Solution-Space-Reduction-Based Evidence Theory Method for Stiffness Evaluation of Air Springs with Epistemic Uncertainty
Abstract
:1. Introduction
2. Fundamentals of the Dempster–Shafer Evidence Theory
3. SSR-ETM for Evidence-Theory-Based UQ
3.1. Framework of the SSR-ETM
3.2. Establishment of Sparse Representation
3.3. Monotonicity Analysis
Algorithm 1 Monotonicity analysis | |
Input: Surrogate model generated by SAPCE. | |
1. | Calculate the partial derivatives of using Equations (27) and (28). |
2. | Use PSO to calculate the extremum of partial derivatives of each dimension. |
3. | Assess the monotonicity of the surrogate model using Equation (30). |
Output: Monotonicity of the surrogate model. |
3.4. Solution Space Reduction for Extremum Analysis of Joint Focal Elements
3.5. Evidence-Theory-Based Response Analysis Using the Solution Space Reduction Technique
Algorithm 2 Solution-space-reduction-based evidence theory method (SSR-ETM) | |
Input: Monotonicity of the surrogate model determined by Algorithm 1, joint focal elements (solution spaces) , and BPAs , . | |
1. For | |
2. If | |
3. Use Equation (37) to generate and | |
4. Use Equation (16) to calculate and . | |
5. End | |
6. While PSO has not searched the extremum of and | |
7. Use PSO to generate . | |
8. Calculate using Equation (16). | |
9. Calculate . | |
10. End | |
11. Store /. | |
12. End | |
13. Calculate the four indicators using Equations (39)–(42). | |
Output: CBF, CPF, , and . |
4. Numerical Examples
4.1. Simple Functions
4.1.1. Non-Monotonic Function
4.1.2. Monotonic Function
4.1.3. Fifteen-Dimensional Function
4.1.4. Five-Dimensional Function
4.1.5. Summary of the Results of the Four Simple Functions
- (i)
- The SSR-ETM features high computational accuracy that is almost the same as that of the ETM because it only divides the surrogate model into monotonic and non-monotonic parts.
- (ii)
- Although the SSR-ETM requires a minuscule amount of time for monotonicity analysis and solution space reduction, it may render remarkable benefits, specifically when the surrogate model is monotonic in all dimensions. When the surrogate model is non-monotonic in all dimensions, the SSR-ETM maintains almost the same computing efficiency as the ETM.
- (iii)
- The SSR-ETM performs better when there are more monotonic dimensions.
- (iv)
- The number of joint focal elements exhibits a negligible effect on the calculation efficiency advantage of the SSR-ETM over the ETM when it reaches a certain degree.
4.2. Air Spring System with Epistemic Uncertainty
4.2.1. Finite Element Model (FEM) of an Air Spring System
4.2.2. Air Springs with Uncertain Parameters
4.2.3. SSR-ETM for Stiffness Evaluation
5. Conclusions
- (i)
- The SSR-ETM demonstrates a high computing accuracy almost comparable to that of the ETM as long as the surrogate model is well established.
- (ii)
- Compared with the ETM, the SSR-ETM adds minimal additional time for monotonicity analysis and solution space reduction.
- (iii)
- More monotonic dimensions contribute to a higher efficiency advantage of the SSR-ETM. In particular, when all dimensions are monotone, the SSR-ETM exhibits a significant efficiency advantage over the ETM.
- (iv)
- The SSR-ETM performed better than the ETM in the stiffness evaluation of the air springs with epistemic uncertainty.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, J.-J.; Yin, Z.-H.; Yuan, X.-J.; Qiu, G.-Q.; Guo, K.-H.; Wang, X.-L. A refined stiffness model of rolling lobe air spring with structural parameters and the stiffness characteristics of rubber bellows. Measurement 2021, 169, 108355. [Google Scholar] [CrossRef]
- Chen, J.-J.; Yin, Z.-H.; Rakheja, S.; He, J.-H.; Guo, K.-H. Theoretical modelling and experimental analysis of the vertical stiffness of a convoluted air spring including the effect of the stiffness of the bellows. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2018, 232, 547–561. [Google Scholar] [CrossRef]
- Hora, S.C. Aleatory and epistemic uncertainty in probability elicitation with an example from hazardous waste management. Reliab. Eng. Syst. Saf. 1996, 54, 217–223. [Google Scholar] [CrossRef]
- Hüllermeier, E.; Waegeman, W. Aleatoric and epistemic uncertainty in machine learning: An introduction to concepts and methods. Mach. Learn. 2021, 110, 457–506. [Google Scholar] [CrossRef]
- Salehi, S.; Raisee, M.; Cervantes, M.J.; Nourbakhsh, A. An efficient multifidelity ℓ1-minimization method for sparse polynomial chaos. Comput. Methods Appl. Mech. Eng. 2018, 334, 183–207. [Google Scholar] [CrossRef]
- Tarakanov, A.; Elsheikh, A.H. Regression-based sparse polynomial chaos for uncertainty quantification of subsurface flow models. J. Comput. Phys. 2019, 399, 108909. [Google Scholar] [CrossRef] [Green Version]
- Thapa, M.; Mulani, S.B.; Walters, R.W. A new non-intrusive polynomial chaos using higher order sensitivities. Comput. Methods Appl. Mech. Eng. 2018, 328, 594–611. [Google Scholar] [CrossRef]
- Torre, E.; Marelli, S.; Embrechts, P.; Sudret, B. Data-driven polynomial chaos expansion for machine learning regression. J. Comput. Phys. 2019, 388, 601–623. [Google Scholar] [CrossRef] [Green Version]
- Yin, S.; Yu, D.; Luo, Z.; Xia, B. An arbitrary polynomial chaos expansion approach for response analysis of acoustic systems with epistemic uncertainty. Comput. Methods Appl. Mech. Eng. 2018, 332, 280–302. [Google Scholar] [CrossRef]
- Yin, S.; Yu, D.; Yin, H.; Lü, H.; Xia, B. Hybrid evidence theory-based finite element/statistical energy analysis method for mid-frequency analysis of built-up systems with epistemic uncertainties. Mech. Syst. Signal Process. 2017, 93, 204–224. [Google Scholar] [CrossRef]
- Yin, S.; Yu, D.; Ma, Z.; Xia, B. A unified model approach for probability response analysis of structure-acoustic system with random and epistemic uncertainties. Mech. Syst. Signal Process. 2018, 111, 509–528. [Google Scholar] [CrossRef]
- Pantelides, C.P.; Ganzerli, S. Comparison of fuzzy set and convex model theories in structural design. Mech. Syst. Signal Process. 2001, 15, 499–511. [Google Scholar] [CrossRef]
- Yang, S.; Han, J.; Xia, L.; Chen, Y.-H. An optimal fuzzy-theoretic setting of adaptive robust control design for a lower limb exoskeleton robot system. Mech. Syst. Signal Process. 2020, 141, 106706. [Google Scholar] [CrossRef]
- Huang, F.; Sava, A.; Adjallah, K.H.; Wang, Z. Fuzzy model identification based on mixture distribution analysis for bearings remaining useful life estimation using small training data set. Mech. Syst. Signal Process. 2021, 148, 107173. [Google Scholar] [CrossRef]
- van Mierlo, C.; Burmberger, L.; Daub, M.; Duddeck, F.; Faes, M.G.; Moens, D. Interval methods for lack-of-knowledge uncertainty in crash analysis. Mech. Syst. Signal Process. 2022, 168, 108574. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, J.; Cho, C.; Han, X. A hybrid parameter identification method based on Bayesian approach and interval analysis for uncertain structures. Mech. Syst. Signal Process. 2015, 60, 853–865. [Google Scholar] [CrossRef]
- Deng, Z.; Guo, Z.; Zhang, X. Interval model updating using perturbation method and radial basis function neural networks. Mech. Syst. Signal Process. 2017, 84, 699–716. [Google Scholar] [CrossRef]
- Fang, S.-E.; Zhang, Q.-H.; Ren, W.-X. An interval model updating strategy using interval response surface models. Mech. Syst. Signal Process. 2015, 60, 909–927. [Google Scholar] [CrossRef]
- Zhu, W.; Chen, N.; Liu, J.; Beer, M. A probability-box-based method for propagation of multiple types of epistemic uncertainties and its application on composite structural-acoustic system. Mech. Syst. Signal Process. 2021, 149, 107184. [Google Scholar] [CrossRef]
- Crespo, L.G.; Kenny, S.P.; Giesy, D.P. Reliability analysis of polynomial systems subject to p-box uncertainties. Mech. Syst. Signal Process. 2013, 37, 121–136. [Google Scholar] [CrossRef]
- Su, X.; Mahadevan, S.; Xu, P.; Deng, Y. Dependence Assessment in Human Reliability Analysis Using Evidence Theory and AHP. Risk Anal. 2015, 35, 1296–1316. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Jiang, C.; Wang, G.G.; Han, X. First and second order approximate reliability analysis methods using evidence theory. Reliab. Eng. Syst. Saf. 2015, 137, 40–49. [Google Scholar] [CrossRef]
- Shamlou, A.; Reza Feyzi, M.; Behjat, V. Interpretation of frequency response analysis of power transformer based on evidence theory. IET Gener. Transm. Distrib. 2019, 13, 3879–3887. [Google Scholar] [CrossRef]
- Amini, A.; Abdollahi, A.; Hariri-Ardebili, M.A.; Lall, U. Copula-based reliability and sensitivity analysis of aging dams: Adaptive Kriging and polynomial chaos Kriging methods. Appl. Soft Comput. 2021, 109, 107524. [Google Scholar] [CrossRef]
- Hariri-Ardebili, M.A.; Mahdavi, G.; Abdollahi, A.; Amini, A. An RF-PCE hybrid surrogate model for sensitivity analysis of dams. Water 2021, 13, 302. [Google Scholar] [CrossRef]
- Hariri-Ardebili, M.A.; Sudret, B. Polynomial chaos expansion for uncertainty quantification of dam engineering problems. Eng. Struct. 2020, 203, 109631. [Google Scholar] [CrossRef]
- Li, Y.; Hariri-Ardebili, M.A.; Deng, T.; Wei, Q.; Cao, M. A surrogate-assisted stochastic optimization inversion algorithm: Parameter identification of dams. Adv. Eng. Inform. 2023, 55, 101853. [Google Scholar] [CrossRef]
- Shah, H.R.; Hosder, S.; Winter, T. Quantification of Margins and Mixed Uncertainties Using Evidence Theory and Stochastic Expansions. In Proceedings of the 16th AIAA Non-Deterministic Approaches Conference, National Harbor, MD, USA, 13–17 January 2014. [Google Scholar]
- Yin, S.; Yu, D.; Yin, H.; Xia, B. A new evidence-theory-based method for response analysis of acoustic system with epistemic uncertainty by using Jacobi expansion. Comput. Methods Appl. Mech. Eng. 2017, 322, 419–440. [Google Scholar] [CrossRef]
- Zhang, J.; Gong, W.; Yue, X.; Shi, M.; Chen, L. Efficient reliability analysis using prediction-oriented active sparse polynomial chaos expansion. Reliab. Eng. Syst. Saf. 2022, 228, 108749. [Google Scholar] [CrossRef]
- Zhang, B.-Y.; Ni, Y.-Q. A hybrid sequential sampling strategy for sparse polynomial chaos expansion based on compressive sampling and Bayesian experimental design. Comput. Methods Appl. Mech. Eng. 2021, 386, 114130. [Google Scholar] [CrossRef]
- Zhang, J.; Yue, X.; Qiu, J.; Zhuo, L.; Zhu, J. Sparse polynomial chaos expansion based on Bregman-iterative greedy coordinate descent for global sensitivity analysis. Mech. Syst. Signal Process. 2021, 157, 107727. [Google Scholar] [CrossRef]
- Zhou, Y.; Lu, Z.; Cheng, K.; Ling, C. An efficient and robust adaptive sampling method for polynomial chaos expansion in sparse Bayesian learning framework. Comput. Methods Appl. Mech. Eng. 2019, 352, 654–674. [Google Scholar] [CrossRef]
- Luthen, N.; Marelli, S.; Sudret, B. Sparse polynomial chaos expansions: Literature survey and benchmark. SIAM/ASA J. Uncertain. Quantif. 2021, 9, 593–649. [Google Scholar] [CrossRef]
- Dempster, A.P. A generalization of Bayesian inference. J. R. Stat. Soc. Ser. B 1968, 30, 205–232. [Google Scholar] [CrossRef]
- Shafer, G. A Mathematical Theory of Evidence; Princeton University Press: Princeton, NJ, USA, 1976; Volume 42. [Google Scholar]
- Shafer, G.; Pearl, J. Readings in Uncertain Reasoning; Morgan Kaufmann Publishers Inc.: Burlington, MA, USA, 1990. [Google Scholar]
- Shafer, G. Perspectives on the theory and practice of belief functions. Int. J. Approx. Reason. 1990, 4, 323–362. [Google Scholar] [CrossRef] [Green Version]
- Shafer, G. Dempster-shafer theory. Encycl. Artif. Intell. 1992, 1, 330–331. [Google Scholar]
- Wang, C.; Matthies, H.G. Evidence theory-based reliability optimization design using polynomial chaos expansion. Comput. Methods Appl. Mech. Eng. 2018, 341, 640–657. [Google Scholar] [CrossRef]
- Bai, Y.C.; Jiang, C.; Han, X.; Hu, D.A. Evidence-theory-based structural static and dynamic response analysis under epistemic uncertainties. Finite Elem. Anal. Des. 2013, 68, 52–62. [Google Scholar] [CrossRef]
- Zhou, Y.; Lu, Z.; Cheng, K. Adaboost-based ensemble of polynomial chaos expansion with adaptive sampling. Comput. Methods Appl. Mech. Eng. 2022, 388, 114238. [Google Scholar] [CrossRef]
- Sudret, B. Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Saf. 2008, 93, 964–979. [Google Scholar] [CrossRef]
- Xiu, D.; Karniadakis, G.E. The Wiener--Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 2002, 24, 619–644. [Google Scholar] [CrossRef]
- Oladyshkin, S.; Nowak, W. Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion. Reliab. Eng. Syst. Saf. 2012, 106, 179–190. [Google Scholar] [CrossRef]
- Guo, L.; Liu, Y.; Zhou, T. Data-driven polynomial chaos expansions: A weighted least-square approximation. J. Comput. Phys. 2019, 381, 129–145. [Google Scholar] [CrossRef] [Green Version]
- Ahlfeld, R.; Belkouchi, B.; Montomoli, F. SAMBA: Sparse approximation of moment-based arbitrary polynomial chaos. J. Comput. Phys. 2016, 320, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Thapa, M.; Mulani, S.B.; Walters, R.W. Adaptive weighted least-squares polynomial chaos expansion with basis adaptivity and sequential adaptive sampling. Comput. Methods Appl. Mech. Eng. 2020, 360, 112759. [Google Scholar] [CrossRef]
- Fajraoui, N.; Marelli, S.; Sudret, B. Sequential Design of Experiment for Sparse Polynomial Chaos Expansions. SIAM/ASA J. Uncertain. Quantif. 2017, 5, 1061–1085. [Google Scholar] [CrossRef]
- Hosder, S.; Walters, R.; Balch, M. Efficient sampling for non-intrusive polynomial chaos applications with multiple uncertain input variables. In Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, HI, USA, 23–26 April 2007; p. 1939. [Google Scholar]
- Blatman, G.; Sudret, B. Adaptive sparse polynomial chaos expansion based on least angle regression. J. Comput. Phys. 2011, 230, 2345–2367. [Google Scholar] [CrossRef]
- McKay, M.D.; Beckman, R.J.; Conover, W.J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 2000, 42, 55–61. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks; Perth, WA, Australia, 27 November–1 December 1995, pp. 1942–1948.
- Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence; MIT Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [Google Scholar] [CrossRef]
- Kriz, I.; Pultr, A. Multivariable Differential Calculus. In Introduction to Mathematical Analysis; Springer: Basel, Switzerland, 2013; pp. 65–95. [Google Scholar] [CrossRef]
- O’Regan, G. Calculus. In Mathematics in Computing: An Accessible Guide to Historical, Foundational and Application Contexts; Springer: London, UK, 2013; pp. 247–265. [Google Scholar] [CrossRef]
- Marelli, S.; Sudret, B. UQLab: A Framework for Uncertainty Quantification in Matlab; American Society of Civil Engineers: Reston, VA, USA, 2014. [Google Scholar]
- Mooney, M. A Theory of Large Elastic Deformation. J. Appl. Phys. 1940, 11, 582–592. [Google Scholar] [CrossRef]
- Rivlin, R.S. Large elastic deformations of isotropic materials IV. Further developments of the general theory. Philos. Trans. R. Soc. London. Ser. A Math. Phys. Sci. 1948, 241, 379–397. [Google Scholar]
- Qiu, Z.; Xia, Y.; Yang, J. The static displacement and the stress analysis of structures with bounded uncertainties using the vertex solution theorem. Comput. Methods Appl. Mech. Eng. 2007, 196, 4965–4984. [Google Scholar] [CrossRef]
Function | ||
---|---|---|
Non-monotonic function | 2 | |
Monotonic function | 2 | |
15-dimensional function | 2 | |
5-dimensional function | 2, 3, …, 8 |
(MPa) | (Degree) | (mm) | (mm2) | (mm) | |||||
---|---|---|---|---|---|---|---|---|---|
Focal Element | BPA (%) | Focal Element | BPA (%) | Focal Element | BPA (%) | Focal Element | BPA (%) | Focal Element | BPA (%) |
[1657,1675] | 3.90 | [40.8,41.5] | 0.85 | [1.40,1.42] | 5.05 | [5.4,5.5] | 0.47 | [6.0,6.2] | 0.65 |
[1675,1700] | 7.64 | [41.5,42.0] | 1.07 | [1.42,1.44] | 7.28 | [5.5,5.6] | 0.99 | [6.2,6.4] | 2.12 |
[1700,1725] | 7.11 | [42.0,42.5] | 3.06 | [1.44,1.46] | 8.33 | [5.6,5.7] | 4.74 | [6.4,6.6] | 25.36 |
[1725,1750] | 5.62 | [42.5,43.0] | 4.13 | [1.46,1.48] | 17.95 | [5.7,5.8] | 9.67 | [6.6,6.8] | 20.36 |
[1750,1775] | 7.28 | [43.0,43.5] | 5.11 | [1.48,1.50] | 14.63 | [5.8,5.9] | 20.97 | [6.8,7.0] | 21.21 |
[1775,1800] | 7.67 | [43.5,44.0] | 9.67 | [1.50,1.52] | 19.51 | [5.9,6.0] | 25.98 | [7.0,7.2] | 18.54 |
[1800,1825] | 7.78 | [44.0,44.5] | 8.75 | [1.52,1.54] | 11.46 | [6.0,6.1] | 20.86 | [7.2,7.4] | 5.10 |
[1825,1850] | 9.04 | [44.5,45.0] | 14.68 | [1.54,1.56] | 8.40 | [6.1,6.2] | 9.62 | [7.4,7.6] | 4.33 |
[1850,1875] | 7.25 | [45.0,45.5] | 12.61 | [1.56,1.58] | 5.98 | [6.2,6.3] | 4.95 | [7.6,7.8] | 1.98 |
[1875,1900] | 5.38 | [45.5,46.0] | 8.92 | [1.58,1.60] | 1.41 | [6.3,6.4] | 1.33 | [7.8,8.0] | 0.35 |
[1900,1925] | 7.47 | [46.0,46.5] | 7.61 | [6.4,6.5] | 0.42 | ||||
[1925,1950] | 7.69 | [46.5,47.0] | 7.05 | ||||||
[1950,1975] | 7.82 | [47.0,47.5] | 9.11 | ||||||
[1975,1996] | 8.35 | [47.5,48.0] | 4.62 | ||||||
[48.0,48.5] | 1.73 | ||||||||
[48.5,49.1] | 1.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, S.; Jin, K.; Bai, Y.; Zhou, W.; Wang, Z. Solution-Space-Reduction-Based Evidence Theory Method for Stiffness Evaluation of Air Springs with Epistemic Uncertainty. Mathematics 2023, 11, 1214. https://doi.org/10.3390/math11051214
Yin S, Jin K, Bai Y, Zhou W, Wang Z. Solution-Space-Reduction-Based Evidence Theory Method for Stiffness Evaluation of Air Springs with Epistemic Uncertainty. Mathematics. 2023; 11(5):1214. https://doi.org/10.3390/math11051214
Chicago/Turabian StyleYin, Shengwen, Keliang Jin, Yu Bai, Wei Zhou, and Zhonggang Wang. 2023. "Solution-Space-Reduction-Based Evidence Theory Method for Stiffness Evaluation of Air Springs with Epistemic Uncertainty" Mathematics 11, no. 5: 1214. https://doi.org/10.3390/math11051214
APA StyleYin, S., Jin, K., Bai, Y., Zhou, W., & Wang, Z. (2023). Solution-Space-Reduction-Based Evidence Theory Method for Stiffness Evaluation of Air Springs with Epistemic Uncertainty. Mathematics, 11(5), 1214. https://doi.org/10.3390/math11051214