A Generalized Discrete Bohr–Jessen-Type Theorem for the Epstein Zeta-Function
Abstract
:1. Introduction
2. The Case of
3. Case of Absolute Convergence
4. Some Discrete Estimates
5. Proof of Theorem 1
6. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Epstein, P. Zur Theorie allgemeiner Zetafunktionen. Math. Ann. 1903, 56, 615–644. [Google Scholar] [CrossRef]
- Riemann, B. Über die Anzahl der Primzahlen Unterhalb Einer Gegebenen Grösse; Monatsber. Preuss. Akad. Wiss: Berlin, Germany, 1859; pp. 671–680. [Google Scholar]
- Glasser, M.L.; Zucker, I.J. Lattice sums. In Theoretical Chemistry: Advances and Perspectives; Henderson, D., Ed.; Academic Press: Cambridge, MA, USA, 1980; Volume 5, pp. 67–139. [Google Scholar]
- Elizalde, E. Ten Physical Applications of Spectral Zeta Functions, 2nd ed.; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 2012; Volume 855. [Google Scholar]
- Elizalde, E. Multidimensional extension of the generalized Chowla-Selberg formula. Commun. Math. Phys. 1998, 198, 83–95. [Google Scholar] [CrossRef]
- Bohr, H.; Jessen, B. Über die Wertverteilung der Riemanschen Zetafunktion, Erste Mitteilung. Acta Math. 1930, 54, 1–35. [Google Scholar] [CrossRef]
- Bohr, H.; Jessen, B. Über die Wertverteilung der Riemanschen Zetafunktion, Zweite Mitteilung. Acta Math. 1932, 58, 1–55. [Google Scholar] [CrossRef]
- Laurinčikas, A.; Macaitienė, R. A Bohr-Jessen type theorem for the Epstein zeta-function. Results Math. 2018, 73, 147–163. [Google Scholar] [CrossRef]
- Laurinčikas, A.; Macaitienė, R. A Bohr-Jessen type theorem for the Epstein zeta-function: II. Results Math. 2020, 75, 1–16. [Google Scholar] [CrossRef]
- Fomenko, O.M. Order of the Epstein zeta-function in the critical strip. J. Math. Sci. 2002, 110, 3150–3163. [Google Scholar] [CrossRef]
- Hecke, E. Über Modulfunktionen und die Dirichletchen Reihen mit Eulerscher Produktentwicklung. I, II. Math. Ann. 1937, 114, 1–28, 316–351. [Google Scholar] [CrossRef]
- Iwaniec, H. Topics in Classical Automorphic Forms, Graduate Studies in Mathematics; American Mathematical Society: Providence, RI, USA, 1997; Volume 17. [Google Scholar]
- Laurinčikas, A.; Macaitienė, R. A generalized Bohr-Jessen type theorem for the Epstein zeta-function. Mathematics 2022, 10, 2042. [Google Scholar] [CrossRef]
- Kuipers, L.; Niederreiter, H. Uniform Distribution of Sequences; Wiley: New York, NY, USA, 1974. [Google Scholar]
- Gram, J.-P. Sur les zéros de la fonction ζ(s) de Riemann. Acta Math. 1903, 27, 289–304. [Google Scholar] [CrossRef]
- Korolev, M.A. Gram’s Law in the Theory of the Riemann Zeta-Function. Part I. Proc. Steklov Inst. Math. 2016, 292, 1–146. [Google Scholar] [CrossRef]
- Korolev, M.A.; Laurinčikas, A. A new application of the gram points. Aequationes Math. 2019, 93, 859–873. [Google Scholar] [CrossRef]
- Laurinčikas, A.; Šiaučiūnas, D.; Tekorė, M. Joint universality of periodic zeta-functions with multiplicative coefficients. II. Nonlinear Anal. Model. Control 2021, 26, 550–564. [Google Scholar] [CrossRef]
- Šiaučiūnas, D.; Šimėnas, R.; Tekorė, M. Approximation of Analytic Functions by Shifts of Certain Compositions. Mathematics 2021, 9, 2583. [Google Scholar] [CrossRef]
- Laurinčikas, A. Joint Universality in Short Intervals with Generalized Shifts for the Riemann Zeta-Function. Mathematics 2022, 10, 1652. [Google Scholar] [CrossRef]
- Ivič, A. Mean Values of the Riemann Zeta Function; Lectures on Mathematics and Physics; Springer: Berlin/Heidelberg, Germany, 1991; Volume 82. [Google Scholar]
- Ivič, A. The Riemann Zeta-Function. Theory and Applications; Dover Publications: Mineola, NY, USA, 2012. [Google Scholar]
- Elliott, P.D.T.A. Probabilistic Number Theory I, Mean–Value Theorems; Springer: Berlin/Heidelberg, Germany, 1979. [Google Scholar]
- Selberg, A. Collected Papers; Springer: Berlin/Heidelberg, Germany, 1989; Volume I. [Google Scholar]
- Korolev, M.A. Gram’s Law in the Theory of the Riemann Zeta-Function. Part II. Proc. Steklov Inst. Math. 2016, 294, 1–78. [Google Scholar] [CrossRef]
- Voronin, S.M. The distribution of the nonzero values of the Riemann ζ-function. Proc. Steklov Inst. Math. 1972, 128, 153–175. [Google Scholar]
- Reich, A. Werteverteilung von Zeta-funktionen. Arch. Math. 1980, 34, 440–451. [Google Scholar] [CrossRef]
- Bagchi, B. The Statistical Behaviour and Universality Properties of the Riemann Zeta-Function and Other Allied Dirichlet Series. Ph.D. Thesis, Indian Statistical Institute, Calcutta, India, 1981. [Google Scholar]
- Kačinskaitė, R. Discrete Limit Theorems for the Matsumoto Zeta-Functions. Ph.D. Thesis, Vilnius University, Vilniaus, Lithuania, 2002. [Google Scholar]
- Atstopienė, J. Discrete Universality Theorems for the Riemann and Hurwitz Zeta-Functions. Ph.D. Thesis, Vilnius University, Vilniaus, Lithuania, 2015. [Google Scholar]
- Ignatavičūtė, J. Value-Distribution of the Lerch Zeta-Function. Discrete Version. Ph.D. Thesis, Vilnius University, Vilniaus, Lithuania, 2003. [Google Scholar]
- Macaitienė, R. Discrete Limit Theorems for General Dirichlet Series. Ph.D. Thesis, Vilnius University, Vilniaus, Lithuania, 2006. [Google Scholar]
- Matsumoto, K. Probabilistic value-distribution theory of zeta-functions. Sugaku 2001, 53, 279–296. = Sugaku Expo.2004, 17, 51–71. (In Japanese) [Google Scholar]
- Matsumoto, K. A survey on the theory of universality for zeta and L-functions. In Number Theory: Plowing and Starring Through High Wave Forms, Proceedings of the 7th China–Japan Seminar, Fukuoka, Japan, 28 October–1 November 2013; Kaneko, M., Kanemitsu, S., Liu, J., Eds.; World Scientific: Singapore, Singapore, 2015; pp. 95–144. [Google Scholar]
- Steuding, J. Value-Distribution of L-Functions; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2007; Volume 1877. [Google Scholar]
- Billingsley, P. Convergence of Probability Measures; Willey: New York, NY, USA, 1968. [Google Scholar]
- Montgomery, H.L. Topics in Multiplicative Number Theory; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1971; Volume 227. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laurinčikas, A.; Macaitienė, R. A Generalized Discrete Bohr–Jessen-Type Theorem for the Epstein Zeta-Function. Mathematics 2023, 11, 799. https://doi.org/10.3390/math11040799
Laurinčikas A, Macaitienė R. A Generalized Discrete Bohr–Jessen-Type Theorem for the Epstein Zeta-Function. Mathematics. 2023; 11(4):799. https://doi.org/10.3390/math11040799
Chicago/Turabian StyleLaurinčikas, Antanas, and Renata Macaitienė. 2023. "A Generalized Discrete Bohr–Jessen-Type Theorem for the Epstein Zeta-Function" Mathematics 11, no. 4: 799. https://doi.org/10.3390/math11040799
APA StyleLaurinčikas, A., & Macaitienė, R. (2023). A Generalized Discrete Bohr–Jessen-Type Theorem for the Epstein Zeta-Function. Mathematics, 11(4), 799. https://doi.org/10.3390/math11040799