Mean-Field and Anticipated BSDEs with Time-Delayed Generator
Abstract
:1. Introduction
2. Preliminaries
- (D1)
- There exists a constant , such that for all , , , , ;
- (D2)
- There exists a constant , such that for all non-negative and integrable ,, ,, .
- (H1)
- There exists a constant , such that for every , we have
- (H2)
- , and .
3. An Existence and Uniqueness Result for MF-DABSDEs
4. Comparison Theorem
- (i)
- is increasing in and ;
- (ii)
- ;
- (iii)
- , .
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pardoux, E.; Peng, S. Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 1990, 14, 55–61. [Google Scholar] [CrossRef]
- Bahlali, K.; Essaky, E.H.; Oukine, Y. Reflected backward stochastic differential equation with jumps and locally Lipschitz coefficient. Random Oper. Stoch. Equ. 2002, 10, 481–486. [Google Scholar] [CrossRef]
- Al-Hussein, A. Backward stochastic partial differential equations driven by infinite-dimensional martingales and applications. Stochastics 2009, 81, 601–626. [Google Scholar] [CrossRef]
- Zhang, P.; Ibrahim, A.I.N.; Mohamed, N.A. Backward Stochastic Differential Equations (BSDEs) Using Infinite-Dimensional Martingales with Subdifferential Operator. Axioms 2022, 11, 536. [Google Scholar] [CrossRef]
- Peng, S. Nonlinear Expectations, Nonlinear Evaluations and Risk Measures. In Stochastic Methods in Finance; Springer: Berlin, Germany, 2004; pp. 165–253. [Google Scholar] [CrossRef]
- Luo, M.; Fečkan, M.; Wang, J.R.; O’Regan, D. g-Expectation for Conformable Backward Stochastic Differential Equations. Axioms 2022, 11, 75. [Google Scholar] [CrossRef]
- Ma, J.; Protter, P.; Martín, J.S.; Torres, S. Numberical Method for Backward Stochastic Differential Equations. Ann. Appl. Probab. 2002, 12, 302–316. [Google Scholar] [CrossRef]
- Gobet, E.; Lemor, J.P.; Warin, X. A regression-based Monte Carlo method to solve backward stochastic differential equations. Ann. Appl. Probab. 2005, 15, 2172–2202. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, W.; Ju, L. A Numerical Method and its Error Estimates for the Decoupled Forward-Backward Stochastic Differential Equations. Commun. Comput. Phys. 2014, 15, 618–646. [Google Scholar] [CrossRef]
- Han, Q. Variable Step Size Adams Methods for BSDEs. J. Math. 2021, 2021, 9799627. [Google Scholar] [CrossRef]
- Ren, Y.; Xia, N. Generalized Reflected BSDE and an Obstacle Problem for PDEs with a Nonlinear Neumann Boundary Condition. Stoch. Anal. Appl. 2006, 24, 1013–1033. [Google Scholar] [CrossRef]
- Pardoux, E.; Răşcanu, A. Backward Stochastic Differential Equations. In Stochastic Differential Equations, Backward SDEs, Partial Differential Equations; Springer: New York, NY, USA, 2014; pp. 353–515. [Google Scholar] [CrossRef]
- Karoui, N.E.; Peng, S.; Quenez, M.C. Backward stochastic differential equations in finance. Math. Financ. 1997, 7, 1–71. [Google Scholar] [CrossRef]
- Peng, S.; Wu, Z. Fully Coupled Forward-Backward Stochastic Differential Equations and Applications to Optimal Control. SIAM J. Control Optim. 1999, 37, 825–843. [Google Scholar] [CrossRef]
- El Asri, B.; Hamadene, S.; Oufdil, K. On the stochastic control-stopping problem. J. Differ. Equ. 2022, 336, 387–426. [Google Scholar] [CrossRef]
- Perninge, M. Sequential Systems of Reflected Backward Stochastic Differential Equations with Application to Impulse Control. Appl. Math. Optim. 2022, 86, 19. [Google Scholar] [CrossRef]
- Li, J.; Peng, S. Stochastic optimization theory of backward stochastic differential equations with jumps and viscosity solutions of Hamilton–Jacobi–Bellman equations. Nonlinear Anal. 2009, 70, 1776–1796. [Google Scholar] [CrossRef]
- Buckdahn, R.; Djehiche, B.; Li, J.; Peng, S. Mean-field backward stochastic differential equations: A limit approach. Ann. Appl. Probab. 2009, 37, 1524–1565. [Google Scholar] [CrossRef]
- Buckdahn, R.; Li, J.; Peng, S. Mean-field backward stochastic differential equations and related partial differential equations. Stoch. Process. Appl. 2009, 119, 3133–3154. [Google Scholar] [CrossRef]
- Peng, S.; Yang, Z. Anticipated backward stochastic differential equations. Ann. Appl. Probab. 2009, 37, 877–902. [Google Scholar] [CrossRef] [Green Version]
- Feng, X. Anticipated Backward Stochastic Differential Equation with Reflection. Commun. Stat.-Simul. Comput. 2016, 45, 1676–1688. [Google Scholar] [CrossRef]
- Wang, T.; Cui, S. Anticipated Backward Doubly Stochastic Differential Equations with Non-Lipschitz Coefficients. Mathematics 2022, 10, 396. [Google Scholar] [CrossRef]
- Wang, T.; Yu, J. Anticipated Generalized Backward Doubly Stochastic Differential Equations. Symmetry 2022, 14, 114. [Google Scholar] [CrossRef]
- Douissi, S.; Wen, J.; Shi, Y. Mean-field anticipated BSDEs driven by fractional Brownian motion and related stochastic control problem. Appl. Math. Comput. 2019, 355, 282–298. [Google Scholar] [CrossRef]
- Liu, Y.; Dai, Y. Mean-field anticipated BSDEs driven by time-changed Lévy noises. Adv. Differ. Equ. 2020, 2020, 621. [Google Scholar] [CrossRef]
- Hao, T. Anticipated mean-field backward stochastic differential equations with jumps. Lith. Math. J. 2020, 60, 359–375. [Google Scholar] [CrossRef]
- Delong, Ł.; Imkeller, P. Backward stochastic differential equations with time delayed generators—Results and counterexamples. Ann. Appl. Probab. 2010, 20, 1512–1536. [Google Scholar] [CrossRef]
- He, P.; Ren, Y.; Zhang, D. A Study on a New Class of Backward Stochastic Differential Equation. Math. Probl. Eng. 2020, 2020, 1518723. [Google Scholar] [CrossRef]
- Ma, H.; Liu, B. Infinite horizon optimal control problem of mean-field backward stochastic delay differential equation under partial information. Eur. J. Control 2017, 36, 43–50. [Google Scholar] [CrossRef]
- Zhuang, Y. Non-zero sum differential games of anticipated forward-backward stochastic differential delayed equations under partial information and application. Adv. Differ. Equ. 2017, 2017, 383. [Google Scholar] [CrossRef] [Green Version]
- Itô, K. On stochastic differential equations. Mem. Am. Math. Soc. 1951, 4, 1–51. [Google Scholar] [CrossRef]
- Øksendal, B. Stochastic Differential Equations: An Introduction with Applications, 6th ed.; Springer: New York, NY, USA, 2003; ISBN 978-3-642-14394-6. [Google Scholar]
- Burkholder, D.L.; Davis, B.J.; Gundy, R.F. Integral inequalities for convex functions of operators on martingales. Proc. Sixth Berkeley Symp. Math. Stat. Prob. 1972, 2, 223–240. [Google Scholar] [CrossRef]
- Granas, A.; Dugundji, J. Fixed Point Theory, 2003rd ed.; Springer: New York, NY, USA, 2003; ISBN 978-0387001739. [Google Scholar]
- Zhou, Z.; Bambos, N.; Glynn, P. Deterministic and Stochastic Wireless Network Games: Equilibrium, Dynamics, and Price of Anarchy. Oper. Res. 2018, 66, 1498–1516. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Mohamed, N.A.; Ibrahim, A.I.N. Mean-Field and Anticipated BSDEs with Time-Delayed Generator. Mathematics 2023, 11, 888. https://doi.org/10.3390/math11040888
Zhang P, Mohamed NA, Ibrahim AIN. Mean-Field and Anticipated BSDEs with Time-Delayed Generator. Mathematics. 2023; 11(4):888. https://doi.org/10.3390/math11040888
Chicago/Turabian StyleZhang, Pei, Nur Anisah Mohamed, and Adriana Irawati Nur Ibrahim. 2023. "Mean-Field and Anticipated BSDEs with Time-Delayed Generator" Mathematics 11, no. 4: 888. https://doi.org/10.3390/math11040888
APA StyleZhang, P., Mohamed, N. A., & Ibrahim, A. I. N. (2023). Mean-Field and Anticipated BSDEs with Time-Delayed Generator. Mathematics, 11(4), 888. https://doi.org/10.3390/math11040888