdulaziz, M.; Culha, D.; Yazici, A. A Decentralized Application for Secure Messaging in a Trustless Environment. In Proceedings of the 2018 International Congress on Big Data, Deep Learning and Fighting Cyber Terrorism (IBIGDELFT), Ankara, Turkey, 3–4 December 2018; pp. 1–5. [Google Scholar]
- Zhang, L.; Zhang, Z.; Jin, Z.; Su, Y.; Wang, Z. An approach of covert communication based on the Ethereum whisper protocol in blockchain. Int. J. Intell. Syst. 2020, 36, 962–996. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, L.; Rasheed, W.; Jin, Z.; Xu, G. The Research on Covert Communication Model Based on Blockchain: A Case Study of Ethereum’s Whisper Protocol. In Frontiers in Cyber Security, Proceedings of the Third International Conference (FCS 2020), Tianjin, China, 15–17 November 2020; Springer: Singapore, 2020; pp. 215–230. [Google Scholar]
- Recabarren, R.; Carbunar, B. Tithonus: A Bitcoin Based Censorship Resilient System. arXiv 2018, arXiv:1810.00279. [Google Scholar] [CrossRef] [Green Version]
- Monamo, P.; Marivate, V.; Twala, B. Unsupervised learning for robust Bitcoin fraud detection. In Proceedings of the 2016 Information Security for South Africa (ISSA), Johannesburg, South Africa, 17–18 August 2016; pp. 129–134. [Google Scholar]
- Pham, T.; Lee, S. Anomaly Detection in Bitcoin Network Using Unsupervised Learning Methods. arXiv 2016, arXiv:1611.03941. [Google Scholar]
- Sayadi, S.; Rejeb, S.B.; Choukair, Z. Anomaly Detection Model Over Blockchain Electronic Transactions. In Proceedings of the 2019 15th International Wireless Communications and Mobile Computing Conference (IWCMC), Tangier, Morocco, 24–28 June 2019. [Google Scholar]
- Bartoletti, M.; Pes, B.; Serusi, S. Data mining for detecting Bitcoin Ponzi schemes. In Proceedings of the Crypto Valley Conference on Blockchain Technology (CVCBT), Zug, Switzerland, 20–22 June 2018. [Google Scholar]
- Weber, M.; Weidele, D.K.I.; Domeniconi, G.; Bellei, C.; Leiserson, C.E.; Chen, J.; Robinson, T. Anti-money laundering in bitcoin: Experimenting with graph convolutional networks for financial forensics. arXiv 2019, arXiv:1908.02591. [Google Scholar]
- Hu, Y.; Seneviratne, S.; Thilakarathna, K.; Fukuda, K.; Seneviratne, A. Characterizing and Detecting Money Laundering Activities on the Bitcoin Network. arXiv 2019, arXiv:1912.12060. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 10012–10022. [Google Scholar]
Recognition Scheme | Data Dimension | Recognition Object | Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|---|---|
TextCNN [7] | one-dimensional | BLOCCE [3] | 69.194 | 69.115 | 69.194 | 69.054 |
Unspent outputs [14] | 66.915 | 66.948 | 66.915 | 66.882 | ||
DSA [13] | 71.429 | 77.136 | 71.429 | 68.937 | ||
HC-CDE [10] | 69.617 | 69.688 | 69.617 | 69.633 | ||
Swin-Transformer [30] | two-dimensional | BLOCCE [3] | 68.585 | 68.267 | 67.969 | 68.049 |
Unspent outputs [14] | 65.743 | 65.623 | 65.716 | 65.628 | ||
DSA [13] | 63.636 | 63.769 | 62.919 | 62.712 | ||
HC-CDE [10] | 98.789 | 98.918 | 98.663 | 98.775 | ||
ResNet34 [29] | two-dimensional | BLOCCE [3] | 65.877 | 66.144 | 65.877 | 65.891 |
Unspent outputs [14] | 65.423 | 65.499 | 65.423 | 65.392 | ||
DSA [13] | 65.714 | 65.521 | 65.714 | 65.146 | ||
HC-CDE [10] | 99.282 | 99.292 | 99.282 | 99.282 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Wang, S.; Li, Z.; Gao, F.; Wang, H. A Multi-Dimensional Covert Transaction Recognition Scheme for Blockchain. Mathematics 2023, 11, 1015. https://doi.org/10.3390/math11041015
Zhang Z, Wang S, Li Z, Gao F, Wang H. A Multi-Dimensional Covert Transaction Recognition Scheme for Blockchain. Mathematics. 2023; 11(4):1015. https://doi.org/10.3390/math11041015
Chicago/Turabian StyleZhang, Zijian, Shuqi Wang, Zhen Li, Feng Gao, and Huaqiang Wang. 2023. "A Multi-Dimensional Covert Transaction Recognition Scheme for Blockchain" Mathematics 11, no. 4: 1015. https://doi.org/10.3390/math11041015
APA StyleZhang, Z., Wang, S., Li, Z., Gao, F., & Wang, H. (2023). A Multi-Dimensional Covert Transaction Recognition Scheme for Blockchain. Mathematics, 11(4), 1015. https://doi.org/10.3390/math11041015