A Moving Target Detection Model Inspired by Spatio-Temporal Information Accumulation of Avian Tectal Neurons
Abstract
:1. Introduction
2. Materials and Methods
2.1. Elementary Motion Detector
- At or , the response of model is zero. Therefore, the motion of the target is a necessary condition for the model to generate a response.
- The output of EMD correlates with the velocity v and spatial pattern , and positive values indicate movement in the preferred direction, and negative values movement in the null direction.
2.2. Elementary Motion Detector with Spatio-Temporal Information Accumulation
2.2.1. Retina Layer
2.2.2. Superficial Layers of the Optic Tectum
2.2.3. Intermediate and Deep Layers of the Optic Tectum
2.3. Testing Environment and Visual Dataset
- (1)
- Synthetic videos with one moving target only.
- (2)
- Synthetic videos with a moving target as well as flashed false targets.
- (3)
- STNS dataset and RIST dataset
3. Testing Results and Analysis
3.1. Test Results with Synthetic Video That Simulates One Single Moving Target
3.2. Test Results with Synthetic Video That Simulate a Moving Target Disturbed by Flashed False Targets
3.3. Test Results with STNS and RIST Dataset
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fu, Q.; Yue, S. Modelling Drosophila motion vision pathways for decoding the direction of translating objects against cluttered moving backgrounds. Biol. Cybern. 2020, 114, 443–460. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Niu, X.; Wang, J.; Wang, Z.; Xu, H.; Shi, L. Visual Responses to Moving and Flashed Stimuli of Neurons in Domestic Pigeon (Columba livia domestica) Optic Tectum. Animals 2022, 12, 1798. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Wang, H.; Hu, C.; Yue, S. Towards Computational Models and Applications of Insect Visual Systems for Motion Perception: A Review. Artif. Life 2019, 25, 263–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrillo, M.A.I.; Fonseca-Chávez, E. Bio-inspired for Detection of Moving Objects Using Three Sensors. Int. J. Electron. Electr. Eng. 2017, 5, 245–249. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Cañada, P.; Morillas, C.; Pino, B.; Ros, E.; Pelayo, F. A Computational Framework for Realistic Retina Modeling. Int. J. Neural Syst. 2016, 26, 1650030. [Google Scholar] [CrossRef]
- Barlow, H.B.; Levick, W.R. The mechanism of directionally selective units in rabbit′s retina. J. Physiol. 1965, 178, 477–504. [Google Scholar] [CrossRef] [Green Version]
- Adelson, E.H.; Bergen, J.R. Spatiotemporal energy models for the perception of motion. J. Opt. Soc. Am. A 1985, 2, 284–299. [Google Scholar] [CrossRef] [Green Version]
- Frye, M. Elementary motion detectors. Curr. Biol. 2015, 25, R215–R217. [Google Scholar] [CrossRef] [Green Version]
- Hassenstein, B.; Reichardt, W. Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus. Z. Für Nat. B 1956, 11, 513–524. [Google Scholar] [CrossRef] [Green Version]
- Barnes, T.; Mingolla, E. Representation of motion onset and offset in an augmented Barlow-Levick model of motion detection. J. Comput. Neurosci. 2012, 33, 421–434. [Google Scholar] [CrossRef] [Green Version]
- Uchiyama, H.; Kanaya, T.; Sonohata, S. Computation of motion direction by quail retinal ganglion cells that have a nonconcentric receptive field. Vis. Neurosci. 2000, 17, 263–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manookin, M.B. Neuroscience: Reliable and refined motion computations in the retina. Curr. Biol. 2022, 32, R474–R476. [Google Scholar] [CrossRef] [PubMed]
- Emerson, R.C.; Bergen, J.R. Nonlinear Analysis of Motion Energy Calculations in Cat Visual Cortex. In Proceedings of the Fifteenth Annual Northeast Bioengineering Conference, Boston, MA, USA, 27–28 March 1989; pp. 143–144. [Google Scholar]
- Lochmann, T.; Blanche, T.J.; Butts, D.A. Construction of direction selectivity through local energy computations in primary visual cortex. PLoS One 2013, 8, e58666. [Google Scholar] [CrossRef]
- Nordstrom, K.; Barnett, P.D.; O’Carroll, D.C. Insect detection of small targets moving in visual clutter. PLoS Biol. 2006, 4, e54. [Google Scholar] [CrossRef]
- Wang, H.; Peng, J.; Yue, S. A Directionally Selective Small Target Motion Detecting Visual Neural Network in Cluttered Backgrounds. IEEE Trans. Cybern. 2018, 50, 1541–1555. [Google Scholar] [CrossRef]
- Wang, H.; Wang, H.; Zhao, J.; Hu, C.; Peng, J.; Yue, S. A Time-Delay Feedback Neural Network for Discriminating Small, Fast-Moving Targets in Complex Dynamic Environments. IEEE Trans. Neural Netw. Learn. Syst. 2021, 34, 316–330. [Google Scholar] [CrossRef]
- Wiederman, S.D.; Shoemaker, P.A.; O’Carroll, D.C. A model for the detection of moving targets in visual clutter inspired by insect physiology. PLoS One 2008, 3, e2784. [Google Scholar] [CrossRef] [Green Version]
- Joesch, M.; Schnell, B.; Raghu, S.V.; Reiff, D.F.; Borst, A. ON and OFF pathways in Drosophila motion vision. Nature 2010, 468, 300–304. [Google Scholar] [CrossRef]
- Meier, M.; Serbe, E.; Maisak, M.S.; Haag, J.; Dickson, B.; Borst, A. Neural Circuit Components of the Drosophila OFF Motion Vision Pathway. Curr. Biol. 2014, 24, 385–392. [Google Scholar] [CrossRef] [Green Version]
- Ling, J.; Wang, H.; Xu, M.; Chen, H.; Li, H.; Peng, J. Mathematical study of neural feedback roles in small target motion detection. Front. Neurorobot. 2022, 16, 984430. [Google Scholar] [CrossRef]
- James, J.V.; Cazzolato, B.S.; Grainger, S.; Wiederman, S.D. Nonlinear, neuronal adaptation in insect vision models improves target discrimination within repetitively moving backgrounds. Bioinspir. Biomim. 2021, 16, 066015. [Google Scholar] [CrossRef] [PubMed]
- Shoemaker, P.A. Neural Network Model for Detection of Edges Defined by Image Dynamics. Front. Comput. Neurosci. 2019, 13, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Mandel, H.B.; Fitzgerald, J.E.; Clark, D.A. Asymmetric ON-OFF processing of visual motion cancels variability induced by the structure of natural scenes. eLife 2019, 8, e47579. [Google Scholar] [CrossRef] [PubMed]
- Evans, B.J.E.; O′Carroll, D.C.; Fabian, J.M.; Wiederman, S.D. Differential Tuning to Visual Motion Allows Robust Encoding of Optic Flow in the Dragonfly. J. Neurosci. 2019, 39, 8051–8063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Peng, J.; Zheng, X.; Yue, S. A Robust Visual System for Small Target Motion Detection Against Cluttered Moving Backgrounds. IEEE Trans. Neural Netw. Learn. Syst. 2019, 31, 839–853. [Google Scholar] [CrossRef] [Green Version]
- Donovan, W.J. Structure and function of the pigeon visual system. Physiol. Psychol. 1978, 6, 403–437. [Google Scholar] [CrossRef] [Green Version]
- Cowan, W.M.; Adamson, L.; Powell, T.P. An experimental study of the avian visual system. J. Anat. 1961, 95, 545–563. [Google Scholar]
- Wang, S.; Ma, Q.; Qian, L.; Zhao, M.; Wang, Z.; Shi, L. Encoding Model for Continuous Motion-sensitive Neurons in the Intermediate and Deep Layers of the Pigeon Optic Tectum. Neuroscience 2022, 484, 1–15. [Google Scholar] [CrossRef]
- Knudsen, E.I. Evolution of neural processing for visual perception in vertebrates. J. Comp. Neurol. 2020, 528, 2888–2901. [Google Scholar] [CrossRef] [Green Version]
- Shuman, H.; Niu, X.; Shi, l. An Accumulated Energy Encoding Model of the Pigeon Optic Tectum: Accounting for the Difference of Response to Moving and Flashed Stimulus. Int. J. Psychophysiol. 2021, 168, S185. [Google Scholar] [CrossRef]
- Borst, A.; Helmstaedter, M. Common circuit design in fly and mammalian motion vision. Nat. Neurosci. 2015, 18, 1067–1076. [Google Scholar] [CrossRef] [PubMed]
- Borst, A.; Haag, J.; Reiff, D.F. Fly Motion Vision. Annu. Rev. Neurosci. 2010, 33, 49–70. [Google Scholar] [CrossRef] [PubMed]
- McNeil, R.; McSween, A.; Lachapelle, P. Comparison of the Retinal Structure and Function in Four Bird Species as a Function of the Time They Start Singing in the Morning. Brain, Behav. Evol. 2005, 65, 202–214. [Google Scholar] [CrossRef] [PubMed]
- Tyrrell, L.P.; Teixeira, L.B.C.; Dubielzig, R.R.; Pita, D.; Baumhardt, P.; Moore, B.A.; Fernández-Juricic, E. A novel cellular structure in the retina of insectivorous birds. Sci. Rep. 2019, 9, 15230. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Wang, M.; Wang, Z.; Shi, L. First spike latency of ON/OFF neurons in the optic tectum of pigeons. Integr. Zool. 2019, 14, 479–493. [Google Scholar] [CrossRef] [PubMed]
- Principe, J.C.; Vries, B.d.; Oliveira, P.G.d. The gamma-filter-a new class of adaptive IIR filters with restricted feedback. IEEE Trans. Signal Process. 1993, 41, 649–656. [Google Scholar] [CrossRef]
- Vries, B.; Principe, J. A Theory for Neural Networks with Time Delays. In Proceedings of the 1990 Conference on Neural Information Processing Systems (NIPS), Denver, CO, USA, 26–29 November 1990; Volume 3, pp. 162–168. [Google Scholar]
- Mysore, S.; Asadollahi, A.; Knudsen, E. Global Inhibition and Stimulus Competition in the Owl Optic Tectum. J. Neurosci. Off. J. Soc. Neurosci. 2010, 30, 1727–1738. [Google Scholar] [CrossRef] [Green Version]
- Marin, G.J.; Duran, E.; Morales, C.; Gonzalez-Cabrera, C.; Sentis, E.; Mpodozis, J.; Letelier, J.C. Attentional Capture Synchronized Feedback Signals from the Isthmi Boost Retinal Signals to Higher Visual Areas. J. Neurosci. 2012, 32, 1110–1122. [Google Scholar] [CrossRef] [Green Version]
- Uchiyama, H.; Ohno, H.; Kawasaki, T.; Owatari, Y.; Narimatsu, T.; Miyanagi, Y.; Maeda, T. Attentional signals projecting centrifugally to the avian retina: A dual contribution to visual search. Vis. Res. 2022, 195, 108016. [Google Scholar] [CrossRef]
- Bagheri, Z.M.; Wiederman, S.D.; Cazzolato, B.S.; Grainger, S.; O’Carroll, D.C. Performance of an insect-inspired target tracker in natural conditions. Bioinspir. Biomim. 2017, 12, 025006. [Google Scholar] [CrossRef] [Green Version]
- Fu, Q.; Peng, J.; Yue, S. Bioinspired Contrast Vision Computation for Robust Motion Estimation Against Natural Signals. In Proceedings of the 2021 International Joint Conference on Neural Networks (IJCNN), Shenzhen, China, 18–22 July 2021; pp. 1–8. [Google Scholar]
- Luksch, H.; Khanbabaie, R.; Wessel, R. Synaptic dynamics mediate sensitivity to motion independent of stimulus details. Nat. Neurosci. 2004, 7, 380–388. [Google Scholar] [CrossRef]
- Keung, W.; Hagen, T.A.; Wilson, R.C. A divisive model of evidence accumulation explains uneven weighting of evidence over time. Nat. Commun. 2020, 11, 2160. [Google Scholar] [CrossRef]
- Sanchez, J.L.; Lopez, M.T.; Manuel Pastor, J.; Delgado, A.E.; Fernandez-Caballero, A. Accelerating bioinspired lateral interaction in accumulative computation for real-time moving object detection with graphics processing units. Nat. Comput. 2019, 18, 217–227. [Google Scholar] [CrossRef]
- Bermudez, A.; Montero, F.; Lopez, M.T.; Fernandez-Caballero, A.; Sanchez, J.L. Optimization of lateral interaction in accumulative computation on GPU-based platform. J. Supercomput. 2019, 75, 1670–1685. [Google Scholar] [CrossRef]
- López, M.T.; Bermúdez, A.; Montero, F.; Sánchez, J.L.; Fernández-Caballero, A. A Finite State Machine Approach to Algorithmic Lateral Inhibition for Real-Time Motion Detection. Sensors 2018, 18, 1420. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, J.L.; Viana, R.; Lopez, M.T.; Fernandez-Caballero, A. Acceleration of Moving Object Detection in Bio-Inspired Computer Vision. In Proceedings of the 6th International Work-Conference on the Interplay Between Natural and Artificial Computation (IWINAC), Corunna, Spain, 19–23 June 2017; pp. 364–373. [Google Scholar]
- Fernández, M.A.; Mira, J.; López, M.T.; Álvarez, J.R.; Manjarrés, A.; Barro, S. Local Accumulation of Persistent Activity at Synaptic Level: Application to Motion Analysis; Springer: Berlin/Heidelberg, Germany, 1995; pp. 137–143. [Google Scholar]
- Delgado, A.E.; López, M.T.; Fernández-Caballero, A. Real-time motion detection by lateral inhibition in accumulative computation. Eng. Appl. Artif. Intell. 2010, 23, 129–139. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Caballero, A.; López, M.T.; Castillo, J.C.; Maldonado-Bascón, S. Real-Time Accumulative Computation Motion Detectors. Sensors 2009, 9, 10044–10065. [Google Scholar] [CrossRef] [Green Version]
- Yuan, F. A fast accumulative motion orientation model based on integral image for video smoke detection. Pattern Recognit. Lett. 2008, 29, 925–932. [Google Scholar] [CrossRef]
- Fernández-Caballero, A.; Pérez-Jiménez, R.; Fernández, M.A.; López, M.T. Comparison of Accumulative Computation with Traditional Optical Flow. In Knowledge-Based Intelligent Information and Engineering Systems: 11th International Conference, KES 2007, XVII Italian Workshop on Neural Networks, Vietri sul Mare, Italy, 12–14 September 2007; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2007; pp. 447–454. [Google Scholar]
- Fernández-Caballero, A.; López, M.T.; Fernández, M.A.; Mira, J.; Delgado, A.E.; López-Valles, J.M. Accumulative Computation Method for Motion Features Extraction in Active Selective Visual Attention. In Attention and Performance in Computational Vision: Second International Workshop, WAPCV 2004, Prague, Czech Republic, 15 May 2004; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2005; pp. 206–215. [Google Scholar]
- Lei, F.; Peng, Z.; Liu, M.; Peng, J.; Cutsuridis, V.; Yue, S. A Robust Visual System for Looming Cue Detection Against Translating Motion. IEEE Trans. Neural Netw. Learn. Syst. 2022, 1–15, to be published. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, J.; Wang, H.; Hu, C.; Peng, J.; Yue, S. Attention and Prediction-Guided Motion Detection for Low-Contrast Small Moving Targets. IEEE Trans. Cybern. 2022, 1–13, to be published. [Google Scholar] [CrossRef]
- Sadiq, M.T.; Yu, X.; Yuan, Z.; Aziz, M.Z. Motor imagery BCI classification based on novel two-dimensional modelling in empirical wavelet transform. Electron. Lett. 2020, 56, 1367–1369. [Google Scholar] [CrossRef]
- Sadiq, M.T.; Yu, X.; Yuan, Z.; Fan, Z.; Rehman, A.U.; Li, G.; Xiao, G. Motor Imagery EEG Signals Classification Based on Mode Amplitude and Frequency Components Using Empirical Wavelet Transform. IEEE Access 2019, 7, 127678–127692. [Google Scholar] [CrossRef]
- Sadiq, M.T.; Yu, X.; Yuan, Z. Exploiting dimensionality reduction and neural network techniques for the development of expert brain–computer interfaces. Expert Syst. Appl. 2021, 164, 114031. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
3 | 3 | ||
2 | 9 | ||
3 | 4 | ||
6 | 8 | ||
9 |
Data | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EMD | 0.04 | 0.25 | 0.24 | 0.2 | 0.25 | 0.34 | 0.1 | 0.08 | 0.34 | 0.48 | 0.1 | 0.18 | 0.21 |
EMD_TSA | 0.075 | 0.63 | 0.3 | 0.28 | 0.3 | 0.48 | 0.06↓ | 0.19 | 0.36 | 0.65 | 0.05↓ | 0.28 | 0.11↓ |
Data | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | |
EMD | 0.13 | 0.3 | 0.08 | 0.32 | 0.26 | 0.24 | 0.18 | 0.45 | 0.23 | 0.68 | 0.31 | 0.16 | |
EMD_TSA | 0.21 | 0.34 | 0.11 | 0.33 | 0.08↓ | 0.34 | 0.28 | 0.5 | 0.38 | 0.59↓ | 0.45 | 0.16 |
Data | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EMD | 0.68 | 0.54 | 0.53 | 0.68 | 0.61 | 0.48 | 0.84 | 0.79 | 0.68 | 0.41 | 0.77 | 0.52 | 0.4 |
EMD_TSA | 0.75↑ | 0.31 | 0.48 | 0.6 | 0.56 | 0.41 | 0.83 | 0.68 | 0.55 | 0.37 | 0.83↑ | 0.49 | 0.56↑ |
Data | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | |
EMD | 0.6 | 0.55 | 0.8 | 0.50 | 0.44 | 0.61 | 0.7 | 0.38 | 0.66 | 0.2 | 0.47 | 0.44 | |
EMD_TSA | 0.43 | 0.51 | 0.73 | 0.47 | 0.81↑ | 0.54 | 0.58 | 0.4↑ | 0.5 | 0.11 | 0.36 | 0.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.; Niu, X.; Wang, Z.; Liu, G.; Shi, L. A Moving Target Detection Model Inspired by Spatio-Temporal Information Accumulation of Avian Tectal Neurons. Mathematics 2023, 11, 1169. https://doi.org/10.3390/math11051169
Huang S, Niu X, Wang Z, Liu G, Shi L. A Moving Target Detection Model Inspired by Spatio-Temporal Information Accumulation of Avian Tectal Neurons. Mathematics. 2023; 11(5):1169. https://doi.org/10.3390/math11051169
Chicago/Turabian StyleHuang, Shuman, Xiaoke Niu, Zhizhong Wang, Gang Liu, and Li Shi. 2023. "A Moving Target Detection Model Inspired by Spatio-Temporal Information Accumulation of Avian Tectal Neurons" Mathematics 11, no. 5: 1169. https://doi.org/10.3390/math11051169
APA StyleHuang, S., Niu, X., Wang, Z., Liu, G., & Shi, L. (2023). A Moving Target Detection Model Inspired by Spatio-Temporal Information Accumulation of Avian Tectal Neurons. Mathematics, 11(5), 1169. https://doi.org/10.3390/math11051169