Structural Modal Parameter Identification Method Based on the Delayed Transfer Rate Function under Periodic Excitations
Abstract
:1. Introduction
2. Basic Theories
2.1. Modal Parameter Identification Based on Acceleration TRF
2.2. The Effect of Periodic Excitation on Modal Identification
2.3. Delayed TRF Approach for Periodic False Mode Identification
3. Example Analysis
3.1. Numerical Calculation of a 4-DOF System
3.1.1. Dynamic Response of the System
3.1.2. Modal Parameter Identification Based on TRF
3.1.3. Robustness Check of the Delayed TRF
3.2. Modal Parameter Identification Example of a Pump Station Plant
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, J.J.; Yun, C.B. Damage diagnosis of steel girder bridges using ambient vibration data. Eng. Struct. 2006, 28, 912–925. [Google Scholar] [CrossRef]
- Han, J.; Zheng, P.; Wang, H. Structural modal parameter identification and damage diagnosis based on Hilbert-Huang transform. Earthq. Eng. Eng. Vib. 2014, 13, 101–111. [Google Scholar] [CrossRef]
- Hakim, S.J.S.; Razak, H.A.; Ravanfar, S.A. Fault diagnosis on beam-like structures from modal parameters using artificial neural networks. Measurement 2015, 76, 45–61. [Google Scholar] [CrossRef]
- Foti, D.; Giannoccaro, N.I.; Vacca, V.; Lerna, M. Structural operativity evaluation of strategic buildings through finite element (FE) models validated by operational modal analysis (OMA). Sensors 2020, 20, 3252. [Google Scholar] [CrossRef]
- Tsuchimoto, K.; Narazaki, Y.; Spencer Jr, B.F. Development and validation of a post-earthquake safety assessment system for high-rise buildings using acceleration measurements. Mathematics 2021, 9, 1758. [Google Scholar] [CrossRef]
- Magalhães, F.; Cunha, Á.; Caetano, E. Vibration based structural health monitoring of an arch bridge: From automated OMA to damage detection. Mech. Syst. Signal Process. 2012, 28, 212–228. [Google Scholar] [CrossRef]
- Yan, Z.; Liu, H. SMoCo: A powerful and efficient method based on self-supervised learning for fault diagnosis of aero-engine bearing under limited data. Mathematics 2022, 10, 2796. [Google Scholar] [CrossRef]
- Pan, C.; Ye, X.; Mei, L. Improved automatic operational modal analysis method and application to large-scale bridges. J. Bridg. Eng. 2021, 26, 04021051. [Google Scholar] [CrossRef]
- Yan, W.J.; Zhao, M.J.; Sun, Q.; Ren, W.X. Transmissibility-based system identification for structural health monitoring: Fundamentals, approaches, and applications. Mech. Syst. Signal Process. 2019, 117, 453–482. [Google Scholar] [CrossRef]
- Sun, Q.; Yan, W.J.; Ren, W.X.; Liu, L.L. Application of transmissibility measurements to operational modal analysis of railway, highway, and pedestrian cable-stayed bridges. Measurement 2019, 148, 106880. [Google Scholar] [CrossRef]
- Liu, T.; Xu, H.; Ragulskis, M.; Cao, M.; Ostachowicz, W. A data-driven damage identification framework based on transmissibility function datasets and one-dimensional convolutional neural networks: Verification on a structural health monitoring benchmark structure. Sensors 2020, 20, 1059. [Google Scholar] [CrossRef] [Green Version]
- Devriendt, C.; Guillaume, P. The use of transmissibility measurements in output-only modal analysis. Mech. Syst. Signal Process. 2007, 21, 2689–2696. [Google Scholar] [CrossRef]
- Lage, Y.E.; Maia, N.M.M.; Neves, M.M.; Ribeiro, A.M.R. Force identification using the concept of displacement transmissibility. J. Sound Vib. 2013, 332, 1674–1686. [Google Scholar] [CrossRef]
- Araújo, I.G.; Laier, J.E. Operational modal analysis using SVD of power spectral density transmissibility matrices. Mech. Syst. Signal Process. 2014, 46, 129–145. [Google Scholar] [CrossRef]
- Araújo, I.D.G. Transmissibility-based operational modal analysis: Unified concept and its application. Mech. Syst. Signal Process. 2022, 178, 109302. [Google Scholar] [CrossRef]
- Devriendt, C.; Guillaume, P. Identification of modal parameters from transmissibility measurements. J. Sound Vib. 2008, 314, 343–356. [Google Scholar] [CrossRef]
- Devriendt, C.; De Sitter, G.; Guillaume, P. An operational modal analysis approach based on parametrically identified multivariable transmissibilities. Mech. Syst. Signal Process. 2019, 24, 1250–1259. [Google Scholar] [CrossRef]
- Devriendt, C.; Weijtjens, W.; De Sitter, G.; Guillaume, P. Combining multiple single-reference transmissibility functions in a unique matrix formulation for operational modal analysis. Mech. Syst. Signal Process. 2013, 40, 278–287. [Google Scholar] [CrossRef]
- Weijtjens, W.; De Sitter, G.; Devriendt, C.; Guillaume, P. Operational modal parameter estimation of MIMO systems using transmissibility functions. Automatica 2014, 50, 559–564. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Wang, T.; Xia, Z.P. Transmissibility based operational modal analysis. J. Vib. Meas. Diagn. 2015, 35, 945–949+995, (In Chinese with English abstract). [Google Scholar]
- Araújo, I.G.; Sánchez, J.A.G.; Andersen, P. Modal parameter identification based on combining transmissibility functions and blind source separation techniques. Mech. Syst. Signal Process. 2018, 105, 276–293. [Google Scholar] [CrossRef]
- Li, X.Z.; Dong, X.J.; Yue, X.B.; Huang, W.; Peng, Z.K. Dynamic characteristics of vibration response transmissibility and its application in operational modal analysis. J. Vib. Shock. 2019, 38, 62–70, (In Chinese with English abstract). [Google Scholar]
- Mohanty, P.; Rixen, D.J. Operational modal analysis in the presence of harmonic excitation. J. Sound Vib. 2004, 270, 93–109. [Google Scholar] [CrossRef]
- Mohanty, P.; Rixen, D.J. Modified ERA method for operational modal analysis in the presence of harmonic excitations. Mech. Syst. Sign. Process. 2006, 20, 114–130. [Google Scholar] [CrossRef]
- He, X.H.; Hua, X.G.; Chen, Z.Q.; Huang, F.L. EMD-based random decrement technique for modal parameter identification of an existing railway bridge. Eng. Struct. 2011, 33, 1348–1356. [Google Scholar] [CrossRef]
- Carden, E.P.; Brownjohn, J.M. Fuzzy clustering of stability diagrams for vibration-based structural health monitoring. Comput. Aided Civ. Infrastruct. Eng. 2008, 23, 360–372. [Google Scholar] [CrossRef]
- Lian, J.; Li, H.; Zhang, J. ERA modal identification method for hydraulic structures based on order determination and noise reduction of singular entropy. Sci. China Ser. E Technol. Sci. 2009, 52, 400–412. [Google Scholar] [CrossRef]
- Dong, X.; Lian, J.; Yang, M.; Wang, H. Operational modal identification of offshore wind turbine structure based on modified stochastic subspace identification method considering harmonic interference. J. Renew. Sustain. Energy 2014, 6, 033128. [Google Scholar] [CrossRef]
- Heylen, W.; Lammens, S.; Sas, P. Modal Analysis Theory and Testing; Katholieke Universiteit Leuven: Leuven, Belgium, 1997; Volume 200. [Google Scholar]
- Zhang, L.M.; Wang, T.; Tamura, Y. A frequency-spatial domain decomposition (FSDD) method for operational modal analysis. Mech. Syst. Signal Process. 2010, 24, 1227–1239. [Google Scholar] [CrossRef]
- Pintelon, R.; Schoukens, J. System Identification: A Frequency Domain Approach; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
Load | F1 | F2 |
---|---|---|
Component 1 | Periodic excitation 1 (3.1 Hz) | Periodic excitation 2 (6 Hz) |
Component 2 | White noise 1 | White noise 1 |
Modal Number | Frequency (Hz) | Damping Ratio (%) | ||||
---|---|---|---|---|---|---|
Theoretical Value | Identified Value | Error Rate (%) | Theoretical Value | Identified Value | Error Rate (%) | |
1 | 1.748 | 1.750 | 0.10 | 0.27 | 0.28 | 3.70 |
2 | 5.033 | 5.030 | −0.06 | 0.79 | 0.77 | −2.53 |
3 | 7.711 | 7.693 | −0.23 | 1.21 | 1.24 | 2.48 |
4 | 9.459 | 9.450 | −0.09 | 1.49 | 1.52 | 2.01 |
Frequency Type | Frequency Value (Hz) |
---|---|
Natural frequency | 34, 43.5, 61.5 |
Periodic frequency | 8.33, 16.67, 25, 41.7, 50, 58.3, 66.7, 83.3 |
Order of Modes | 1st Order | 2nd Order | 3rd Order |
---|---|---|---|
1st order | 1.000 | 0.005 | 0.001 |
2nd order | 0.005 | 1.000 | 0.002 |
3rd order | 0.001 | 0.002 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Zheng, D.; Shao, C.; Zheng, S.; Gu, H. Structural Modal Parameter Identification Method Based on the Delayed Transfer Rate Function under Periodic Excitations. Mathematics 2023, 11, 1019. https://doi.org/10.3390/math11041019
Xu Y, Zheng D, Shao C, Zheng S, Gu H. Structural Modal Parameter Identification Method Based on the Delayed Transfer Rate Function under Periodic Excitations. Mathematics. 2023; 11(4):1019. https://doi.org/10.3390/math11041019
Chicago/Turabian StyleXu, Yanxin, Dongjian Zheng, Chenfei Shao, Sen Zheng, and Hao Gu. 2023. "Structural Modal Parameter Identification Method Based on the Delayed Transfer Rate Function under Periodic Excitations" Mathematics 11, no. 4: 1019. https://doi.org/10.3390/math11041019
APA StyleXu, Y., Zheng, D., Shao, C., Zheng, S., & Gu, H. (2023). Structural Modal Parameter Identification Method Based on the Delayed Transfer Rate Function under Periodic Excitations. Mathematics, 11(4), 1019. https://doi.org/10.3390/math11041019