The Choice of Machine Learning Algorithms Impacts the Association between Brain-Predicted Age Difference and Cognitive Function
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Neuroimaging Acquisition and Processing
2.3. Machine Learning Algorithms
2.3.1. Ordinary Least Squares (OLS) Regression
2.3.2. Ridge Regression
2.3.3. Least Absolute Shrinkage and Selection Operator (Lasso) Regression
2.3.4. Elastic-Net Regression
2.3.5. Support Vector Regression (SVR)
2.3.6. Relevance Vector Regression (RVR)
2.3.7. Gaussian Process Regression (GPR)
2.4. Brain Age Prediction and BrainPAD Estimation
2.5. Association of BrainPAD with Cognitive Function
3. Results
3.1. Performance of Machine Learning Algorithms in Brain Age Prediction
3.2. Comparative Evaluation of Machine Learning Algorithms
3.2.1. Brain-Predicted Age
3.2.2. Brain Regional Regression Weights
3.3. Association between BrainPAD and Cognitive Measures
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cole, J.H.; Ritchie, S.J.; Bastin, M.E.; Valdes Hernandez, M.C.; Munoz Maniega, S.; Royle, N.; Corley, J.; Pattie, A.; Harris, S.E.; Zhang, Q.; et al. Brain age predicts mortality. Mol. Psychiatry 2018, 23, 1385–1392. [Google Scholar] [CrossRef] [Green Version]
- Belsky, D.W.; Caspi, A.; Houts, R.; Cohen, H.J.; Corcoran, D.L.; Danese, A.; Harrington, H.; Israel, S.; Levine, M.E.; Schaefer, J.D.; et al. Quantification of biological aging in young adults. Proc. Natl. Acad. Sci. USA 2015, 112, E4104–E4110. [Google Scholar] [CrossRef] [Green Version]
- Levine, M.E.; Lu, A.T.; Quach, A.; Chen, B.H.; Assimes, T.L.; Bandinelli, S.; Hou, L.; Baccarelli, A.A.; Stewart, J.D.; Li, Y.; et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging 2018, 10, 573–591. [Google Scholar] [CrossRef] [Green Version]
- Franke, K.; Gaser, C. Ten Years of BrainAGE as a Neuroimaging Biomarker of Brain Aging: What Insights Have We Gained? Front. Neurol. 2019, 10, 789. [Google Scholar] [CrossRef] [Green Version]
- Franke, K.; Ziegler, G.; Kloppel, S.; Gaser, C.; Alzheimer’s Disease Neuroimaging Initiative. Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: Exploring the influence of various parameters. Neuroimage 2010, 50, 883–892. [Google Scholar] [CrossRef] [PubMed]
- Schnack, H.G.; van Haren, N.E.; Nieuwenhuis, M.; Hulshoff Pol, H.E.; Cahn, W.; Kahn, R.S. Accelerated Brain Aging in Schizophrenia: A Longitudinal Pattern Recognition Study. Am. J. Psychiatry 2016, 173, 607–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cole, J.H.; Franke, K. Predicting Age Using Neuroimaging: Innovative Brain Ageing Biomarkers. Trends Neurosci. 2017, 40, 681–690. [Google Scholar] [CrossRef] [Green Version]
- Liem, F.; Varoquaux, G.; Kynast, J.; Beyer, F.; Kharabian Masouleh, S.; Huntenburg, J.M.; Lampe, L.; Rahim, M.; Abraham, A.; Craddock, R.C.; et al. Predicting brain-age from multimodal imaging data captures cognitive impairment. Neuroimage 2017, 148, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.M.; Elliott, L.T.; Alfaro-Almagro, F.; McCarthy, P.; Nichols, T.E.; Douaud, G.; Miller, K.L. Brain aging comprises many modes of structural and functional change with distinct genetic and biophysical associations. Elife 2020, 9, e52677. [Google Scholar] [CrossRef] [Green Version]
- Franke, K.; Ristow, M.; Gaser, C.; Alzheimer’s Disease Neuroimaging Initiative. Gender-specific impact of personal health parameters on individual brain aging in cognitively unimpaired elderly subjects. Front Aging Neurosci 2014, 6, 94. [Google Scholar] [CrossRef] [Green Version]
- Steffener, J.; Habeck, C.; O’Shea, D.; Razlighi, Q.; Bherer, L.; Stern, Y. Differences between chronological and brain age are related to education and self-reported physical activity. Neurobiol. Aging 2016, 40, 138–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franke, K.; Gaser, C. Longitudinal Changes in Individual BrainAGE in Healthy Aging, Mild Cognitive Impairment, and Alzheimer’s disease. GeroPsych 2012, 25, 235–245. [Google Scholar] [CrossRef]
- Cole, J.H.; Leech, R.; Sharp, D.J.; Alzheimer’s Disease Neuroimaging Initiative. Prediction of brain age suggests accelerated atrophy after traumatic brain injury. Ann. Neurol. 2015, 77, 571–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaufmann, T.; van der Meer, D.; Doan, N.T.; Schwarz, E.; Lund, M.J.; Agartz, I.; Alnaes, D.; Barch, D.M.; Baur-Streubel, R.; Bertolino, A.; et al. Common brain disorders are associated with heritable patterns of apparent aging of the brain. Nat. Neurosci. 2019, 22, 1617–1623. [Google Scholar] [CrossRef]
- Lee, W.H.; Antoniades, M.; Schnack, H.G.; Kahn, R.S.; Frangou, S. Brain age prediction in schizophrenia: Does the choice of machine learning algorithm matter? Psychiatry Res. Neuroimaging 2021, 310, 111270. [Google Scholar] [CrossRef]
- Richard, G.; Kolskar, K.; Sanders, A.M.; Kaufmann, T.; Petersen, A.; Doan, N.T.; Sanchez, J.M.; Alnaes, D.; Ulrichsen, K.M.; Dorum, E.S.; et al. Assessing distinct patterns of cognitive aging using tissue-specific brain age prediction based on diffusion tensor imaging and brain morphometry. Peerj 2018, 6, e5908. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Knol, M.J.; Tiulpin, A.; Dubost, F.; de Bruijne, M.; Vernooij, M.W.; Adams, H.H.H.; Ikram, M.A.; Niessen, W.J.; Roshchupkin, G.V. Gray Matter Age Prediction as a Biomarker for Risk of Dementia. Proc. Natl. Acad. Sci. USA 2019, 116, 21213–21218. [Google Scholar] [CrossRef] [Green Version]
- Baecker, L.; Dafflon, J.; da Costa, P.F.; Garcia-Dias, R.; Vieira, S.; Scarpazza, C.; Calhoun, V.D.; Sato, J.R.; Mechelli, A.; Pinaya, W.H.L. Brain age prediction: A comparison between machine learning models using region- and voxel-based morphometric data. Hum. Brain Mapp. 2021, 42, 2332–2346. [Google Scholar] [CrossRef]
- Baecker, L.; Garcia-Dias, R.; Vieira, S.; Scarpazza, C.; Mechelli, A. Machine learning for brain age prediction: Introduction to methods and clinical applications. EBioMedicine 2021, 72, 103600. [Google Scholar] [CrossRef]
- Shafto, M.A.; Tyler, L.K.; Dixon, M.; Taylor, J.R.; Rowe, J.B.; Cusack, R.; Calder, A.J.; Marslen-Wilson, W.D.; Duncan, J.; Dalgleish, T.; et al. The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) study protocol: A cross-sectional, lifespan, multidisciplinary examination of healthy cognitive ageing. BMC Neurol. 2014, 14, 204. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J.R.; Williams, N.; Cusack, R.; Auer, T.; Shafto, M.A.; Dixon, M.; Tyler, L.K.; Cam, C.; Henson, R.N. The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) data repository: Structural and functional MRI, MEG, and cognitive data from a cross-sectional adult lifespan sample. Neuroimage 2017, 144 Pt B, 262–269. [Google Scholar] [CrossRef]
- Fischl, B.; Salat, D.H.; van der Kouwe, A.J.; Makris, N.; Segonne, F.; Quinn, B.T.; Dale, A.M. Sequence-independent segmentation of magnetic resonance images. Neuroimage 2004, 23 (Suppl. S1), S69–S84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desikan, R.S.; Segonne, F.; Fischl, B.; Quinn, B.T.; Dickerson, B.C.; Blacker, D.; Buckner, R.L.; Dale, A.M.; Maguire, R.P.; Hyman, B.T.; et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 2006, 31, 968–980. [Google Scholar] [CrossRef] [PubMed]
- Fischl, B.; Salat, D.H.; Busa, E.; Albert, M.; Dieterich, M.; Haselgrove, C.; van der Kouwe, A.; Killiany, R.; Kennedy, D.; Klaveness, S.; et al. Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron 2002, 33, 341–355. [Google Scholar] [CrossRef] [Green Version]
- Cole, J.H.; Franke, K.; Cherbuin, N. Quantification of the biological age of the brain using neuroimaging. In Healthy Ageing and Longevity. Biomarkers of Human Aging; Springer: Berlin/Heidelberg, Germany, 2019; pp. 293–328. [Google Scholar]
- Valizadeh, S.A.; Hanggi, J.; Merillat, S.; Jancke, L. Age prediction on the basis of brain anatomical measures. Hum. Brain Mapp. 2017, 38, 997–1008. [Google Scholar] [CrossRef] [PubMed]
- Cole, J.H. Multimodality neuroimaging brain-age in UK biobank: Relationship to biomedical, lifestyle, and cognitive factors. Neurobiol. Aging 2020, 92, 34–42. [Google Scholar] [CrossRef]
- Ball, G.; Kelly, C.E.; Beare, R.; Seal, M.L. Individual variation underlying brain age estimates in typical development. Neuroimage 2021, 235, 118036. [Google Scholar] [CrossRef]
- Han, J.; Kim, S.Y.; Lee, J.; Lee, W.H. Brain Age Prediction: A Comparison between Machine Learning Models Using Brain Morphometric Data. Sensors 2022, 22, 8077. [Google Scholar] [CrossRef]
- Hoerl, A.E.; Kennard, R.W. Ridge Regression—Biased Estimation for Nonorthogonal Problems. Technometrics 1970, 12, 55–67. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B Met. 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Zou, H.; Hastie, T. Regularization and variable selection via the elastic net (vol B 67, pg 301, 2005). J. R. Stat. Soc. B 2005, 67, 301–320. [Google Scholar] [CrossRef]
- Smola, A.J.; Scholkopf, B. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199–222. [Google Scholar] [CrossRef] [Green Version]
- Tipping, M.E. Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 2001, 1, 211–244. [Google Scholar]
- Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; MIT Press: Cambridge, MA, USA, 2006; p. xviii. 248p. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Chang, C.C.; Lin, C.J. LIBSVM: A Library for Support Vector Machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 1–27. [Google Scholar] [CrossRef]
- Schrouff, J.; Rosa, M.J.; Rondina, J.M.; Marquand, A.F.; Chu, C.; Ashburner, J.; Phillips, C.; Richiardi, J.; Mourao-Miranda, J. PRoNTo: Pattern Recognition for Neuroimaging Toolbox. Neuroinformatics 2013, 11, 319–337. [Google Scholar] [CrossRef] [Green Version]
- Haufe, S.; Meinecke, F.; Gorgen, K.; Dahne, S.; Haynes, J.D.; Blankertz, B.; Biessmann, F. On the interpretation of weight vectors of linear models in multivariate neuroimaging. Neuroimage 2014, 87, 96–110. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.; Zhang, F.; Niu, X. Investigating systematic bias in brain age estimation with application to post-traumatic stress disorders. Hum. Brain Mapp. 2019, 40, 3143–3152. [Google Scholar] [CrossRef] [Green Version]
- Le, T.T.; Kuplicki, R.T.; McKinney, B.A.; Yeh, H.W.; Thompson, W.K.; Paulus, M.P.; Tulsa, I. A Nonlinear Simulation Framework Supports Adjusting for Age When Analyzing BrainAGE. Front. Aging Neurosc.i 2018, 10, 317. [Google Scholar] [CrossRef] [Green Version]
- Yin, C.; Imms, P.; Cheng, M.; Amgalan, A.; Chowdhury, N.F.; Massett, R.J.; Chaudhari, N.N.; Chen, X.; Thompson, P.M.; Bogdan, P.; et al. Anatomically interpretable deep learning of brain age captures domain-specific cognitive impairment. Proc. Natl. Acad. Sci. USA 2023, 120, e2214634120. [Google Scholar] [CrossRef] [PubMed]
- Shafto, M.A.; Henson, R.N.; Matthews, F.E.; Taylor, J.R.; Emery, T.; Erzinclioglu, S.; Hanley, C.; Rowe, J.B.; Cusack, R.; Calder, A.J.; et al. Cognitive Diversity in a Healthy Aging Cohort: Cross-Domain Cognition in the Cam-CAN Project. J. Aging Health 2020, 32, 1029–1041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borgeest, G.S.; Henson, R.N.; Shafto, M.; Samu, D.; Kievit, R.A.; Cam-CAN. Greater lifestyle engagement is associated with better age-adjusted cognitive abilities. PLoS ONE 2020, 15, e0230077. [Google Scholar] [CrossRef] [PubMed]
- Rokicki, J.; Wolfers, T.; Nordhoy, W.; Tesli, N.; Quintana, D.S.; Alnaes, D.; Richard, G.; de Lange, A.G.; Lund, M.J.; Norbom, L.; et al. Multimodal imaging improves brain age prediction and reveals distinct abnormalities in patients with psychiatric and neurological disorders. Hum. Brain Mapp. 2021, 42, 1714–1726. [Google Scholar] [CrossRef] [PubMed]
- Wrigglesworth, J.; Yaacob, N.; Ward, P.; Woods, R.L.; McNeil, J.; Storey, E.; Egan, G.; Murray, A.; Shah, R.C.; Jamadar, S.D.; et al. Brain-predicted age difference is associated with cognitive processing in later-life. Neurobiol. Aging 2022, 109, 195–203. [Google Scholar] [CrossRef]
- Anaturk, M.; Kaufmann, T.; Cole, J.H.; Suri, S.; Griffanti, L.; Zsoldos, E.; Filippini, N.; Singh-Manoux, A.; Kivimaki, M.; Westlye, L.T.; et al. Prediction of brain age and cognitive age: Quantifying brain and cognitive maintenance in aging. Hum. Brain Mapp. 2021, 42, 1626–1640. [Google Scholar] [CrossRef]
- Gaser, C.; Franke, K.; Kloppel, S.; Koutsouleris, N.; Sauer, H.; Alzheimer’s Disease Neuroimaging Initiative. BrainAGE in Mild Cognitive Impaired Patients: Predicting the Conversion to Alzheimer’s Disease. PLoS ONE 2013, 8, e67346. [Google Scholar] [CrossRef] [Green Version]
- Bashyam, V.M.; Erus, G.; Doshi, J.; Habes, M.; Nasralah, I.; Truelove-Hill, M.; Srinivasan, D.; Mamourian, L.; Pomponio, R.; Fan, Y.; et al. MRI signatures of brain age and disease over the lifespan based on a deep brain network and 14,468 individuals worldwide. Brain 2020, 143, 2312–2324. [Google Scholar] [CrossRef]
- Barth, C.; Kelly, S.; Nerland, S.; Jahanshad, N.; Alloza, C.; Ambrogi, S.; Andreassen, O.A.; Andreou, D.; Arango, C.; Baeza, I.; et al. In vivo white matter microstructure in adolescents with early-onset psychosis: A multi-site mega-analysis. Mol. Psychiatry 2022, 28, 1159–1169. [Google Scholar] [CrossRef]
- Constantinides, C.; Han, L.K.M.; Alloza, C.; Antonucci, L.A.; Arango, C.; Ayesa-Arriola, R.; Banaj, N.; Bertolino, A.; Borgwardt, S.; Bruggemann, J.; et al. Brain ageing in schizophrenia: Evidence from 26 international cohorts via the ENIGMA Schizophrenia consortium. Mol. Psychiatry 2022, 28, 1201–1209. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, A.; Kong, R.; Gordon, E.M.; Laumann, T.O.; Zuo, X.N.; Holmes, A.J.; Eickhoff, S.B.; Yeo, B.T.T. Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic Functional Connectivity MRI. Cereb. Cortex 2018, 28, 3095–3114. [Google Scholar] [CrossRef] [Green Version]
- Segonne, F.; Dale, A.M.; Busa, E.; Glessner, M.; Salat, D.; Hahn, H.K.; Fischl, B. A hybrid approach to the skull stripping problem in MRI. Neuroimage 2004, 22, 1060–1075. [Google Scholar] [CrossRef] [PubMed]
- Sled, J.G.; Zijdenbos, A.P.; Evans, A.C. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imaging 1998, 17, 87–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischl, B.; Liu, A.; Dale, A.M. Automated manifold surgery: Constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Trans. Med. Imaging 2001, 20, 70–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klapwijk, E.T.; van de Kamp, F.; van der Meulen, M.; Peters, S.; Wierenga, L.M. Qoala-T: A supervised-learning tool for quality control of FreeSurfer segmented MRI data. Neuroimage 2019, 189, 116–129. [Google Scholar] [CrossRef]
Algorithm | Model Performance | Prediction Performance | ||
---|---|---|---|---|
r | MAE | r | MAE | |
OLS | 0.78 | 9.69 | 0.86 | 7.72 |
Ridge | 0.92 | 5.65 | 0.92 | 5.52 |
Lasso | 0.92 | 5.73 | 0.91 | 5.48 |
Elastic-net | 0.92 | 5.68 | 0.92 | 5.46 |
SVR | 0.92 | 5.82 | 0.91 | 5.89 |
RVR | 0.91 | 5.93 | 0.91 | 5.63 |
GPR | 0.92 | 5.66 | 0.92 | 5.52 |
Algorithm | Fluid Intelligence | Hotel | Proverbs | ToT | RT Simple | RT Choice | Emotion Recognition | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
r | p | r | p | r | p | r | p | r | p | r | p | r | p | |
OLS | 0.002 | 0.965 | 0.024 | 0.651 | 0.052 | 0.581 | −0.027 | 0.651 | −0.074 | 0.566 | −0.041 | 0.581 | 0.037 | 0.374 |
Ridge | −0.048 | 0.687 | −0.021 | 0.709 | 0.027 | 0.709 | 0.044 | 0.687 | −0.057 | 0.687 | −0.034 | 0.709 | 0.000 | 0.996 |
Lasso | −0.055 | 0.583 | −0.030 | 0.654 | 0.039 | 0.600 | 0.048 | 0.583 | −0.061 | 0.583 | −0.005 | 0.904 | −0.017 | 0.688 |
Elastic-net | −0.048 | 0.738 | −0.012 | 0.894 | 0.027 | 0.774 | 0.042 | 0.738 | −0.060 | 0.738 | −0.025 | 0.774 | −0.010 | 0.809 |
SVR | −0.014 | 0.727 | 0.101 | 0.047 | −0.033 | 0.599 | 0.074 | 0.157 | 0.023 | 0.691 | 0.072 | 0.157 | −0.111 | 0.007 |
RVR | −0.033 | 0.581 | 0.100 | 0.049 | −0.026 | 0.622 | 0.084 | 0.103 | −0.006 | 0.893 | 0.061 | 0.273 | −0.118 | 0.004 |
GPR | −0.024 | 0.580 | 0.095 | 0.070 | −0.036 | 0.545 | 0.076 | 0.156 | 0.024 | 0.580 | 0.070 | 0.178 | −0.111 | 0.007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, W.H. The Choice of Machine Learning Algorithms Impacts the Association between Brain-Predicted Age Difference and Cognitive Function. Mathematics 2023, 11, 1229. https://doi.org/10.3390/math11051229
Lee WH. The Choice of Machine Learning Algorithms Impacts the Association between Brain-Predicted Age Difference and Cognitive Function. Mathematics. 2023; 11(5):1229. https://doi.org/10.3390/math11051229
Chicago/Turabian StyleLee, Won Hee. 2023. "The Choice of Machine Learning Algorithms Impacts the Association between Brain-Predicted Age Difference and Cognitive Function" Mathematics 11, no. 5: 1229. https://doi.org/10.3390/math11051229
APA StyleLee, W. H. (2023). The Choice of Machine Learning Algorithms Impacts the Association between Brain-Predicted Age Difference and Cognitive Function. Mathematics, 11(5), 1229. https://doi.org/10.3390/math11051229