New Results Involving the Generalized Krätzel Function with Application to the Fractional Kinetic Equations
Abstract
:1. Introduction and Motivation
2. Preliminaries
3. Main Results
3.1. New Identities Containing the Fractional Calculus Images of Generalized Krätzel Function
3.2. New Identities Containing the Fractional Calculus Derivatives of Generalized Krätzel Function
3.3. Non-Integer order Kinetic Equation Comprising of the Generalized Krätzel Function
3.4. New Integrals of Products Involving Special Functions
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haubold, H.; Mathai, A. The fractional kinetic equation and thermonuclear functions. Astrophys. Space Sci. 2000, 273, 53–63. [Google Scholar] [CrossRef]
- Mathai, A.M.; Haubold, H.J. A versatile integral in physics and astronomy and Fox’s H-function. Axioms 2019, 8, 122. [Google Scholar] [CrossRef] [Green Version]
- Kiryakova, V. Unified Approach to Fractional Calculus Images of Special Functions—A Survey. Mathematics 2020, 8, 2260. [Google Scholar] [CrossRef]
- Kiryakova, V. Multiple (multiindex) Mittag-Leffler functions and relations to generalized fractional calculus. J. Comput. Appl. Math. 2000, 118, 241–259. [Google Scholar] [CrossRef] [Green Version]
- Kiryakova, V. The multi-index Mittag-Leffler functions as important class of special functions of fractional calculus. Comput. Math. Appl. 2010, 59, 1885–1895. [Google Scholar] [CrossRef] [Green Version]
- Kiryakova, V. A Guide to Special Functions in Fractional Calculus. Mathematics 2021, 9, 106. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Saigo, M. Multiplication of fractional calculus operators and boundary value problems involving the Euler-Darboux equation. Math. Anal. Appl. 1987, 121, 325–369. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Alomari, A.-K.N.; Saad, K.M.; Hamanah, W.M. Some Dynamical Models Involving Fractional-Order Derivatives with the Mittag-Leffler Type Kernels and Their Applications Based upon the Legendre Spectral Collocation Method. Fractal Fract. 2021, 5, 131. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Saxena, R.K.; Parmar, R.K. Some Families of the Incomplete H-Functions and the Incomplete -Functions and Associated Integral Transforms and Operators of Fractional Calculus with Applications. Russ. J. Math. Phys. 2018, 25, 116–138. [Google Scholar] [CrossRef]
- Krätzel, E. Integral transformations of Bessel-type. In Generalized Functions and Operational, Proceedings of the Conference on Generalized Functions and Operational Calculi, Varna, September 29-October 6, 1975; Publishing House of the Bulgarian Academy of Sciences: Sofia, Bulgaria, 1975; pp. 148–155. [Google Scholar]
- Mathai, A.M.; Haubold, H.J. Mathematical Aspects of Krätzel Integral and Krätzel Transform. Mathematics 2020, 8, 526. [Google Scholar] [CrossRef] [Green Version]
- Rao, G.L.; Debnath, L. A generalized Meijer transformation. Int. J. Math. Math. Sci. 1985, 8, 359–365. [Google Scholar] [CrossRef] [Green Version]
- Kilbas, A.A.; Shlapakov, S.A. The compositions of a Bessel-type integral operator with fractional integro-differentiation operators and its applications to solving differential equations. Differ. Equ. 1994, 30, 235–246. [Google Scholar]
- Glaeske, H.-J.; Kilbas, A.A. Bessel-type integral transforms on L_(ν;r)-spaces. Result. Math. 1998, 34, 320–329. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Bonilla, B.; Rivero, M.; Rodríguez, J.; Trujillo, J.J. Compositions of Bessel type integral transform with fractional operators on spaces Fp, µ and Fp, µ. Frac. Calc. Appl. Anal. 1998, 1, 135–150. [Google Scholar]
- Kilbas, A.A.; Saxena, R.; Trujillo, J.J. Kratzel function as the function of hypergeometric type. Frac. Calc. Appl. Anal. 2006, 9, 109–131. [Google Scholar]
- Mathai, A.M.; Haubold, H.J. Erdélyi-Kober Fractional Calculus: From a Statistical Perspective, Inspired by Solar Neutrino Physics; Springer: Singapore, 2018. [Google Scholar]
- Critchfield, C.L. Analytic forms of the thermonuclear function. In Cosmology, Fusion & Other Matters: George Gamow Memorial Volume; Reines, F., Ed.; Colorado Associated University Press: Boulder, CO, USA, 1972; pp. 186–191. [Google Scholar]
- Dernek, N.; Dernek, A.; Yürekli, O. A Generalization of the Krätzel Function and Its Applications. J. Math. 2017, 2017, 2195152. [Google Scholar] [CrossRef] [Green Version]
- Kilbas, A.A.; Kumar, D. On generalized Krätzel Function. Integral Transform. Spec. Funct. 2009, 20, 835–846. [Google Scholar] [CrossRef]
- Tassaddiq, A. A New Representation of the Generalized Krätzel Function. Mathematics 2020, 8, 2009. [Google Scholar] [CrossRef]
- Chaudhry, M.A.; Qadir, A. Fourier transform and distributional representation of gamma function leading to some new identities. Int. J. Math. Math. Sci. 2004, 37, 2091–2096. [Google Scholar] [CrossRef]
- Al-Lail, M.H.; Qadir, A. Fourier transform representation of the generalized hypergeometric functions with applications to the confluent and gauss hypergeometric functions. Appl. Math. Comput. 2015, 263, 392–397. [Google Scholar] [CrossRef]
- Tassaddiq, A.; Safdar, R.; Kanwal, T. A distributional representation of gamma function with generalized complex domain. Adv. Pure Math. 2017, 7, 441–449. [Google Scholar] [CrossRef] [Green Version]
- Al-Omari, S.K.Q.; Jumah, G.; Al-Omari, J.; Saxena, D. A New Version of the Generalized Krätzel–Fox Integral Operators. Mathematics 2018, 6, 222. [Google Scholar] [CrossRef] [Green Version]
- Tassaddiq, A. An application of theory of distributions to the family of λ-generalized gamma function. AIMS Math. 2020, 5, 5839–5858. [Google Scholar] [CrossRef]
- Tassaddiq, A. A new representation of the extended k-gamma function with applications. Math. Meth. Appl. Sci. 2021, 44, 11174–11195. [Google Scholar] [CrossRef]
- Tassaddiq, A.; Srivastava, R. New Results Involving Riemann Zeta Function Using Its Distributional Representation. Fractal Fract. 2022, 6, 254. [Google Scholar] [CrossRef]
- Al-Omari, S.K. A Study on a Class of Modified Bessel-Type Integrals in a Frechet Space of Boehmians. Bol. Soc. Paran. Mat. 2020, 4, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Gel’fand, I.M.; Shilov, G.E. Generalized Functions: Properties and Operations; Academic Press: New York, NY, USA, 1969; Volume 1-V. [Google Scholar]
- Mittag-Leffler, M.G. Sur la nouvelle fonction E(x). CR Acad. Sci. Paris 1903, 137, 554–558. [Google Scholar]
- Kilbas, A.A.; Saigo, M. H-Transforms: Theory and Applications; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar] [CrossRef]
- Marichev, O.I. Volterra equation of Mellin convolutional type with a Horn function in the kernel. Izv. AN BSSR, Ser. Fiz.-Mat. Nauk 1974, 1, 128–129. (In Russian) [Google Scholar]
- Saigo, M.; Maeda, N. More generalization of fractional calculus. In Transform Methods & Special Functions, Varna’96 (Proc. Second Internat. Workshop); Rusev, P., Dimovski, I., Kiryakova, V., Eds.; Science Culture Technology Publishing: Singapore, 1998; pp. 386–400. [Google Scholar]
- Saigo, M. A remark on integral operators involving the Gauss hypergeometric functions. Math. Rep. Coll. Gen. Ed. Kyushu Univ. 1978, 11, 135–143. [Google Scholar]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Halstead Press: Chichester, UK; New York, NY, USA, 1985. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematical Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Srivastava, H.M. Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations. J. Nonlinear Convex Anal. 2021, 22, 1501–1520. [Google Scholar]
- Sirvastava, H.M. Some families of Mittag-Leffler type functions and associated operators of fractional calculus (Survey). TWMS J. Pure Appl. Math. 2016, 7, 123–145. [Google Scholar]
- Srivastava, H.M. Fractional-order derivatives and integrals: Introductory overview and recent developments. Kyungpook Math. J. 2020, 60, 73–116. [Google Scholar]
- Srivastava, H.M. An introductory overview of fractional-calculus operators based upon the Fox-Wright and related higher transcendental functions. J. Adv. Engrg. Comput. 2021, 5, 135–166. [Google Scholar] [CrossRef]
- Srivastava, H.M. A Survey of Some Recent Developments on Higher Transcendental Functions of Analytic Number Theory and Applied Mathematics. Symmetry 2021, 13, 2294. [Google Scholar] [CrossRef]
- Mohammadzadeh, A.; Kaynak, O. A novel fractional-order fuzzy control method based on immersion and invariance approach. Appl. Soft Comput. 2020, 88, 106043. [Google Scholar] [CrossRef]
- Niu, H.; Chen, Y.; West, B.J. Why Do Big Data and Machine Learning Entail the Fractional Dynamics? Entropy 2021, 23, 297. [Google Scholar] [CrossRef] [PubMed]
Cases of (22) | Relation between the Kernels of Popular Fractional Transforms and (22) |
---|---|
Riemann–Liouville (R–L) | |
(m = 1) Erdélyi–Kober (E–K) | |
Saigo [33,34,35] | |
Marichev–Saigo–Maeda (M–S–M) [33,34,35] |
m = 3 | Marichev–Saigo–Maeda Fractional Integrals |
---|---|
m = 2 | Saigo fractional integrals |
m = 1 | Erdélyi–Kober fractional integrals |
m = 1 | Riemann–Liouville (R–L) Fractional Integrals |
m = 3 | Marichev–Saigo–Maeda Fractional Derivatives |
---|---|
m = 2 | Saigo fractional derivatives |
m = 1 | Erdélyi–Kober fractional derivatives |
m = 1 | Riemann–Liouville (R–L) Fractional Derivatives |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tassaddiq, A.; Srivastava, R. New Results Involving the Generalized Krätzel Function with Application to the Fractional Kinetic Equations. Mathematics 2023, 11, 1060. https://doi.org/10.3390/math11041060
Tassaddiq A, Srivastava R. New Results Involving the Generalized Krätzel Function with Application to the Fractional Kinetic Equations. Mathematics. 2023; 11(4):1060. https://doi.org/10.3390/math11041060
Chicago/Turabian StyleTassaddiq, Asifa, and Rekha Srivastava. 2023. "New Results Involving the Generalized Krätzel Function with Application to the Fractional Kinetic Equations" Mathematics 11, no. 4: 1060. https://doi.org/10.3390/math11041060
APA StyleTassaddiq, A., & Srivastava, R. (2023). New Results Involving the Generalized Krätzel Function with Application to the Fractional Kinetic Equations. Mathematics, 11(4), 1060. https://doi.org/10.3390/math11041060