Significance of Ternary Hybrid Nanoparticles on the Dynamics of Nanofluids over a Stretched Surface Subject to Gravity Modulation
Abstract
:1. Introduction
- What effects do the Lorentz force, micropolar material, and trihybrid nanofluid heat transfer have when there is microgravity?
- What are the differences between trihybrid, hybrid, and mono nanofluids in terms of heat distribution and flow that are affected by microgravity?
- How does one observe the effects of the frequencies of oscillation and modulation amplitudes for trihybrid, hybrid, and mono nanofluids with G-jitter due to inclined and raised surfaces in higher dimensional spaces?
2. Flow Model Mathematical Formulation
- 1.
- Density
- 2.
- Viscosity
- 3.
- Heat Capacity
- 4.
- Thermal Conductivity
3. Numerical Procedure
4. Results and Discussion
5. Conclusions
- The velocity of fluid of mono nanofluids, hybrid nanofluids, and trihybrid nanofluids decelerated in the face of increasing inputs of the magnetic parameter M, and increased against the material parameter K.
- The microrotation of mono nanofluids, hybrid nanofluids, and trihybrid nanofluids declined with the growing potential of the magnetic parameter, but when inputs increased, it increased the micropolar material parameter K.
- The temperature of fluid significantly increased the M, but declined against the material parameter .
- Compared to the mono nanofluid flow, the temperature for the tri-nanofluid flow reached greater levels.
- The variation in the decreased skin friction improved with greater inputs of M, and . However, it attained a higher peak value for the mono nanofluid compared to the tri-nanofluid.
- Reduced skin friction was better achieved as the plane inclined, but it was worse for mono nanofluids.
- There were increases in the skin friction factor and Nusselt number with material parameter K but the velocity gradient attained a peak value in the case of mono nano fluids; the temperature gradient attained a higher value for the trihybrid nanofluid.
- The larger strength of the magnetic parameter M and acceleration modulation a improved the Nusselt number.
- The Nusselt number varied in the face of &a and it improved greatly when these parameters increased; the trihybrid nanofluid flow achieved greater values than the nanofluid flow alone.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Along x-axis velocity component | Along x-axis velocity component | ||
Angular velocity | Temperature of fluid | ||
Nanofluid density | Vortex viscosity | ||
Specific heat of fluid | Dynamical viscosity | ||
Thermo diffusivity | Viscosity spin gradient of fluid | ||
Thermal expansion | Electric conduction | ||
K | Material parameter | Inclined angle | |
Uniform magnetic field | Constant surface temperature | ||
Ambient value of temperature | M | Magnetic parameter | |
Sheet linear velocity | Dimensionalize frequency | ||
thermal buoyancy | Pr | Prandtl number | |
First nanoparticle volume fraction | Second nanoparticle volume fraction | ||
Third nanoparticle volume fraction | g | Gravitational acceleration | |
Heat flux at surface | Reynolds number |
References
- Timofeeva, E.V.; Routbort, J.L.; Singh, D. Particle shape effects on thermophysical properties of alumina nanofluids. J. Appl. Phys. 2009, 106, 014304. [Google Scholar] [CrossRef]
- Sang, L.; Ai, W.; Wu, Y.; Ma, C. Enhanced specific heat and thermal conductivity of ternary carbonate nanofluids with carbon nanotubes for solar power applications. Int. J. Energy Res. 2020, 44, 334–343. [Google Scholar] [CrossRef]
- Mousavi, S.; Esmaeilzadeh, F.; Wang, X. Effects of temperature and particles volume concentration on the thermophysical properties and the rheological behavior of CuO/MgO/TiO2 aqueous ternary hybrid nanofluid. J. Therm. Anal. Calorim. 2019, 137, 879–901. [Google Scholar] [CrossRef]
- Sahoo, R.R.; Kumar, V. Development of a new correlation to determine the viscosity of ternary hybrid nanofluid. Int. Commun. Heat Mass Transf. 2020, 111, 104451. [Google Scholar] [CrossRef]
- Abbasi, M.; Heyhat, M.; Rajabpour, A. Study of the effects of particle shape and base fluid type on density of nanofluids using ternary mixture formula: A molecular dynamics simulation. J. Mol. Liq. 2020, 305, 112831. [Google Scholar] [CrossRef]
- Sahoo, R.R. Thermo-hydraulic characteristics of radiator with various shape nanoparticle-based ternary hybrid nanofluid. Powder Technol. 2020, 370, 19–28. [Google Scholar] [CrossRef]
- Sharidan, S.; Amin, N.; Pop, I. G-jitter mixed convection adjacent to a vertical stretching sheet. Microgravity-Sci. Technol. 2006, 18, 5. [Google Scholar] [CrossRef]
- Hamdan, F.R.; Kamal, M.H.A.; Rawi, N.A.; Mohamad, A.Q.; Ali, A.; Ilias, M.R.; Shafie, S. G-jitter Free Convection Flow Near a Three-Dimensional Stagnation-Point Region with Internal Heat Generation. J. Adv. Res. Fluid Mech. Therm. Sci. 2020, 67, 119–135. [Google Scholar]
- Tlili, I. Effects MHD and heat generation on mixed convection flow of Jeffrey fluid in microgravity environment over an inclined stretching sheet. Symmetry 2019, 11, 438. [Google Scholar] [CrossRef]
- Amin, N. The effect of G-jitter on heat transfer. Proc. R. Soc. London. A. Math. Phys. Sci. 1988, 419, 151–172. [Google Scholar]
- Afiqah, R.N.; Rijal, I.M.; Mahat, R.; Mat, I.Z.; Shafie, S. G-jitter induced mixed convection flow of a second grade fluid past an inclined stretching sheet. In MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2018; Volume 189, p. 01006. [Google Scholar]
- Rawi, N.; Kasim, A.; Isa, M.; Shafie, S. G-jitter Induced MHD Mixed Convection Flow Past an Inclined Stretching Sheet. In Defect and Diffusion Forum; Trans Tech Publications Ltd.: Bäch, Switzerland, 2015; Volume 362, pp. 76–83. [Google Scholar]
- Shehzad, N.; Zeeshan, A.; Shakeel, M.; Ellahi, R.; Sait, S.M. Effects of magnetohydrodynamics flow on multilayer coatings of Newtonian and non-Newtonian fluids through porous inclined rotating channel. Coatings 2022, 12, 430. [Google Scholar] [CrossRef]
- Awan, A.U.; Majeed, S.; Ali, B.; Ali, L. Significance of nanoparticles aggregation and Coriolis force on the dynamics of Prandtl nanofluid: The case of rotating flow. Chin. J. Phys. 2022, 79, 264–274. [Google Scholar] [CrossRef]
- Ali, B.; Shafiq, A.; Manan, A.; Wakif, A.; Hussain, S. Bioconvection: Significance of mixed convection and mhd on dynamics of Casson nanofluid in the stagnation point of rotating sphere via finite element simulation. Math. Comput. Simul. 2022, 194, 254–268. [Google Scholar] [CrossRef]
- Koriko, O.; Omowaye, A.; Animasaun, I.L.; Bamisaye, M.E. Melting heat transfer and induced-magnetic field effects on the micropolar fluid flow towards stagnation point: Boundary layer analysis. Int. J. Eng. Res. Afr. 2017, 29, 10–20. [Google Scholar] [CrossRef]
- Abiev, R.S. Mathematical model of two-phase Taylor flow hydrodynamics for four combinations of non-Newtonian and Newtonian fluids in microchannels. Chem. Eng. Sci. 2022, 247, 116930. [Google Scholar] [CrossRef]
- Chabani, I.; Mebarek-Oudina, F.; Ismail, A.A.I. MHD Flow of a Hybrid Nanofluid in a Triangular Enclosure with Zigzags and an Elliptic Obstacle. Micromachines 2022, 13, 224. [Google Scholar] [CrossRef]
- Bhatti, M.; Arain, M.; Zeeshan, A.; Ellahi, R.; Doranehgard, M. Swimming of Gyrotactic Microorganism in MHD Williamson nanofluid flow between rotating circular plates embedded in porous medium: Application of thermal energy storage. J. Energy Storage 2022, 45, 103511. [Google Scholar] [CrossRef]
- Al-Farhany, K.; Abdulkadhim, A.; Hamzah, H.K.; Ali, F.H.; Chamkha, A. MHD effects on natural convection in a U-shaped enclosure filled with nanofluid-saturated porous media with two baffles. Prog. Nucl. Energy 2022, 145, 104136. [Google Scholar] [CrossRef]
- Jang, J.; Lee, S.S. Theoretical and experimental study of MHD (magnetohydrodynamic) micropump. Sens. Actuators A Phys. 2000, 80, 84–89. [Google Scholar] [CrossRef]
- Mahariq, I.; Giden, I.H.; Alboon, S.; Aly, W.H.F.; Youssef, A.; Kurt, H. Investigation and analysis of acoustojets by spectral element method. Mathematics 2022, 10, 3145. [Google Scholar] [CrossRef]
- Jyothi, K.; Reddy, P.S.; Reddy, M.S. Carreau nanofluid heat and mass transfer flow through wedge with slip conditions and nonlinear thermal radiation. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 415. [Google Scholar] [CrossRef]
- Ali, B.; Yu, X.; Sadiq, M.T.; Rehman, A.U.; Ali, L. A Finite Element Simulation of the Active and Passive Controls of the MHD Effect on an Axisymmetric Nanofluid Flow with Thermo-Diffusion over a Radially Stretched Sheet. Processes 2020, 8, 207. [Google Scholar] [CrossRef]
- Ali, B.; Hussain, S.; Naqvi, S.I.R.; Habib, D.; Abdal, S. Aligned Magnetic and Bioconvection Effects on Tangent Hyperbolic Nanofluid Flow Across Faster/Slower Stretching Wedge with Activation Energy: Finite Element Simulation. Int. J. Appl. Comput. Math. 2021, 7, 149. [Google Scholar] [CrossRef]
- Rawi, N.A.; Zin, N.A.M.; Kasim, A.R.M.; Shafie, S. G-jitter induced MHD mixed convection flow of nanofluids past a vertical stretching sheet. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2016; Volume 1750, p. 030017. [Google Scholar]
- Kumar, L. Finite element analysis of combined heat and mass transfer in hydromagnetic micropolar flow along a stretching sheet. Comput. Mater. Sci. 2009, 46, 841–848. [Google Scholar] [CrossRef]
- Ali, B.; Hussain, S.; Nie, Y.; Ali, L.; Hassan, S.U. Finite Element Simulation of Bioconvection and Cattaneo-Christov Effects On Micropolar Based Nanofluid Flow Over a Vertically Stretching Sheet. Chin. J. Phys. 2020, 66, 682–689. [Google Scholar] [CrossRef]
- Ali, B.; Naqvi, R.A.; Ali, L.; Abdal, S.; Hussain, S. A Comparative Description on Time-Dependent Rotating Magnetic Transport of a Water Base Liquid H2O With Hybrid Nano-materials Al2O3-Cu and Al2O3-TiO2 Over an Extending Sheet Using Buongiorno Model: Finite Element Approach. Chin. J. Phys. 2021, 70, 125–139. [Google Scholar] [CrossRef]
- Devi, S.S.U.; Devi, S.A. Numerical investigation of three-dimensional hybrid Cu–Al2O3/water nanofluid flow over a stretching sheet with effecting Lorentz force subject to Newtonian heating. Can. J. Phys. 2016, 94, 490–496. [Google Scholar] [CrossRef]
- Khatib, R.; Schwalm, J.D.; Yusuf, S.; Haynes, R.B.; McKee, M.; Khan, M.; Nieuwlaat, R. Patient and healthcare provider barriers to hypertension awareness, treatment and follow up: A systematic review and meta-analysis of qualitative and quantitative studies. PLoS ONE 2014, 9, e84238. [Google Scholar] [CrossRef]
- Hamid, M.; Usman, M.; Zubair, T.; Haq, R.U.; Wang, W. Shape effects of MoS2 nanoparticles on rotating flow of nanofluid along a stretching surface with variable thermal conductivity: A Galerkin approach. Int. J. Heat Mass Transf. 2018, 124, 706–714. [Google Scholar] [CrossRef]
- Rostami, M.N.; Dinarvand, S.; Pop, I. Dual solutions for mixed convective stagnation-point flow of an aqueous silica–alumina hybrid nanofluid. Chin. J. Phys. 2018, 56, 2465–2478. [Google Scholar] [CrossRef]
- Ali, B.; Pattnaik, P.; Naqvi, R.A.; Waqas, H.; Hussain, S. Brownian motion and thermophoresis effects on bioconvection of rotating Maxwell nanofluid over a Riga plate with Arrhenius activation energy and Cattaneo-Christov heat flux theory. Therm. Sci. Eng. Prog. 2021, 23, 100863. [Google Scholar] [CrossRef]
- Reddy, G.J.; Raju, R.S.; Rao, J.A. Influence of viscous dissipation on unsteady MHD natural convective flow of Casson fluid over an oscillating vertical plate via FEM. Ain Shams Eng. J. 2018, 9, 1907–1915. [Google Scholar] [CrossRef]
- Reddy, J.N. Solutions Manual for an Introduction to the Finite Element Method; McGraw-Hill: New York, NY, USA, 1993; p. 41. [Google Scholar]
- Ali, L.; Liu, X.; Ali, B.; Mujeed, S.; Abdal, S. Finite Element Simulation of Multi-Slip Effects on Unsteady MHD Bioconvective Micropolar nanofluid Flow Over a Sheet with Solutal and Thermal Convective Boundary Conditions. Coatings 2019, 9, 842. [Google Scholar] [CrossRef]
- Abdal, S.; Ali, B.; Younas, S.; Ali, L.; Mariam, A. Thermo-Diffusion and Multislip Effects on MHD Mixed Convection Unsteady Flow of Micropolar Nanofluid over a Shrinking/Stretching Sheet with Radiation in the Presence of Heat Source. Symmetry 2020, 12, 49. [Google Scholar] [CrossRef]
- Khan, S.A.; Nie, Y.; Ali, B. Multiple slip effects on MHD unsteady viscoelastic nanofluid flow over a permeable stretching sheet with radiation using the finite element method. SN Appl. Sci. 2020, 2, 66. [Google Scholar] [CrossRef]
- Ali, L.; Liu, X.; Ali, B.; Mujeed, S.; Abdal, S. Finite Element Analysis of Thermo-Diffusion and Multi-Slip Effects on MHD Unsteady Flow of Casson NanoFluid over a Shrinking/Stretching Sheet with Radiation and Heat Source. Appl. Sci. 2019, 9, 5217. [Google Scholar] [CrossRef]
- Vanita; Kumar, A. Numerical study of effect of induced magnetic field on transient natural convection over a vertical cone. Alex. Eng. J. 2016, 55, 1211–1223. [Google Scholar] [CrossRef]
- Oke, A.S. Heat and Mass Transfer in 3D MHD Flow of EG-Based Ternary Hybrid Nanofluid Over a Rotating Surface. Arab. J. Sci. Eng. 2022, 47, 16015–16031. [Google Scholar] [CrossRef]
- Sajid, T.; Ayub, A.; Shah, S.Z.H.; Jamshed, W.; Eid, M.R.; El Din, E.S.M.T.; Irfan, R.; Hussain, S.M. Trace of chemical reactions accompanied with arrhenius energy on ternary hybridity nanofluid past a wedge. Symmetry 2022, 14, 1850. [Google Scholar] [CrossRef]
Physical Properties | Al2O3 | TiO2 | SiO2 | H2O |
---|---|---|---|---|
ρ | 3970.0 | 4250 | 2270 | 0991.1 |
Cp | 0765.0 | 690 | 765 | 4179.0 |
κ | 0040.0 | 8.953 | 1.4013 | 00.613 |
M | K | Ali et al. [37] | Soaib et al. [38] | Present Results | |||
---|---|---|---|---|---|---|---|
0.0 | 0.2 | −0.90969 | 0.09499 | −0.90979 | 0.09489 | −0.90984 | 0.09500 |
0.5 | − | −1.11437 | 0.10509 | −1.11438 | 0.10509 | −1.11437 | 0.10509 |
1.0 | − | −1.28715 | 0.11206 | −1.28715 | 0.11205 | −1.28711 | 0.11212 |
1.0 | 0.0 | −1.41421 | 0.00000 | −1.41423 | 0.00000 | −1.41423 | 0.00000 |
− | 0.5 | −1.14078 | 0.21116 | −1.14077 | 0.21117 | −1.14073 | 0.21116 |
− | 2.0 | −0.76975 | 0.35866 | −0.76976 | 0.35865 | −0.76976 | 0.35861 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alanazi, M.M.; Ahmed Hendi, A.; Ahammad, N.A.; Ali, B.; Majeed, S.; Shah, N.A. Significance of Ternary Hybrid Nanoparticles on the Dynamics of Nanofluids over a Stretched Surface Subject to Gravity Modulation. Mathematics 2023, 11, 809. https://doi.org/10.3390/math11040809
Alanazi MM, Ahmed Hendi A, Ahammad NA, Ali B, Majeed S, Shah NA. Significance of Ternary Hybrid Nanoparticles on the Dynamics of Nanofluids over a Stretched Surface Subject to Gravity Modulation. Mathematics. 2023; 11(4):809. https://doi.org/10.3390/math11040809
Chicago/Turabian StyleAlanazi, Meznah M., Awatif Ahmed Hendi, N. Ameer Ahammad, Bagh Ali, Sonia Majeed, and Nehad Ali Shah. 2023. "Significance of Ternary Hybrid Nanoparticles on the Dynamics of Nanofluids over a Stretched Surface Subject to Gravity Modulation" Mathematics 11, no. 4: 809. https://doi.org/10.3390/math11040809
APA StyleAlanazi, M. M., Ahmed Hendi, A., Ahammad, N. A., Ali, B., Majeed, S., & Shah, N. A. (2023). Significance of Ternary Hybrid Nanoparticles on the Dynamics of Nanofluids over a Stretched Surface Subject to Gravity Modulation. Mathematics, 11(4), 809. https://doi.org/10.3390/math11040809