On the Solution of Dynamic Stability Problem of Functionally Graded Viscoelastic Plates with Different Initial Conditions in Viscoelastic Media
Abstract
:1. Introduction
2. Mathematical Modeling of the Problem
2.1. Basic Relationships
2.2. Governing Equations
3. Solution Procedure
- (a)
- In the particular case, as or the first initial condition (FIC) and are satisfied, , (19) is transformed as:
- (b)
- In the particular case, as or second initial conditions (SICs) and are satisfied, , Equation (19) turns into the following form:
4. Numerical Analysis
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ogibalov, P.M.; Lomakin, V.A.; Kishkin, B.P. Mechanics of Polymers; Moscow State University: Moscow, Russia, 1975. (In Russian) [Google Scholar]
- Christensen, R.M. Theory of Viscoelasticity; Dover: New York, NY, USA, 1982. [Google Scholar]
- Drozdov, A.D.; Kolmanovskii, V.B. Stability in Viscoelasticity; Elsevier Science B.V.: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Matyash, V.I. Vibrations of isotropic viscoelastic shells. Polym. Mech. 1973, 7, 129–134. [Google Scholar] [CrossRef]
- Ding, R.; Zhu, Z.; Cheng, C. Some dynamical properties of a viscoelastic cylindrical shell. Appl. Math. Mech. Eng. Edit. 1999, 20, 233–240. [Google Scholar]
- Zenkour, A. Buckling of fiber-reinforced viscoelastic composite plates using various plate theories. J. Eng. Math. 2004, 50, 75–93. [Google Scholar] [CrossRef]
- Ilyasov, M. Dynamic stability of viscoelastic plates. Int. J. Eng. Sci. 2007, 45, 111–122. [Google Scholar] [CrossRef]
- Zhou, Y.F.; Wang, Z.M. Vibrations of axially moving viscoelastic plate with parabolically varying thickness. J. Sound. Vib. 2008, 316, 198–210. [Google Scholar]
- Ferreira, A.; Araújo, A.; Neves, A.; Rodrigues, J.; Carrera, E.; Cinefra, M.; Soares, C.M.M. A finite element model using a unified formulation for the analysis of viscoelastic sandwich laminates. Compos. Part B Eng. 2012, 45, 1258–1264. [Google Scholar] [CrossRef]
- Madeira, J.F.A.; Araujo, A.L.; Soares, C.M.M.; Soares, C.A.M.; Ferreira, A.J.M. Multi objective design of viscoelastic laminated composite sandwich panels. Compos. Part B Eng. 2015, 77, 391–401. [Google Scholar] [CrossRef]
- Alibeigloo, A. Effect of viscoelastic interface on three-dimensional static and vibration behavior of laminated composite plate. Compos. Part B Eng. 2015, 75, 17–28. [Google Scholar] [CrossRef]
- Zhou, X.; Yu, D.; Shao, X.; Zhang, S.; Wang, S. Research and applications of viscoelastic vibration damping materials: A review. Compos. Struct. 2016, 136, 460–480. [Google Scholar] [CrossRef]
- Luis, N.F.; Madeira, J.F.A.; Araujo, A.L.; Ferreira, A.J.M. Active vibration attenuation in viscoelastic laminated composite panels using multi objective optimization. Compos. Part B Eng. 2017, 28, 53–66. [Google Scholar] [CrossRef]
- Tekin, G.; Kadıoğlu, F. Viscoelastic behavior of shear-deformable plates. Int. J. Appl. Mech. 2017, 09, 1750085. [Google Scholar] [CrossRef]
- Bacciocchi, M.; Tarantino, A.M. Time-dependent behavior of viscoelastic three-phase composite plates reinforced by Carbon nanotubes. Compos. Struct. 2019, 216, 20–31. [Google Scholar] [CrossRef]
- Shen, H.S. Functionally Graded Materials, Nonlinear Analysis of Plates and Shells; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Tornabene, F.; Fantuzzi, N.; Viola, E.; Batra, R.C. Stress and strain recovery for functionally graded free-form and doubly-curved sandwich shells using higher-order equivalent single layer theory. Compos. Struct. 2015, 119, 67–89. [Google Scholar] [CrossRef]
- Mukherjee, S.; Paulino, G.H. The elastic-viscoelastic correspondence principle for functionally graded materials, revisited. J. Appl. Mech. 2003, 70, 359–363. [Google Scholar] [CrossRef]
- Ashrafi, H.; Shariyat, M.; Khalili, S.M.R.; Asemi, K. A boundary element formulation for the heterogeneous functionally graded viscoelastic structures. Appl. Math. Comput. 2013, 225, 246–262. [Google Scholar] [CrossRef]
- Zenkour, A.M.; Elsibai, K.A.; Mashat, D.S. Elastic and viscoelastic solutions to rotating functionally graded hollow and solid cylinders. Appl. Math. Mech. Engl. Ed. 2008, 29, 1601–1616. [Google Scholar] [CrossRef]
- Shariyat, M.; Nasab, F.F. Low-velocity impact analysis of the hierarchical viscoelastic FGM plates, using an explicit shear-bending decomposition theory and the new DQ method. Compos. Struct. 2014, 113, 63–73. [Google Scholar] [CrossRef]
- Barretta, R.; Feo, L.; Luciano, R. Torsion of functionally graded nonlocal viscoelastic circular nanobeams. Compos. Part B Eng. 2015, 72, 217–222. [Google Scholar] [CrossRef]
- Deng, J.; Liu, Y.; Zhang, Z.; Liu, W. Stability analysis of multi-span viscoelastic functionally graded material pipes conveying fluid using a hybrid method. Eur. J. Mech.-A/Solids 2017, 65, 257–270. [Google Scholar] [CrossRef]
- Sofiyev, A. On the solution of the dynamic stability of heterogeneous orthotropic viscoelastic cylindrical shells. Compos. Struct. 2018, 206, 124–130. [Google Scholar] [CrossRef]
- Sofiyev, A. About an approach to the determination of the critical time of viscoelastic functionally graded cylindrical shells. Compos. Part B Eng. 2018, 156, 156–165. [Google Scholar] [CrossRef]
- Kerr, A.D. Elastic and viscoelastic foundation models. J. Appl. Mech. 1964, 31, 491–498. [Google Scholar] [CrossRef]
- Bajenov, V. The Bending of the Cylindrical Shells in an Elastic Medium; Visha Shkola: Kiev, Ukraine, 1975. (In Russian) [Google Scholar]
- Pouresmaeeli, S.; Ghavanloo, E.; Fazelzadeh, S.A. Vibration analysis of viscoelastic orthotropic nanoplates resting on viscoelastic medium. Compos. Struct. 2013, 96, 405–410. [Google Scholar] [CrossRef]
- Karličić, D.; Kozić, P.; Pavlović, R. Free transverse vibration of nonlocal viscoelastic orthotropic multi-nanoplate system (MNPS) embedded in a viscoelastic medium. Compos. Struct. 2014, 115, 89–99. [Google Scholar] [CrossRef]
- Zhang, D.-P.; Lei, Y.-J.; Wang, C.; Shen, Z.-B. Vibration analysis of viscoelastic single-walled carbon nanotubes resting on a viscoelastic foundation. J. Mech. Sci. Technol. 2017, 31, 87–98. [Google Scholar] [CrossRef]
- Zamani, H.A.; Aghdam, M.M.; Sadighi, M. Free vibration analysis of thick viscoelastic composite plates on vis-co-Pasternak foundation using higher-order theory. Compos. Struct. 2017, 182, 25–35. [Google Scholar] [CrossRef]
- Zeighampour, H.; Beni, Y.T.; Dehkordi, M.B. Wave propagation in viscoelastic thin cylindrical nanoshell resting on a visco-Pasternak foundation based on nonlocal strain gradient theory. Thin-Walled Struct. 2018, 122, 378–386. [Google Scholar] [CrossRef]
- Zenkour, A.M.; Sobhy, M. Nonlocal piezo-hygrothermal analysis for vibration characteristics of a piezoelectric Kelvin-Voigt viscoelastic nanoplate embedded in a viscoelastic medium. Acta Mech. 2018, 229, 3–19. [Google Scholar] [CrossRef]
- Sophy, M.; Zenkour, A.M. The modified couple stress model for bending of normal deformable viscoelastic nanobeams resting on visco-Pasternak foundations. Mech. Adv. Matr. Struct. 2020, 27, 525–538. [Google Scholar]
- Sobhy, M.; Radwan, A.F. Influence of a 2D magnetic field on hygrothermal bending of sandwich CNTs-reinforced microplates with viscoelastic core embedded in a viscoelastic medium. Acta Mech. 2020, 231, 71–99. [Google Scholar] [CrossRef]
- Alazwari, M.A.; Zenkour, A.M.A. Quasi-3D refined theory for the vibration of functionally graded plates resting on vis-co-Winkler-Pasternak foundations. Mathematics 2022, 10, 716. [Google Scholar] [CrossRef]
- Frahlia, H.; Bennai, R.; Nebab, M.; Atmane, H.A.; Tounsi, A. Assessing effects of parameters of viscoelastic foundation on the dynamic response of functionally graded plates using a novel HSDT theory. Mech. Adv. Mater. Struct. 2022, 3, 1–15. [Google Scholar] [CrossRef]
- Zenkour, A.M.; Allam, M.N.M.; Sobhy, M. Bending analysis of FG viscoelastic sandwich beams with elastic cores resting on Pasternak’s elastic foundations. Acta Mech. 2009, 212, 233–252. [Google Scholar] [CrossRef]
- Shariyat, M.; Alipour, M.M. A power series solution for vibration and complex modal stress analyses of variable thickness viscoelastic two-directional FGM circular plates on elastic foundations. Appl. Math. Model. 2013, 37, 3063–3076. [Google Scholar] [CrossRef]
- Liu, H.; Yang, J. Vibration of FG magneto-electro-viscoelastic porous nanobeams on visco-Pasternak foundation. Compos. Part B Eng. 2018, 155, 244–256. [Google Scholar] [CrossRef]
- Sofiyev, A.H.; Zerin, Z.; Kuruoglu, N. Dynamic behavior of FGM viscoelastic plates resting on elastic foundations. Acta Mech. 2019, 231, 1–17. [Google Scholar] [CrossRef]
- Zenkour, A.M.; El-Shahrany, H.D. Active control of a sandwich plate with reinforced magnetostrictive faces and viscoe-lastic core, resting on elastic foundation. J. Intel. Mater. Sys. Struct. 2021, 33, 1321–1337. [Google Scholar] [CrossRef]
- Li, H.; Gao, Z.; Zhao, J.; Ma, H.; Han, Q.; Liu, J. Vibration suppression effect of porous graphene platelet coating on fiber reinforced polymer composite plate with viscoelastic damping boundary conditions resting on viscoelastic foundation. Eng. Struct. 2021, 237, 112167. [Google Scholar] [CrossRef]
- Yuan, Y.; Niu, Z.; Smitt, J. Magneto-hygro-thermal vibration analysis of the viscoelastic nanobeams reinforcedwith carbon nanotubes resting on Kerr’s elastic foundation based on NSGT. Adv. Compos. Mater. 2022, 1–23. [Google Scholar] [CrossRef]
Ni | FG-exp. | Si3N4 | Ni | FG-exp. | Si3N4 | |
---|---|---|---|---|---|---|
0.1 | 4.236 | 4.434 | 4.669 | 2.031 | 2.13 | 2.248 |
0.3 | 3.686 | 3.884 | 4.12 | 1.757 | 1.856 | 1.973 |
0.5 | 3.431 | 3.629 | 3.864 | 1.629 | 1.728 | 1.845 |
0.7 | 3.263 | 3.461 | 3.696 | 1.545 | 1.644 | 1.761 |
0.1 | 4.6 | 4.742 | 4.93 | 2.207 | 2.279 | 2.374 |
0.3 | 4.011 | 4.16 | 4.354 | 1.912 | 1.988 | 2.086 |
0.5 | 3.737 | 3.889 | 4.086 | 1.775 | 1.853 | 1.952 |
0.7 | 3.556 | 3.711 | 3.91 | 1.685 | 1.764 | 1.864 |
0.1 | 3.971 | 3.705 | 3.136 | 1.918 | 1.797 | 1.529 |
0.3 | 3.807 | 3.8 | 3.648 | 1.821 | 1.825 | 1.762 |
0.5 | 3.62 | 3.679 | 3.659 | 1.724 | 1.759 | 1.758 |
0.7 | 3.476 | 3.565 | 3.607 | 1.65 | 1.699 | 1.728 |
0.1 | 3.987 | 3.759 | 3.313 | 1.925 | 1.822 | 1.613 |
0.3 | 3.803 | 3.806 | 3.71 | 1.819 | 1.827 | 1.789 |
0.5 | 3.611 | 3.673 | 3.68 | 1.719 | 1.755 | 1.766 |
0.7 | 3.465 | 3.553 | 3.609 | 1.644 | 1.692 | 1.727 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sofiyev, A. On the Solution of Dynamic Stability Problem of Functionally Graded Viscoelastic Plates with Different Initial Conditions in Viscoelastic Media. Mathematics 2023, 11, 823. https://doi.org/10.3390/math11040823
Sofiyev A. On the Solution of Dynamic Stability Problem of Functionally Graded Viscoelastic Plates with Different Initial Conditions in Viscoelastic Media. Mathematics. 2023; 11(4):823. https://doi.org/10.3390/math11040823
Chicago/Turabian StyleSofiyev, Abdullah. 2023. "On the Solution of Dynamic Stability Problem of Functionally Graded Viscoelastic Plates with Different Initial Conditions in Viscoelastic Media" Mathematics 11, no. 4: 823. https://doi.org/10.3390/math11040823
APA StyleSofiyev, A. (2023). On the Solution of Dynamic Stability Problem of Functionally Graded Viscoelastic Plates with Different Initial Conditions in Viscoelastic Media. Mathematics, 11(4), 823. https://doi.org/10.3390/math11040823