Optimized Sizing of Energy Management System for Off-Grid Hybrid Solar/Wind/Battery/Biogasifier/Diesel Microgrid System
Abstract
:1. Introduction
1.1. Global Prospects for Renewable Power Stations and Investment Costs
1.2. Research Gap and Contributions
- This study proposes an optimal size for the energy management MG system in Basra, Iraq, based on renewable, storage, and backup nonrenewable energy sources. This system includes a brand-new hybrid MG system with WT, PV, batteries, a diesel generator, and a biogasifier to address the unreliability of power in off-grid areas. Several aspects of the proposed system’s mathematical modeling, including its components and operational processes, have been discussed in detail.
- In this study, GWCSO algorithm is used. With this algorithm, the optimal component sizes for the system can be determined, resulting in the lowest yearly cost and LCOE. To the best of our knowledge, the sizing of such system components has not previously been determined by combining GWO and CS for an islanded MG.
- The GWCSO cost analysis results have been compared to the GA, PSO, CS, GWO, and ALO algorithms to determine the most cost-effective one.
- This study illustrates the techno-economic and environmental consequences of islanded hybrid MG systems at various integration levels by reducing the total number of used components and prioritizing renewables units to meet power demands, making it easier for investors to choose the best system for their investment objectives.
1.3. Research Organization
2. Problem Statement
3. System Description
3.1. Climatological and Load Data of Basra
3.2. Dispatch Strategy
4. Mathematical Modeling of the Proposed System
4.1. Solar PV
4.2. Wind Turbine
4.3. Battery Unit
4.4. Diesel Generator Modeling
4.5. Biomass Gasifier
4.6. Power Converter Modeling
5. Optimization Technique
5.1. Mathematical Model of GWO
- Encircling prey
- 2.
- Hunting prey
- 3.
- Attacking prey
5.2. Cuckoo Search
5.3. Hybridized Grey Wolf and Cuckoo Search
6. Objective Functions and Economic Modeling
7. Simulation Results
7.1. Optimal Sizing Results
7.2. Energy Management Results
7.3. Robustness and Speed Tests
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jasim, A.M.; Jasim, B.H.; Neagu, B.-C.; Alhasnawi, B.N. Efficient Optimization Algorithm-Based Demand-Side Management Program for Smart Grid Residential Load. Axioms 2023, 12, 33. [Google Scholar] [CrossRef]
- Jasim, A.M.; Jasim, B.H.; Kraiem, H.; Flah, A. A Multi-Objective Demand/Generation Scheduling Model-Based Microgrid Energy Management System. Sustainability 2022, 14, 10158. [Google Scholar] [CrossRef]
- Haratian, M.; Tabibi, P.; Sadeghi, M.; Vaseghi, B.; Poustdouz, A. A renewable energy solution for stand-alone power generation: A case study of KhshU Site-Iran. Renew Energy 2018, 125, 926–935. [Google Scholar] [CrossRef]
- Heydari, A.; Askarzadeh, A. Optimization of a biomass-based photovoltaic power plant for an off-grid application subject to loss of power supply probability concept. Appl. Energy 2016, 165, 601–611. [Google Scholar] [CrossRef]
- Jasim, A.M.; Jasim, B.H.; Bureš, V.; Mikulecký, P. A New Decentralized Robust Secondary Control for Smart Islanded Microgrids. Sensors 2022, 22, 8709. [Google Scholar] [CrossRef]
- Alhasnawi, B.N.; Jasim, B.H.; Sedhom, B.E.; Guerrero, J.M. Consensus Algorithm-based Coalition Game Theory for Demand Management Scheme in Smart Microgrid. Sustain. Cities Soc. 2017, 74, 103248. [Google Scholar] [CrossRef]
- Alhasnawi, B.N.; Jasim, B.H.; Alhasnawi, A.N.; Sedhom, B.E.; Jasim, A.M.; Khalili, A.; Bureš, V.; Burgio, A.; Siano, P. A Novel Approach to Achieve MPPT for Photovoltaic System Based SCADA. Energies 2022, 15, 8480. [Google Scholar] [CrossRef]
- Almusawi, H.M.; Farnoosh, A. Economic Analysis of the Electricity Mix of Iraq using Portfolio Optimization Approach. Int. Energy J. 2021, 21, 235–2445. [Google Scholar]
- Available online: https://dateandtime.info/citycoordinates.php?id=99532. (accessed on 7 February 2023).
- Chaichan, M.T.; Abass, K.I.; Kazem, H.A. Energy yield loss caused by dust and pollutants deposition on concentrated solar power plants in Iraq weathers. Int. Res. J. Adv. Eng. Sci. 2018, 3, 160–169. [Google Scholar]
- Chaichan, M.T.; Kazem, H.A. Generating Electricity Using Photovoltaic Solar Plants in Iraq; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Alasady, A.M.A. Solar energy the suitable energy alternative for Iraq beyond oil. In Proceedings of the International Conference on Petroleum and Sustainable Development (IPCBEE); IACSIT Press: Singapore, 2011; Volume 26, pp. 11–15. [Google Scholar]
- Darwish, A.S.K.; Sayigh, A.A.M. Wind energy potential in Iraq. Sol. Wind Technol. 1988, 5, 215–222. [Google Scholar] [CrossRef]
- Dihrab, S.S.; Sopian, K. Electricity generation of hybrid PV/wind systems in Iraq. Renew. Energy 2010, 35, 1303–1307. [Google Scholar] [CrossRef]
- Abed, F.M.; Al-Douri, Y.; Al-Shahery, G. Review on the energy and renewable energy status in Iraq: The outlooks. Renew. Sustain. Energy Rev. 2014, 39, 816–827. [Google Scholar] [CrossRef]
- Jasim, A.M.; Jasim, B.H.; Neagu, B.-C. A New Decentralized PQ Control for Parallel Inverters in Grid-Tied Microgrids Propelled by SMC-Based Buck–Boost Converters. Electronics 2022, 11, 3917. [Google Scholar] [CrossRef]
- Ahamad, N.B.; Othman, M.; Vasquez, J.C.; Guerrero, J.M.; Su, C.L. Optimal sizing and performance evaluation of a renewable energy based microgrid in future seaports. In Proceedings of the 2018 IEEE International Conference on Industrial Technology (ICIT), Lyon, France, 20–22 February 2018; pp. 1043–1048. [Google Scholar]
- Oviedo, J.; Duarte, C.; Solano, J. Sizing of Hybrid Islanded Microgrids using a Heuristic approximation of the Gradient Descent Method for discrete functions. Int. J. Renew. Energy Res. 2020, 10, 13–22. [Google Scholar]
- Bukar, A.L.; Tan, C.W.; Lau, K.Y. Optimal sizing of an autonomous photovoltaic/wind/battery/diesel generator microgrid using grasshopper optimization algorithm. Sol. Energy 2019, 188, 685–696. [Google Scholar] [CrossRef]
- Zhang, W.; Maleki, A.; Rosen, M.A.; Liu, J. Sizing a stand-alone solar-wind-hydrogen energy system using weather forecasting and a hybrid search optimization algorithm. Energy Convers. Manag. 2019, 180, 609–621. [Google Scholar] [CrossRef]
- Giallanza, A.; Porretto, M.; Puma, G.L.; Marannano, G. A sizing approach for stand-alone hybrid photovoltaic-windbattery systems: A Sicilian case study. J. Clean. Prod. 2018, 199, 817–830. [Google Scholar] [CrossRef]
- Rullo, P.; Braccia, L.; Luppi, P.; Zumoffen, D.; Feroldi, D. Integration of sizing and energy management based on economic predictive control for standalone hybrid renewable energy systems. Renew. Energy 2019, 140, 436–451. [Google Scholar] [CrossRef]
- Tabak, A.; Kayabasi, E.; Guneser, M.T.; Ozkaymak, M. Grey wolf optimization for optimum sizing and controlling of a PV/WT/BM hybrid energy system considering TNPC, LPSP, and LCOE concepts. Energy Sources Part A Recovery Util. Environ. Eff. 2019, 44, 1508–1528. [Google Scholar] [CrossRef]
- Farh, H.M.; Al-Shamma’a, A.A.; Al-Shaalan, A.M.; Alkuhayli, A.; Noman, A.M.; Kandil, T. Technical and economic evaluation for off-grid hybrid renewable energy system using novel Bonobo optimizer. Sustainability 2022, 14, 1533. [Google Scholar] [CrossRef]
- Alshammari, S.; Fathy, A. Optimum Size of Hybrid Renewable Energy System to Supply the Electrical Loads of the Northeastern Sector in the Kingdom of Saudi Arabia. Sustainability 2022, 14, 13274. [Google Scholar] [CrossRef]
- Aziz, A.; Tajuddin, M.; Adzman, M.; Ramli, M.; Mekhilef, S. Energy Management and Optimization of a PV/Diesel/Battery Hybrid Energy System Using a Combined Dispatch Strategy. Sustainability 2019, 11, 683. [Google Scholar] [CrossRef]
- Jayachandran, M.; Ravi, G. Design and optimization of hybrid micro-grid system. Energy Procedia 2017, 117, 95–103. [Google Scholar] [CrossRef]
- Salawudeen, A.T.; Mu’azu, M.B.; Sha’aban, Y.A.; Adedokun, A.E. A Novel Smell Agent Optimization (SAO): An extensive CEC study and engineering application. Knowl.-Based Syst. 2021, 232, 107486. [Google Scholar] [CrossRef]
- Rezk, H.; Al-Dhaifallah, M.; Hassan, Y.B.; Ziedan, H.A. Optimization and Energy Management of Hybrid Photovoltaic-Diesel Battery System to Pump and Desalinate Water at Isolated Regions. IEEE Access 2020, 8, 102512–102529. [Google Scholar] [CrossRef]
- Tran, Q.T.; Davies, K.; Sepasi, S. Isolation Microgrid Design for Remote Areas with the Integration of Renewable Energy: A Case Study of Con Dao Island in Vietnam. Clean Technol. 2021, 3, 804–820. [Google Scholar] [CrossRef]
- Lu, X.; Wang, H. Optimal sizing and energy management for cost-effective PEV hybrid energy storage systems. IEEE Trans. Ind. Inform. 2019, 16, 3407–3416. [Google Scholar] [CrossRef]
- Diab, A.A.Z.; Sultan, H.M.; Mohamed, I.S.; Kuznetsov, O.N.; Do, T.D. Application of different optimization algorithms for optimal sizing of PV/wind/diesel/battery storage stand-alone hybrid microgrid. IEEE Access 2019, 7, 119223–119245. [Google Scholar] [CrossRef]
- Acevedo-Arenas, C.Y.; Correcher, A.; Sánchez-Díaz, C.; Ariza, E.; Alfonso-Solar, D.; Vargas-Salgado, C.; Petit-Suárez, J.F. MPC for optimal dispatch of an AC-linked hybrid PV/wind/biomass/H2 system incorporating demand response. Energy Convers. Manag. 2019, 186, 241–257. [Google Scholar] [CrossRef]
- Diab, A.A.Z.; El-Rifaie, A.M.; Zaky, M.M.; Tolba, M.A. Optimal Sizing of Stand-Alone Microgrids Based on Recent Metaheuristic Algorithms. Mathematics 2022, 10, 140. [Google Scholar] [CrossRef]
- Zhu, X.; Premrudeepreechacharn, S.; Sorndit, C.; Meenual, T.; Kasirawat, T.; Tantichayakorn, N. Design and Development of a Microgrid Project at Rural Area. In Proceedings of the 2019 IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia), Bangkok, Thailand, 19–23 March 2019; pp. 877–882. [Google Scholar]
- Bakar, N.N.A.; Guerrero, J.M.; Vasquez, J.C.; Bazmohammadi, N.; Othman, M.; Rasmussen, B.D.; Al-Turki, Y.A. Optimal Configuration and Sizing of Seaport Microgrids including Renewable Energy and Cold Ironing-The Port of Aalborg Case Study. Energies 2022, 15, 431. [Google Scholar] [CrossRef]
- Yasin, A.; Alsayed, M. Optimization with excess electricity management of a PV, energy storage and diesel generatorhybrid system usingHOMER Pro software. Int. J. Appl. Power Eng. 2020, 9, 267–283, ISSN: 2252–8792. [Google Scholar] [CrossRef]
- Shahzad, M.; Zahid, A.; Rashid, T.; Rehan, M.; Ali, M.; Ahmad, M. Techno-economic feasibility analysis of a solar-biomass off grid system for electrification of remote rural areas in Pakistan using HOMER software. Renew. Energy 2017, 106, 264–273. [Google Scholar] [CrossRef]
- Zahboune, H.; Zouggar, S.; Krajacic, G.; Varbanov, P.; Elhafyani, M.; Ziani, E. Optimal hybrid renewable energy design in autonomous system using modified electric system cascade analysis and HOMER software. Energy Convers. Manag. 2022, 126, 909–922. [Google Scholar] [CrossRef]
- Halabi, L.; Mekhilef, S.; Olatomiwa, L.; Hazelton, J. Performance analysis of hybrid PV/diesel/battery system using HOMER: A case study Sabah, Malaysia. Energy Convers Manag. 2017, 144, 322–339. [Google Scholar] [CrossRef]
- Abu-Hijleh, B. Use of hybrid PV and wind turbine-grid connected system in a local Emirati home in Dubai-UAE. Energy Procedia 2016, 100, 463–468. [Google Scholar] [CrossRef]
- Das, B.K.; Zaman, F. Performance Analysis of a PV/Diesel Hybrid System for a Remote Area in Bangladesh: Effects of Dispatch Strategies, Batteries, and Generator Selection. Energy 2018, 169, 263–276. [Google Scholar] [CrossRef]
- Yenalem, M.G.; Shiferaw, D.; Hinga, P. Modelling and Optimal Sizing of Grid-Connected Micro grid System using HOMER in Bahir Dar City, Ethiopia. Int. J. Power Syst. 2020, 5, 1–12. [Google Scholar]
- Kumar, S.; Kaur, T.; Arora, M.K.; Upadhyay, S. Resource estimation and sizing optimization of PV/micro hydro-based hybrid energy system in rural area of Western Himalayan Himachal Pradesh in India. Energy Sources Part A 2019, 41, 2795–2807. [Google Scholar] [CrossRef]
- Mukasa, A.D.; Mutambatsere, D.; Arvanitis, Y.; Triki, T. Development of Wind Energy in Africa; Working Paper Series N° 170; African Development Bank: Tunis, Tunisia, 2013. [Google Scholar]
- Mirza, Z.T.; Mehrdad Abedi, B.V. Renewable Energy Development in India & Iran: A Comparative Review of Renewable Energy Policies. Am. J. Energy Eng. 2022, 10, 21–34. [Google Scholar] [CrossRef]
- Makkiabadi, M.; Hoseinzadeh, S.; Taghavirashidizadeh, A.; Soleimaninezhad, M.; Kamyabi, M.; Hajabdollahi, H.; Nezhad, M.M.; Piras, G. Performance Evaluation of Solar Power Plants: A Review and a Case Study. Processes 2021, 9, 2253. [Google Scholar] [CrossRef]
- Available online: https://www.power-eng.com/renewables/midamerican-plans-to-add-2-gw-of-wind-energy-resources-in-iowa/#gref (accessed on 12 November 2022).
- Erdin, C.; Ozkaya, G. Turkey’s 2023 Energy Strategies and Investment Opportunities for Renewable Energy Sources: Site Selection Based on ELECTRE. Sustainability 2019, 11, 2136. [Google Scholar] [CrossRef]
- Han, M.; Tang, J.; Lashari, A.K.; Abbas, K.; Liu, H.; Liu, W. Unveiling China’s Overseas Photovoltaic Power Stations in Pakistan under Low-Carbon Transition. Land 2022, 11, 1719. [Google Scholar] [CrossRef]
- Dubai Electricity and Water Authority. Available online: https://www.dewa.gov.ae/en/ (accessed on 15 November 2022).
- Ramachandran, T.; Abdel-Hamid, I.M.; Hamed, F. A Review on Solar Energy Utilization and Projects: Development in and around the UAE. Energies 2022, 15, 3754. [Google Scholar] [CrossRef]
- Available online: https://en.wikipedia.org/wiki/List_of_power_stations_in_Iraq (accessed on 3 January 2023).
- Ali, M.J.; Basil, H.J.; Flah, A.; Hossam, K.; Ahmed, A. Consensus-Based Intelligent Distributed Secondary Control for Multiagent Islanded Microgrid. Int. Trans. Electr. Energy Syst. 2023, 2023, 1–20. [Google Scholar] [CrossRef]
- Ali, M.J.; Basil, H.J.; Soheil, M.; Alan, C.B. Consensus-Based Dispatch Optimization of a Microgrid Considering Meta-Heuristic-Based Demand Response Scheduling and Network Packet Loss Characterization. Energy AI 2022, 11, 100212. [Google Scholar] [CrossRef]
- Hamrouni, N.; Jraidi, M. Chérif, a Solar radiation and ambient temperature effects on the performances of a PV pumping system. Rev. Energ. Renouvelables 2008, 11, 95–106. [Google Scholar]
- Sukamongkol, Y.; Chungpaibulpatana, S.; Ongsakul, W. A simulation model for predicting the performance of a solar photo-voltaic system with alternating current loads. Renew. Energy 2002, 27, 237–258. [Google Scholar] [CrossRef]
- Singh, S.; Singh, M.; Kaushik, S.C. Feasibility study of an islanded microgrid in rural area consisting of PV, wind, biomass and battery energy storage system. Energy Convers. Manag. 2016, 128, 178–190. [Google Scholar] [CrossRef]
- Jasim, A.M.; Jasim, B.H.; Bureš, V. A novel grid-connected microgrid energy management system with optimal sizing using hybrid grey wolf and cuckoo search optimization algorithm. Front. Energy Res. 2022, 10, 960141. [Google Scholar] [CrossRef]
- Jasim, A.M.; Jasim, B.H.; Neagu, B.-C.; Alhasnawi, B.N. Coordination Control of a Hybrid AC/DC Smart Microgrid with Online Fault Detection, Diagnostics, and Localization Using Artificial Neural Networks. Electronics 2023, 12, 187. [Google Scholar] [CrossRef]
- Skarstein, O.; Uhlen, K. Design considerations with respect to long-term diesel saving in wind/diesel plants. Wind Eng. 1989, 13, 72–87. [Google Scholar]
- Azoumah, Y.; Yamegueu, D.; Ginies, P.; Coulibaly, Y.; Girard, P. Sustainable electricity generation for rural and peri-urban populations of sub-Saharan Africa: The “flexy-energy” concept. Energy Policy 2011, 39, 131–141. [Google Scholar] [CrossRef]
- Qari, H.; Khosrogorji, S.; Torkaman, H. Optimal sizing of hybrid WT/PV/diesel generator/battery system using MINLP method for a region in Kerman. Sci. Iran. 2020, 27, 3066–3074. [Google Scholar] [CrossRef]
- Xu, H.; Liu, X.; Su, J. An improved grey wolf optimizer algorithm integrated with Cuckoo Search. In Proceedings of the 2017 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), Bucharest, Romania, 21–23 September 2017. [Google Scholar] [CrossRef]
- Alhasnawi, B.N.; Jasim, B.H.; Rahman, Z.-A.S.A.; Siano, P. A Novel Robust Smart Energy Management and Demand Reduction for Smart Homes Based on Internet of Energy. Sensors 2021, 21, 4756. [Google Scholar] [CrossRef] [PubMed]
- Cuevas, E.; Reyna-Orta, A. A Cuckoo Search Algorithm for Multimodal Optimization. Hindawi Publ. Corp. Sci. World J. 2014, 2014, 497514. [Google Scholar] [CrossRef] [PubMed]
- Mudgal, V.; Singh, P.; Khanna, S.; Pandey, C.; Becerra, V.; Mallick, T.K.; Reddy, K.S. Optimization of a novel Hybrid Wind Bio Battery Solar Photovoltaic System Integrated with Phase Change Material. Energies 2021, 14, 6373. [Google Scholar] [CrossRef]
- Belboul, Z.; Toual, B.; Kouzou, A.; Mokrani, L.; Bensalem, A.; Kennel, R.; Abdelrahem, M. Multiobjective Optimization of a Hybrid PV/Wind/Battery/Diesel Generator System Integrated in Microgrid: A Case Study in Djelfa, Algeria. Energies 2022, 15, 3579. [Google Scholar] [CrossRef]
- Ali, M.J.; Basil, H.J.; Vladimir, B.; Mikulecky, P. A Novel Cooperative Control Technique for Hybrid AC/DC Smart Microgrid Converters. IEEE Access 2023, 11, 2164–2181. [Google Scholar] [CrossRef]
- Available online: https://re.jrc.ec.europa.eu/pvg_tools/en/# (accessed on 3 January 2023).
Ref. No. | Year | Electrical Resources | Algorithm(s) | Dispatch Operation Strategy | Comprehensive Cost Aanalysis | Compared to Reported Algorithms | Robustness and Speed Tests |
---|---|---|---|---|---|---|---|
[17] | 2018 | PV–wind–battery | HOMER | NO | NO | NO | NO |
[18] | 2020 | PV–wind–diesel | Heuristic approximation of the Gradient Descent | NO | NO | NO | NO |
[19] | 2019 | PV–wind-battery–diesel | GOA | YES | YES | CS and PSO | NO |
[20] | 2019 | Solar–wind–hydrogen energy | chaotic search, harmony search and simulated annealing | YES | YES | NO | NO |
[21] | 2018 | Photovoltaic–wind–battery s | Fuzzy Inference System | YES | YES | NO | NO |
[22] | 2019 | PV–wind–FC–battery | economic MPC and GA | YES | YES | NO | NO |
[23] | 2019 | PV–WT–biomass | GWO | NO | YES | GA and SA | NO |
[24] | 2022 | PV–wind–battery–diesel | bonobo optimizer | YES | YES | BBBC, CS, GA, and BOA | Robustness test |
[25] | 2022 | PV–wind–battery–diesel | CSA | YES | YES | EHO, GOA, HHO, SOA, and SHO | Robustness test |
[26] | 2019 | PV–diesel–battery | HOMER | YES | YES | NO | NO |
[27] | 2017 | PV–wind–battery–diesel | PSO | NO | YES | NO | NO |
[28] | 2021 | PV–wind–battery | SAO | NO | YES | YES | YES |
[29] | 2020 | PV–battery–diesel | HOMER | YES | YES | NO | NO |
[30] | 2021 | PV–battery–diesel | HOMER | NO | YES | NO | NO |
[31] | 2019 | Battery/ultra-capacitor | Dynamic programming algorithm | NO | NO | NO | NO |
[32] | 2019 | PV–wind–battery–diesel | WOA, WCA, MFO, and PSOGSA | YES | YES | YES | Robustness test |
[33] | 2019 | PV–wind–biomass–H2 | MPC and GA | YES | YES | NO | NO |
[34] | 2022 | PV–FC–battery | EQ, BAT, and BHB | YES | YES | YES | Robustness test |
[35] | 2019 | PV–battery | NA | NO | NO | NO | NO |
[36] | 2022 | PV–wind–battery | HOMER | NO | YES | NO | NO |
[37] | 2020 | PV–battery–diesel | HOMER | NO | YES | NO | NO |
[38] | 2017 | Solar–biomass | HOMER | NO | YES | NO | NO |
[39] | 2016 | PV–wind–battery | HOMER | YES | YES | NO | NO |
[40] | 2017 | PV–battery–diesel | HOMER | YES | YES | NO | NO |
[41] | 2016 | PV–wind | HOMER | NO | NO | NO | NO |
[42] | 2018 | PV–battery–diesel | HOMER | YES | YES | NO | NO |
[43] | 2020 | PV–wind–battery | HOMER | NO | YES | NO | NO |
[44] | 2019 | PV–micro-hydro–diesel–battery | PSO | NO | YES | NO | NO |
Cost ($/kWh) | Fuel | Operation |
---|---|---|
Gas turbines Cost | 0.067 | 0.041 |
Thermal Cost | 0.016 | 0.009 |
Diesel Cost | 0.016 | 0.009 |
No. | Component Name | Parameter | Value |
---|---|---|---|
1 | Wind turbine | Rated power | 1 kW |
Height | 50 m | ||
Meteorological reference height | 20 m | ||
Min. wind speed for power generation | 2 m/s | ||
Cutout speed | 40 m/s | ||
Rated speed | 9 m/s | ||
Capital cost/kW | 900$ | ||
Replacement cost/kW | 900$ | ||
Operation and maintenance cost/kW | 2 $/year | ||
Life time | 20 years | ||
2 | Solar PV | Rated power | 1 kW |
Capital cost (per kW) | 1100$ | ||
O & M cost (per kW) | 4 $/year | ||
Life time | 20 years | ||
Nominal voltage | 6 V | ||
3 | Battery | Max charging current | 18 A |
Minimum and maximum state of charge | 30% and 100% | ||
Round trip efficiency | 92% | ||
Capital cost (per unit battery) | 120$ | ||
Replacement cost (per unit) | 100$ | ||
O & M cost (per unit) | 2 $/year | ||
Life time | 5 year | ||
Nominal capacity | 100 Ah | ||
4 | Biomass Gasifier | Conversion efficiency | 21% |
Capital cost (per kW) | 400 $/kW | ||
Replacement cost (per kW) | 300 $/kW | ||
O & M cost (per kW) | 0.01$ | ||
Life time | 20,000 h | ||
Fuel Cost | 0.2 $/Kg | ||
5 | Diesel Generator | Capital cost (per kW) | 175 $/kW |
Replacement cost (per kW) | 175 $/kW | ||
O & M cost (per kW) | 3$ | ||
Fuel Cost | 0.3 $/Liter | ||
5 | Inverter | Efficiency | 95% |
Inverter cost | 180 | ||
Replacement cost | 180 | ||
Operation and maintenance cost | 3 | ||
Life time | 20 years | ||
6 | Other | Interest rate (i) and project Life | 6% and 20 years |
Algorithm | Search Agents | Maximum Iterations | Dim | Lower Limits for Wind, Solar, Gasifier and Battery Units | Upper Limits for Wind, Solar, Gasifier and Battery Units | Other |
---|---|---|---|---|---|---|
GA | 30 | 300 | 4 | [1 1 1 1] | [2,000,000 15,000,000 5,000,000 100,000,000] | Crossover Probability = 0.8 Mutation Probability = 0.2 |
PSO | 30 | 300 | 4 | [1 1 1 1] | [2,000,000 15,000,000 5,000,000 100,000,000] | - |
CS | 30 | 300 | 4 | [1 1 1 1] | [2,000,000 15,000,000 5,000,000 100,000,000] | - |
ALO | 30 | 300 | 4 | [1 1 1 1] | [2,000,000 15,000,000 5,000,000 100,000,000] | - |
GWO | 30 | 300 | 4 | [1 1 1 1] | [2,000,000 15,000,000 5,000,000 100,000,000] | - |
GWCSO | 30 | 300 | 4 | [1 1 1 1] | [2,000,000 15,000,000 5,000,000 100,000,000] | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jasim, A.M.; Jasim, B.H.; Baiceanu, F.-C.; Neagu, B.-C. Optimized Sizing of Energy Management System for Off-Grid Hybrid Solar/Wind/Battery/Biogasifier/Diesel Microgrid System. Mathematics 2023, 11, 1248. https://doi.org/10.3390/math11051248
Jasim AM, Jasim BH, Baiceanu F-C, Neagu B-C. Optimized Sizing of Energy Management System for Off-Grid Hybrid Solar/Wind/Battery/Biogasifier/Diesel Microgrid System. Mathematics. 2023; 11(5):1248. https://doi.org/10.3390/math11051248
Chicago/Turabian StyleJasim, Ali M., Basil H. Jasim, Florin-Constantin Baiceanu, and Bogdan-Constantin Neagu. 2023. "Optimized Sizing of Energy Management System for Off-Grid Hybrid Solar/Wind/Battery/Biogasifier/Diesel Microgrid System" Mathematics 11, no. 5: 1248. https://doi.org/10.3390/math11051248
APA StyleJasim, A. M., Jasim, B. H., Baiceanu, F. -C., & Neagu, B. -C. (2023). Optimized Sizing of Energy Management System for Off-Grid Hybrid Solar/Wind/Battery/Biogasifier/Diesel Microgrid System. Mathematics, 11(5), 1248. https://doi.org/10.3390/math11051248