Simple Restricted Modules for the Deformed 𝔟𝔪𝔰3 Algebra
Abstract
:1. Introduction
2. Preliminaries
3. Construction of Simple Restricted Modules
- (a)
- (b)
- for all and .
- (1)
- is a simple -module;
- (2)
- act locally nilpotent on for all and .
- (i)
- If , then and .
- (ii)
- If , then and .
- (iii)
- If , then and .
4. Characterization of Simple Restricted Modules
- (1)
- .
- (2)
- There exists such that the actions of on S are locally nilpotent.
- (3)
- There exists such that the actions of on S are locally finite.
- (4)
- There exist such that S is a locally nilpotent -module.
- (5)
- There exist such that S is a locally finite -module.
5. Examples
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Caroca, R.; Concha, P.; Rodríguez, E.; Salgado-Rebolledo, P. Generalizing the and 2D-conformal algebras by expanding the Virasoro algebra. Eur. Phys. J. C 2018, 78, 262–276. [Google Scholar] [CrossRef]
- Zhang, W.; Dong, C. W-algebra W(2,2) and the Vertex operator algebra L(,0) ⊗ L(,0). Commun. Math. Phys. 2009, 285, 991–1004. [Google Scholar] [CrossRef]
- Wu, Q.; Gao, S.; Liu, D. Local deriations on the Lie algebra W(2,2). to appear in Linear Multilinear A. arXiv 2022, arXiv:2210.14626. [Google Scholar]
- Yu, Y.; Sun, J. Left-symmetric algebra structures on the deformed bms3 algebra. Acta Math. Sinica Chinese Ser. 2021, 64, 947–958. [Google Scholar]
- Chen, H.; Guo, X. New simple modules for the Heisenberg-Virasoro algebra. J. Algebra 2013, 390, 77–86. [Google Scholar] [CrossRef]
- Kac, V. Infinite-Dimensional Lie Algebras, 3rd ed.; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Kac, V.; Raina, A. Bombay Lectures on Highest Weight Representations of Infinite-Dimensional Lie Algebras; World Scientific Publishing Co., Inc.: Teaneck, NJ, USA, 1987; Volume 2. [Google Scholar]
- Mazorchuk, V.; Zhao, K. Characterization of simple highest weight modules. Canad. Math. Bull. 2013, 56, 606–614. [Google Scholar] [CrossRef]
- Mazorchuk, V.; Zhao, K. Simple Virasoro modules which are locally finite over a positive part. Sel. Math. 2014, 20, 839–854. [Google Scholar] [CrossRef]
- Kostant, B. On Whittaker vectors and representation theory. Invent. Math. 1978, 48, 101–184. [Google Scholar] [CrossRef]
- Arnal, D.; Pinczon, G. On algebraically irreducible representations of the Lie algebra . J. Math. Phys. 1974, 15, 350–359. [Google Scholar] [CrossRef]
- Adamović, D.; Lü, R.; Zhao, K. Whittaker modules for the affine Lie algebra A1(1). Adv. Math. 2016, 289, 438–479. [Google Scholar] [CrossRef]
- Batra, P.; Mazorchuk, V. Blocks and modules for Whittaker pairs. J. Pure Appl. Algebra 2011, 215, 1552–1568. [Google Scholar] [CrossRef]
- Cai, Y.; Shen, R.; Zhang, J. Whittaker modules and Quasi-Whittaker modules for the Euclidean algebra (3). J. Pure Appl. Algebra 2016, 220, 1419–1433. [Google Scholar] [CrossRef]
- Chen, X.; Jiang, C. Whittaker modules for the twisted affine Nappi-Witten Lie algebra Ĥ4[τ]. J. Algebra 2020, 546, 37–61. [Google Scholar] [CrossRef]
- Christodoupoulou, Y. Whittaker modules for the Heisenberg algebras and imaginary Whittaker modules for affine Lie algebras. J. Algebra 2008, 320, 2871–2890. [Google Scholar] [CrossRef]
- Felinska, E.; Jaskolski, Z.; Kosztolowicz, M. Whittaker pairs for the Virasoro algebra and the Gaiotto-Bonelli-Maruyoshi-Tanzini states. J. Math. Phys. 2012, 53, 033504. [Google Scholar] [CrossRef]
- Liu, D.; Pei, Y.; Xia, L. Whittaker modules for the super-Viraoro algebras. J. Algebra Appl. 2019, 18, 1950211. [Google Scholar] [CrossRef]
- Liu, D.; Wu, Y.; Zhu, L. Whittaker modules over the twisted Heisenberg-Virasoro algebra. J. Math. Phys. 2010, 51, 023524. [Google Scholar] [CrossRef]
- Lü, R.; Guo, X.; Zhao, K. Irreducible modules over the Virasoro algebra. Doc. Math. 2011, 16, 709–721. [Google Scholar] [CrossRef]
- Moody, R.; Pianzola, A. Lie Algebras with Triangular Decompositions, Canadian Mathematical Society Series of Monographs and Advanced Texts; A Wiley-Interscience Publication; John Wiley & Sons, Inc.: New York, NY, USA, 1995. [Google Scholar]
- Ondrus, M.; Wiesner, E. Whittaker modules for the Virasoro algebra. J. Algebra Appl. 2009, 8, 363–377. [Google Scholar] [CrossRef]
- Ondrus, M.; Wiesner, E. Whittaker categories for the Virasoro algebra. Commun. Algebra 2013, 41, 3910–3930. [Google Scholar] [CrossRef]
- Tan, S.; Wang, Q.; Xu, C. On Whittaker modules for a Lie algebra arising from the 2-dimensional torus. Pac. J. Math. 2015, 273, 147–167. [Google Scholar] [CrossRef]
- Zhang, X.; Tan, S.; Lian, H. Whittaker modules for the Schrödinger-Witt algebra. Linear Algebra Appl. 2013, 438, 559–563. [Google Scholar]
- Liu, D.; Pei, Y.; Xia, L.; Zhao, K. Irreducible modules over the mirror Heisenberg-Virasoro algebra. Commun. Contemp. Math. 2022, 24, 2150026. [Google Scholar] [CrossRef]
- Tan, H.; Yao, Y.; Zhao, K. Simple restricted modules over the Heisenberg-Virasoro algebra as VOA modules. arXiv 2021, arXiv:2110.05714. [Google Scholar]
- Rudakov, A.N. Irreducible representations of infinite-dimensional Lie algebras of Cartan type. Izv. Akad. Nauk SSSR Ser. Mat. 1974, 38, 836–866, English translation in Math. USSR-Izv. 1974, 8, 836–866. [Google Scholar] [CrossRef]
- Rudakov, A.N. Irreducible representations of infinite-dimensional Lie algebras of types S and H. Izv. Akad. Nauk SSSR Ser. Mat. 1975, 39, 496–511, English translation in Math. USSR-Izv. 1975, 9, 465–480. [Google Scholar]
- Gao, D. Simple restricted modules for the Heisenberg-Virasoro algebra. J. Algebra 2021, 574, 233–251. [Google Scholar] [CrossRef]
- Chen, H.; Hong, Y.; Su, Y. A family of new simple modules over the Schrödinger-Virasoro algebra. J. Pure Appl. Algebra 2018, 222, 900–913. [Google Scholar] [CrossRef]
- Liu, D.; Pei, Y.; Xia, L. Simple restricted modules for Neveu-Schwarz algebra. J. Algebra 2020, 546, 341–356. [Google Scholar] [CrossRef]
- Chen, Q.; Yao, Y. Simple restricted modules for the universal central extension of the planar Galilean conformal algebra. 2023; to be submitted. [Google Scholar]
- Gao, D.; Gao, Y. Representations of the planar Galilean conformal algebra. Commun. Math. Phys. 2022, 391, 199–221. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Q.-F. Simple Restricted Modules for the Deformed 𝔟𝔪𝔰3 Algebra. Mathematics 2023, 11, 982. https://doi.org/10.3390/math11040982
Chen Q-F. Simple Restricted Modules for the Deformed 𝔟𝔪𝔰3 Algebra. Mathematics. 2023; 11(4):982. https://doi.org/10.3390/math11040982
Chicago/Turabian StyleChen, Qiu-Fan. 2023. "Simple Restricted Modules for the Deformed 𝔟𝔪𝔰3 Algebra" Mathematics 11, no. 4: 982. https://doi.org/10.3390/math11040982
APA StyleChen, Q. -F. (2023). Simple Restricted Modules for the Deformed 𝔟𝔪𝔰3 Algebra. Mathematics, 11(4), 982. https://doi.org/10.3390/math11040982