Ranking of Service Quality Solution for Blended Design Teaching Using Fuzzy ANP and TOPSIS in the Post-COVID-19 Era
Abstract
:1. Introduction
- To construct the evaluation structure based on the SERVQUAL scale for the blended design teaching service quality.
- To integrate expert consensus for analysing the weight of dimensions and indicators for blended design teaching service quality using FANP.
- To evaluate and rank alternatives of blended design teaching service quality by applying TOPSIS.
- To fill in the research gap of blended design teaching service quality in the post-COVID-19 era, thereby providing relevant decision-making suggestions for the blended design education industry.
2. Literature Review
2.1. SERVQUAL Scale
- Tangibility: the physical facilities used to provide service.
- Reliability: the ability to properly implement service commitments.
- Responsiveness: the willingness and ability to help and provide immediate service.
- Assurance: the knowledge, skills and courtesy required to provide service and the ability to perform tasks satisfactorily.
- Empathy: the ability to pay special attention to consumers and customisable services.
2.2. Fuzzy Analytic Network Process Model
2.3. The Hybrid Approach of FANP and TOPSIS
2.4. Summary
3. Materials and Methods
3.1. The Construction of Hierarchy and Network Structure
3.2. Fuzzy Logic and Linguistic Variables
3.3. Questionnaire Development and Establishment
3.4. Questionnaire Measuring
3.5. Fuzzy Analytic Network Process
3.5.1. Integrate Results of Expert Questionnaires
3.5.2. Fuzzy Pairwise Comparison Matrix Establishment
3.5.3. Fuzzy Decomposition
3.5.4. Set up the De-Fuzzified Pairwise Comparison Matrix
3.5.5. Consistency Test
3.5.6. The Super Matrix Construction
3.6. Ranking All Alternatives Using TOPSIS
3.6.1. Normalised Decision Matrix Calculation
3.6.2. The Normalised Weight Value Calculation
3.6.3. Determine the Positive-Ideal and Negative-Ideal Solution
3.6.4. Separation Measure Calculation
3.6.5. Determining the Relationship Proximal to the Decision-making Model
3.6.6. Rank the Preference Order
4. Results
4.1. The Construction of Hierarchy and Network Structure
4.2. Questionnaire and Analysis
4.2.1. Questionnaire Measurement
4.2.2. Numerical Analysis of the FANP Model
4.2.3. Numerical Analysis of the TOPSIS Model
4.3. Research Results
4.3.1. Fuzzy Analytic Network Process (FANP)
4.3.2. Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)
5. Discussions
5.1. Discussion and Suggestions
5.2. Research Limitations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, W.; Ma, Y.Y.; Lin, H.L. Research on Blended Learning in Physical Education During the COVID-19 Pandemic: A Case Study of Chinese Students. SAGE Open 2021, 11, 21582440211058196. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, W. Improvement of Students’ Autonomous Learning Behavior by Optimizing Foreign Language Blended Learning Mode. SAGE Open 2021, 11, 1–10. [Google Scholar] [CrossRef]
- Zhang, R. Blended Course Evaluation in the Context of English for Specific Purposes: Accountability and Development. SAGE Open 2021, 11, 1–15. [Google Scholar] [CrossRef]
- Triyason, T.; Tassanaviboon, A.; Kanthamanon, P. Hybrid Classroom: Designing for the New Normal after COVID-19 Pandemic. In Proceedings of the 11th International Conference on Advances in Information Technology, Bangkok, Thailand, 1–3 July 2020; pp. 1–8. [Google Scholar] [CrossRef]
- Karma, I.G.M.; Darma, I.K.; Santiana, I.M.A. Blended Learning Is an Educational Innovation and Solution During the COVID-19 Pandemic. Int. Res. J. Eng. IT Sci. Res. 2021, 7, 1–9. Available online: https://ssrn.com/abstract=3774907. (accessed on 12 March 2022).
- Mali, D.; Lim, H. How Do Students Perceive Face-to-Face/Blended Learning as a Result of the COVID-19 Pandemic? Int. J. Manag. Educ. 2021, 19, 100552. [Google Scholar] [CrossRef]
- Rachmadtullah, R.; Subandowo, M.; Rasmitadila, R.; Humaira, M.A.; Aliyyah, R.R.; Samsudin, A.; Nurtanto, M. Use of Blended Learning with Moodle: Study Effectiveness in Elementary School Teacher Education Students during The COVID-19 Pandemic. Int. J. Adv. Sci. Technol. 2020, 29, 3272–3277. [Google Scholar]
- Ożadowicz, A. Modified Blended Learning in Engineering Higher Education during the COVID-19 Lockdown—Building Automation Courses Case Study. Educ. Sci. 2020, 10, 292. [Google Scholar] [CrossRef]
- Ahmad, L.; Sosa, M.; Musfy, K. Interior Design Teaching Methodology during the Global COVID-19 Pandemic. Interiority 2020, 3, 163–184. [Google Scholar] [CrossRef]
- Yustina, Y.; Syafii, W.; Vebrianto, R. The Effects of Blended Learning and Project-Based Learning on Pre-Service Biology Teachers’ Creative Thinking through Online Learning in the COVID-19 Pandemic. J. Pendidik. IPA Indones. 2020, 9, 408–420. [Google Scholar] [CrossRef]
- Finlay, M.J.; Tinnion, D.J.; Simpson, T. A Virtual versus Blended Learning Approach to Higher Education during the COVID-19 Pandemic: The Experiences of a Sport and Exercise Science Student Cohort. J. Hosp. Leis. Sport Tour. Educ. 2022, 30, 100363. [Google Scholar] [CrossRef] [PubMed]
- Megahed, N.; Hassan, A. A Blended Learning Strategy: Reimagining the Post-COVID-19 Architectural Education. Int. J. Archit. Res. 2021, 16, 184–202. [Google Scholar] [CrossRef]
- Lapitan, L.D.S., Jr.; Tiangco, C.E.; Sumalinog, D.A.G.; Sabarillo, N.S.; Diaz, J.M. An Effective Blended Online Teaching and Learning Strategy during the COVID-19 Pandemic. Educ. Chem. Eng. 2021, 35, 116–131. [Google Scholar] [CrossRef]
- Sabol, F.R. Art Education during the COVID-19 Pandemic: The Journey across a Changing Landscape. Arts Educ. Policy Rev. 2022, 123, 127–134. [Google Scholar] [CrossRef]
- Singh, J.; Steele, K.; Singh, L. Combining the Best of Online and Face-to-Face Learning: Hybrid and Blended Learning Approach for COVID-19, Post Vaccine, & Post-Pandemic World. J. Educ. Technol. Syst. 2021, 50, 140–171. [Google Scholar] [CrossRef]
- Saboowala, R.; Mishra, P.M. Readiness of In-Service Teachers Toward a Blended Learning Approach as a Learning Pedagogy in the Post-COVID-19 Era. SAGE Open 2021, 50, 9–23. [Google Scholar] [CrossRef]
- Busto, S.; Dumbser, M.; Gaburro, E. A Simple but Efficient Concept of Blended Teaching of Mathematics for Engineering Students during the COVID-19 Pandemic. Educ. Sci. 2021, 11, 56. [Google Scholar] [CrossRef]
- MacLeod, K.R.; Swart, W.W.; Paul, R.C. Continual Improvement of Online and Blended Teaching Using Relative Proximity Theory. Decis. Sci. J. Innov. Educ. 2019, 17, 53–75. [Google Scholar] [CrossRef]
- Li, X.; Yang, Y.; Chu, S.K.W.; Zainuddin, Z.; Zhang, Y. Applying Blended Synchronous Teaching and Learning for Flexible Learning in Higher Education: An Action Research Study at a University in Hong Kong. Asia Pac. J. Educ. 2022, 42, 211–227. [Google Scholar] [CrossRef]
- Al-Busaidi, K.A.; Al-Shihi, H. Key Factors to Instructors’ Satisfaction of Learning Management Systems in Blended Learning. J. Comput. High Educ. 2012, 24, 18–39. [Google Scholar] [CrossRef]
- Beutelspacher, L.; Stock, W.G. Construction and Evaluation of a Blended Learning Platform for Higher Education. In Enhancing Learning Through Technology. Education Unplugged: Mobile Technologies and Web 2.0; Kwan, R., McNaught, C., Tsang, P., Wang, F.L., Li, K.C., Eds.; Communications in Computer and Information Science; Springer: Berlin, Heidelberg, 2011; pp. 109–122. [Google Scholar] [CrossRef]
- Seo, Y.J.; Um, K.H. The Role of Service Quality in Fostering Different Types of Perceived Value for Student Blended Learning Satisfaction. J. Comput. High. Educ. 2022, Aug 23, 1–29. [Google Scholar] [CrossRef]
- Ho, N.T.T.; Pham, H.-H.; Sivapalan, S.; Dinh, V.-H. The Adoption of Blended Learning Using Coursera MOOCs: A Case Study in a Vietnamese Higher Education Institution. Australas. J. Educ. Technol. 2022, 38, 121–138. [Google Scholar] [CrossRef]
- Neuwirth, L.S.; Jović, S.; Mukherji, B.R. Reimagining Higher Education during and Post-COVID-19: Challenges and Opportunities. J. Adult Contin. Educ. 2021, 27, 141–156. [Google Scholar] [CrossRef]
- Lee, J.; Han, S.H. The Future of Service Post-COVID-19 Pandemic, Volume 1: Rapid Adoption of Digital Service Technology; The ICT and Evolution of Work; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Pham, H.-H.; Ho, T.-T.-H. Toward a ‘New Normal’ with e-Learning in Vietnamese Higher Education during the Post COVID-19 Pandemic. High. Educ. Res. Dev. 2020, 39, 1327–1331. [Google Scholar] [CrossRef]
- Zhao, Y.; Watterston, J. The Changes We Need: Education Post COVID-19. J. Educ. Change 2021, 22, 3–12. [Google Scholar] [CrossRef]
- Horovitz, J. The Seven Secret of Service Strategy, 1st ed.; Financial Times Prentice Hall: Harlow, UK, 2000. [Google Scholar]
- Kandampully, J. The Impact of Demand Fluctuation on the Quality of Service: A Tourism Industry Example. Manag. Serv. Qual. Int. J. 2000, 10, 10–19. [Google Scholar] [CrossRef]
- Joseph, M.; Joseph, B. Service Quality in Education: A Student Perspective. Qual. Assur. Educ. 1997, 5, 15–21. [Google Scholar] [CrossRef]
- Owlia, M.S.; Aspinwall, E.M. A Framework for the Dimensions of Quality in Higher Education. Qual. Assur. Educ. 1996, 4, 12–20. [Google Scholar] [CrossRef]
- Ford, J.B.; Joseph, M.; Joseph, B. Importance-Performance Analysis as a Strategic Tool for Service Marketers: The Case of Service Quality Perceptions of Business Students in New Zealand and the USA. J. Serv. Mark. 1999, 13, 171–186. [Google Scholar] [CrossRef]
- Rowley, J. Beyond Service Quality Dimensions in Higher Education and towards a Service Contract. Qual. Assur. Educ. 1997, 5, 7–14. [Google Scholar] [CrossRef]
- Brien, E.M.O.; Deans, K.R. Educational Supply Chain: A Tool for Strategic Planning in Tertiary Education? Mark. Intell. Plan. 1996, 14, 33–40. [Google Scholar]
- Parasuraman, A.; Zeithaml, V.A.; Berry, L.L. A Conceptual Model of Service Quality and Its Implications for Future Research. J. Mark. 1985, 49, 41–50. [Google Scholar] [CrossRef]
- Parasuraman, A.; Zeithaml, V.A.; Berry, L.L. SERVQUAL: A Multiple-Item Scale for Measuring Consumer Perceptions of Service Quality. J. Retail. 1988, 64, 12–28. [Google Scholar]
- Parasuraman, A.; Berry, L.L.; Zeithaml, V.A. Perceived Service Quality as a Customer-based Performance Measure: An Empirical Examination of Organizational Barriers Using an Extended Service Quality Model. Hum. Resour. Manag. 1991, 30, 335–364. [Google Scholar] [CrossRef]
- Asubonteng, P.; McCleary, K.J.; Swan, J.E. SERVQUAL Revisited: A Critical Review of Service Quality. J. Serv. Mark. 1996, 10, 62–81. [Google Scholar] [CrossRef]
- Iwaarden, J.V.; Wide, J.; Bell, V.L.; Miller, R. Applying SERVQUAL to Websites: An Exploratory Study. Int. J. Qual. Manag. 2003, 20, 919–935. [Google Scholar]
- Albaum, G. The Likert Scale Revisited: An Alternate Version. Int. J. Mark. Res. 1997, 39, 331–348. [Google Scholar]
- Kassim, N.M.; Bojei, J. Service Quality: Gaps in the Malaysian Telemarketing Industry. J. Bus. Res. 2002, 55, 845–852. [Google Scholar] [CrossRef]
- Ladhari, R. Alternative Measures of Service Quality: A Review. Manag. Serv. Qual. 2008, 18, 65–86. [Google Scholar] [CrossRef]
- Ladhari, R. A Review of Twenty Years of SERVQUAL Research. Int. J. Qual. Serv. Sci. 2009, 1, 172–198. [Google Scholar] [CrossRef]
- Buttle, F. SERVQUAL: Review, Critique, Research Agenda. Eur. J. Mark. 1996, 30, 8–32. [Google Scholar] [CrossRef]
- Gilmore, A.; McMullan, R. Scales in Services Marketing Research: A Critique and Way Forward. Eur. J. Mark. 2009, 43, 640–651. [Google Scholar] [CrossRef]
- Lam, S.S. SERVQUAL: A Tool for Measuring Patients’ Opinions of Hospital Service Quality in Hong Kong. Total Qual. Manag. 1997, 8, 145–152. [Google Scholar] [CrossRef]
- Nguyen, P.H. A Fuzzy Analytic Hierarchy Process (FAHP) Based on SERVQUAL for Hotel Service Quality Management: Evidence from Vietnam. J. Asian Financ. Econ. Bus. 2021, 8, 1101–1109. [Google Scholar]
- Stević, Ž.; Tanackov, I.; Puška, A.; Jovanov, G.; Vasiljević, J.; Lojaničić, D. Development of Modified SERVQUAL–MCDM Model for Quality Determination in Reverse Logistics. Sustainability 2021, 13, 5734. [Google Scholar] [CrossRef]
- Abdolvand, M.A.; Taghipouryan, M.J. Evaluation of Customs Service Quality by Using Fuzzy SERVQUAL and Fuzzy MCDM. Am. J. Sci. Res. 2011, 35, 89–103. [Google Scholar]
- Altuntas, S.; Dereli, T.; Yilmaz, M.K. Multi-Criteria Decision Making Methods Based Weighted SERVQUAL Scales to Measure Perceived Service Quality in Hospi-Tals: A Case Study from Turkey. Total Qual. Manag. Bus. Excell. 2012, 23, 1379–1395. [Google Scholar] [CrossRef]
- Liu, C.C.; Chen, J.J. Research on Service Quality Index of UAV Film Production–Dual Perspective. J. Qual. 2021, 28, 231–251. [Google Scholar]
- Afkham, L.; Abdi, F.; Komijan, A. Evaluation of Service Quality by Using Fuzzy MCDM: A Case Study in Iranian Health-Care Centers. Manag. Sci. Lett. 2012, 2, 291–300. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision Making with Dependence and Feedback: The Analytic Network Process; RWS Publications: Pittsburgh, PA, USA, 1996. [Google Scholar]
- Chen, S. A Combined MCDM Model Based on DEMATEL and ANP for the Selection of Airline Service Quality Improvement Criteria: A Research Based on the Taiwan Airline Industry. J. Air. Transp. Manag. 2016, 57, 7–18. [Google Scholar] [CrossRef]
- Tsai, W.C. Applying Service Quality Gap Theory to Establish the Quality Indicators And Evaluate the Service Quality for Chinese Medicine. Yearb. Chin. Med. Pharm. 2005, 23, 241–302. [Google Scholar]
- Wu, C.S.; Lin, C.T.; Lee, C. Optimal Marketing Strategy: A Decision-Making with ANP and TOPSIS. Int. J. Prod. Econ. 2010, 127, 190–196. [Google Scholar] [CrossRef]
- Ashouri, F. Quality Indicators in the Mobile Industry Rankings Based on Indicators of Customer Satisfaction with the Hybrid Approach DEMATEL and ANP Appropriate Strategy Based on Gray System. Orig. Sci. Pap. 2016, 3, 62–72. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L. Rank from Comparisons and from Ratings in the Analytic Hierarchy/Network Processes. Eur. J. Oper. Res. 2006, 168, 557–570. [Google Scholar] [CrossRef]
- Azimi, R.; Yazdani-Chamzini, A.; Fouladgar, M.M.; Zavadskas, E.K.; Basiri, M.H. Ranking the Strategies of Mining Sector through ANP and TOPSIS in a SWOT Framework. J. Bus. Econ. Manag. 2011, 12, 670–689. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.C.; Lin, Y.J. The Key Success Factors of Development of New Products with Design Flexibility by Analytic Network Process—A Case Study of A High-Tech Company. Manag. Inf. Comput. 2015, 4, 150–161. [Google Scholar]
- Wang, L.-F. The Theory and Algorithm of Analytic Network Process. Syst. Eng. Theory Pract. 2001, 21, 44–50. [Google Scholar]
- Saaty, T.L.; Takizawa, M. Dependence and Independence: From Linear Hierarchies to Nonlinear Networks. Eur. J. Oper. Res. 1986, 26, 229–237. [Google Scholar] [CrossRef]
- Rahiminezhad Galankashi, M.; Mokhatab Rafiei, F.; Ghezelbash, M. Portfolio Selection: A Fuzzy-ANP Approach. Financ. Innov. 2020, 6, 17. [Google Scholar] [CrossRef] [Green Version]
- Hemmati, N.; Rahiminezhad Galankashi, M.; Imani, D.M.; Farughi, H. Maintenance Policy Selection: A Fuzzy-ANP Approach. J. Manuf. Technol. Manag. 2018, 29, 1253–1268. [Google Scholar] [CrossRef]
- Sung, C.-Y. A Study of the Application of ANP Method of Design Work Evaluation on Visual Communication Education. Master’s Thesis, National Yunlin University of Science and Technology, Yunlin, Taiwan, 2015. [Google Scholar]
- Wu, T.-L.; Hsieh, M.-Y.; Min, K.-W.; Yu, M.-T.; Ho, C.-T. Use of Sensor Technologies in Online Courses in Post-COVID-19 Era. Sens. Mater. 2021, 33, 2045–2062. [Google Scholar] [CrossRef]
- Yao, K.-C.; Lai, J.-Y.; Huang, W.-T.; Tu, J.-C. Utilize Fuzzy Delphi and Analytic Network Process to Construct Consumer Product Design Evaluation Indicators. Mathematics 2022, 10, 397. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy Sets. Inf. Control. 1965, 9, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Zadeh, L.A. The Concept of a Linguistic Variable and Its Application to Approximate Reasoning-I. Inf. Sci. 1975, 8, 199–249. [Google Scholar] [CrossRef]
- Liu, C.C.; Chen, J.J. Analysis of the Weights of Service Quality Indicators for Drone Filming and Photography by the Fuzzy Analytic Network Process. Appl. Sci. 2019, 9, 1236. [Google Scholar] [CrossRef] [Green Version]
- Vanegas, L.V.; Labib, A.W. A Fuzzy Quality Function Deployment (FQFD) Model for Deriving Optimum Targets. Int. J. Prod. Res. 2001, 39, 99–120. [Google Scholar] [CrossRef]
- Kahraman, C.; Ertay, T.; Büyüközkan, G. A Fuzzy Optimization Model for QFD Planning Process Using Analytic Network Approach. Eur. J. Oper. Res. 2006, 171, 390–411. [Google Scholar] [CrossRef]
- Lupo, T. A Fuzzy Framework to Evaluate Service Quality in the Healthcare Industry: An Empirical Case of Public Hospital Service Evaluation in Sicily. Appl. Soft Comput. 2016, 40, 468–478. [Google Scholar] [CrossRef]
- Chang, S.C.; Tsai, P.H.; Chang, S.C. A Hybrid Fuzzy Model for Selecting and Evaluating the E-Book Business Model: A Case Study on Taiwan e-Book Firms. Appl. Soft Comput. 2015, 34, 194–204. [Google Scholar] [CrossRef]
- Ozdemir, Y.; Basligil, H. Aircraft Selection Using Fuzzy ANP and the Generalized Choquet Integral Method: The Turkish Airlines Case. J. Intell. Fuzzy Syst. 2016, 31, 589–600. [Google Scholar] [CrossRef]
- Parameshwaran, R.; Baskar, C.; Karthik, T. An Integrated Framework for Mechatronics Based Product Development in a Fuzzy Environment. Appl. Soft Comput. 2015, 27, 376–390. [Google Scholar] [CrossRef]
- Ramík, J.; Vlach, M. Generalized Concavity in Fuzzy Optimization and Decision Analysis; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 41. [Google Scholar]
- Yu, M.; Keng, I.; Chen, H. Measuring Service Quality via a Fuzzy Analytical Approach. Int. J. Fuzzy Syst. 2015, 17, 292–302. [Google Scholar] [CrossRef]
- Kargari, M. Ranking of Performance Assessment Measures at Tehran Hotel by Combining DEMATEL, ANP, and SERVQUAL Models under Fuzzy Condition. Math. Probl. Eng. 2018, 2018, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Wicher, P.; Zapletal, F.; Lenort, R. Sustainability Performance Assessment of Industrial Corporation Using Fuzzy Analytic Network Process. J. Clean. Prod. 2019, 241, 118132. [Google Scholar] [CrossRef]
- Chang, B.; Kuo, C.; Wu, C.H.; Tzeng, G.H. Using Fuzzy Analytic Network Process to Assess the Risks in Enterprise Resource Planning System Implementation. Appl. Soft Comput. 2015, 28, 196–207. [Google Scholar] [CrossRef]
- Hisham, S.F.S.H.; Ahmad, N.; Yusof, Z.M.; Aini, H.N. An Application of Fuzzy ANP in Evaluating Stress Factors Among University’s Students During Online Distance Learning. J. Phys. Conf. Ser. 2021, 2084, 012014. [Google Scholar] [CrossRef]
- Hii, P.K.; Goh, C.F.; Tan, O.K.; Amran, R.; Ong, C.H. An Information System Success Model for E-Learning Postadoption Using the Fuzzy Analytic Network Process. Educ. Inf. Technol. 2023, Feb 6, 1–22. [Google Scholar] [CrossRef]
- Çelikbilek, Y.; Adıgüzel Tüylü, A.N. Prioritizing the Components of E-Learning Systems by Using Fuzzy DEMATEL and ANP. Interact. Learn. Environ. 2022, 30, 322–343. [Google Scholar] [CrossRef]
- Hwang, C.L.; Yoon, K. Multiple Attribute Decision Making: Methods and Applications; Springer: New York, NY, USA, 1981. [Google Scholar]
- Opricovic, S.; Tzeng, G.-H. Compromise Solution by MCDM Methods: A Comparative Analysis of VIKOR and TOPSIS. Eur. J. Oper. Res. 2004, 156, 445–455. [Google Scholar] [CrossRef]
- Pi, W.-N. Supplier Evaluation Using AHP and TOPSIS. J. Sci. Eng. Technol. 2005, 1, 75–83. [Google Scholar] [CrossRef]
- Behzadian, M.; Otaghsara, S.K.; Yazdani, M.; Ignatiu, J. A State-of the-Art Survey of TOPSIS Applications. Expert Syst. Appl. 2012, 39, 13051–13069. [Google Scholar] [CrossRef]
- Panda, M.; Jagadev, A.K. TOPSIS in Multi-Criteria Decision Making: A Survey. In Proceedings of the 2018 2nd International Conference on Data Science and Business Analytics (ICDSBA), Changsha, China, 21–23 September 2018. [Google Scholar] [CrossRef]
- Papathanasiou, J.; Ploskas, N. TOPSIS. In Multiple Criteria Decision Aid; Springer International Publishing: Cham, Switzerland, 2018; Volume 136, pp. 1–30. [Google Scholar] [CrossRef]
- Kim, G.; Park, C.S.; Yoon, K.P. Identifying Investment Opportunities for Advanced Manufacturing Systems with Comparative-Integrated Performance Measurement. Int. J. Prod. Econ. 1997, 50, 23–33. [Google Scholar] [CrossRef]
- Shih, H.-S.; Shyur, H.-J.; Lee, E.S. An Extension of TOPSIS for Group Decision Making. Math. Comput. Model. 2007, 45, 801–813. [Google Scholar] [CrossRef]
- Samant, R.; Deshpande, S.; Jadhao, A. Survey on Multi Criteria Decision Making Methods. Int. J. Innov. Res. Sci. Eng. Technol. 2015, 4, 7175–7178. [Google Scholar]
- D’souza, R.; Nayak, V. A Survey on Multi-Criteria Decision Making Methods in Software Engineering. Int. J. Innov. Sci. Res. Technol. 2018, 3, 366–374. [Google Scholar]
- Ocampo, L.; Alinsub, J.; Casul, R.A.; Enquig, G.; Luar, M.; Panuncillon, N.; Bongo, M.; Ocampo, C.O. Public Service Quality Evaluation with SERVQUAL and AHP-TOPSIS: A Case of Philippine Government Agencies. Socio-Econ. Plan. Sci. 2019, 68, 100604. [Google Scholar] [CrossRef]
- Yoon, K.P.; Kim, W.K. The Behavioral TOPSIS. Expert Syst. Appl. 2017, 89, 266–272. [Google Scholar] [CrossRef]
- Chang, K.-L.; Liao, S.-K.; Tseng, T.-W.; Liao, C.-Y. An ANP Based TOPSIS Approach for Taiwanese Service Apartment Location Selection. Asia Pac. Manag. Rev. 2015, 20, 49–55. [Google Scholar] [CrossRef]
- Zhang, H.-M.; Ma, R.-Q.; Deng, M.-X.; Liu, X.-B. Research on Evaluation and Improvement Policy of Higher Education Development Based on TOPSIS-Synthetic Control Method. Complexity 2021, 2021, e5852492. [Google Scholar] [CrossRef]
- Nanath, K.; Sajjad, A.; Kaitheri, S. Decision-Making System for Higher Education University Selection: Comparison of Priorities Pre- and Post-COVID-19. J. Appl. Res. High. Educ. 2021, 14, 347–365. [Google Scholar] [CrossRef]
- Sinrat, S.; Atthirawong, W.A. Conceptual Framework of an Integrated Fuzzy ANP and TOPSIS for Supplier Selection Based on Supply Chain Risk Management. In Proceedings of the 2013 IEEE International Conference on Industrial Engineering and Engineering Management, Bangkok, Thailand, 10–13 December 2013; pp. 1607–1611. [Google Scholar] [CrossRef]
- Kumar, R.; Ansari, M.T.J.; Baz, A.; Alhakami, H.; Agrawal, A.; Khan, R.A. A Multi-Perspective Benchmarking Framework for Estimating Usable-Security of Hospital Management System Software Based on Fuzzy Logic, ANP and TOPSIS Methods. KSII Trans. Internet Inf. Syst. (TIIS) 2021, 15, 240–263. [Google Scholar] [CrossRef]
- Abdulgader, F.S.; Eid, R.; Rouyendegh, B.D. Development of Decision Support Model for Selecting a Maintenance Plan Using a Fuzzy MCDM Approach: A Theoretical Framework. Appl. Comput. Intell. Soft Comput. 2018, 2018, 9346945. [Google Scholar] [CrossRef]
- Pourmehdi, M.; Paydar, M.M.; Asadi-Gangraj, E. Reaching Sustainability through Collection Center Selection Considering Risk: Using the Integration of Fuzzy ANP-TOPSIS and FMEA. Soft Comput. 2021, 25, 10885–10899. [Google Scholar] [CrossRef]
- Zhou, X.; Lu, M. Risk Evaluation of Dynamic Alliance Based on Fuzzy Analytic Network Process and Fuzzy TOPSIS. JSSM 2012, 5, 230–240. [Google Scholar] [CrossRef]
- Chien, F.; Wang, C.-N.; Nguyen, V.T.; Nguyen, V.T.; Chau, K.Y. An Evaluation Model of Quantitative and Qualitative Fuzzy Multi-Criteria Decision-Making Approach for Hydroelectric Plant Location Selection. Energies 2020, 13, 2783. [Google Scholar] [CrossRef]
- Koochekian, H.; Hejazi, S.Y.; Rezaei, A.; Pishbin, S.A.R. Determination of Components of the Integration of the Content of the Interdisciplinary Curriculum of Sustainable Development of the Environment for Higher Education in Agriculture Using the of TOPSIS and Fuzzy ANP. Q. J. Environ. Educ. Sustain. Dev. 2020, 8, 21–36. [Google Scholar]
- Kou, G.; Lu, Y.; Shi, Y. Evaluation of Classification Algorithms Using MCDM and Rank Correlation. Int. J. Inf. Technol. Decis. Mak. 2012, 11, 197–225. [Google Scholar] [CrossRef]
- Kou, G.; Lin, C.; Chen, Y. Pairwise Comparison Matrix in Multiple Criteria Decision Making. Technol. Econ. Dev. Econ. 2016, 22, 738–765. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Kou, G.; Peng, Y. A Group Decision Making Model for Integrating Heterogeneous Information. IEEE Trans. Syst. Man Cybern. Syst. 2018, 48, 982–992. [Google Scholar] [CrossRef]
- Kou, G.; Yang, P.; Peng, Y.; Xiao, F.; Chen, Y.; Alsaadi, F.E. Evaluation of Feature Selection Methods for Text Classification with Small Datasets Using Multiple Criteria Decision-Making Methods. Appl. Soft Comput. 2020, 86, 105836. [Google Scholar] [CrossRef]
- Wang, C.N.; Nguyen, V.T.; Duong, D.H.; Thai, H.T.N. A Hybrid Fuzzy Analysis Network Process (FANP) and the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) Approaches for Solid Waste to Energy Plant Location Selection in Vietnam. Appl. Sci. 2018, 8, 1100. [Google Scholar] [CrossRef] [Green Version]
- Tsai, W.C.; Kung, P.T.; Wang, R.H.; Chang, Y.H.; Lee, S.Y. Applying the SERVQUAL Questionnaire to Establish Quality Indicators for Chinese Medicine. Taiwan J. Public Health 2008, 27, 309–319. [Google Scholar]
- Herrera, F.; Herrera-Viedma, E. Linguistic Decision Analysis: Steps for Solving Decision Problems under Linguistic Information. Fuzzy Sets Syst. 2000, 115, 67–82. [Google Scholar] [CrossRef]
- Zimmermann, H. Fuzzy Set Theory—And Its Applications, 2nd ed.; Kluwer Academic: Dordrecht, The Netherlands, 1992. [Google Scholar]
- Lee, A.H.I. A Fuzzy Supplier Selection Model with the Consideration of Benefits, Opportunities, Costs and Risks. Expert. Syst. Appl. 2009, 36, 2879–2893. [Google Scholar] [CrossRef]
- Lee, A.H.I.; Kang, H.Y.; Hsu, C.F.; Hung, H.C. A Green Supplier Selection Model for High-Tech Industry. Expert. Syst. Appl. 2009, 36, 7917–7927. [Google Scholar] [CrossRef]
- Lee, A.H.I.; Kang, H.Y.; Chang, C.T. Fuzzy Multiple Goal Programming Applied to Tft-Lcd Supplier Selection by Downstream Manufacturers. Expert. Syst. Appl. 2009, 36, 6318–6325. [Google Scholar] [CrossRef]
- Lee, A.H.I.; Kang, H.Y.; Wang, W.P. Analysis of Priority Mix Planning for the Fabrication of Semiconductors under Uncertainty. Int. J. Adv. Manuf. Technol. 2006, 28, 351–361. [Google Scholar] [CrossRef]
- Chang, C.H. Evaluating Weapon Systems Using Ranking Fuzzy Numbers. Fuzzy Sets Syst. 1999, 107, 25–35. [Google Scholar] [CrossRef]
- Lin, Y.-H. The Algorithm of Fuzzy Linguistic Numbers and Its Comparison of Scoring. J. Natl. Taichung Teach. Coll. 2003, 17, 279–304. [Google Scholar]
- Chen, D.-C. Evaluation and Inspection of Domestic Civil Aviation Safety Performance. Master’s Thesis, National Chiao Tung University, Hsinchu, Taiwan, 2003. [Google Scholar]
- Dehghani, M.; Esmaeilian, M.; Tavakkoli-Moghaddam, R. Employing Fuzzy Anp for Green Supplier Selection and Order Allocations: A Case Study. Int. J. Econ. Manag. Soc. Sci. 2013, 2, 565–575. [Google Scholar]
- Buckley, J.J. Fuzzy Hierarchical Analysis. Fuzzy Sets Syst. 1985, 17, 233–247. [Google Scholar] [CrossRef]
- Pedrycz, W. Why Triangular Membership Functions? Fuzzy Sets Syst. 1994, 64, 21–30. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process: Planning, Priority Setting, Resources Allocation; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Babakus, E.; Mangold, W.G. Adapting the SERVQUAL Scale to Hospital Services: An Empirical Investigation. Health Serv. Res. 1992, 22, 767–786. [Google Scholar]
- Parenté, F.J.; Anderson-Parenté, J.K. Delphi Inquiry Systems. Judgm. Forecast. 1987, 2, 129–156. [Google Scholar]
- Zhang, G.; Zou, P.X.W. Fuzzy Analytical Hierarchy Process Risk Assessment Approach for Joint Venture Construction Projects in China. J. Constr. Eng. Manag. 2007, 133, 771–779. [Google Scholar] [CrossRef]
- Hyun, C.; Cho, K.; Koo, K.; Hong, T.; Moon, H. Effect of Delivery Methods on Design Performance in Multifamily Housing Projects. J. Constr. Eng. Manag. 2008, 134, 468–482. [Google Scholar] [CrossRef]
- Lam, K.C.; Lam, M.C.K.; Wang, D. MBNQA–Oriented Self-Assessment Quality Management System for Contractors: Fuzzy AHP Approach. Constr. Manag. Econ. 2008, 26, 447–461. [Google Scholar] [CrossRef]
- Pan, N.F. Fuzzy AHP Approach for Selecting the Suitable Bridge Construction Method. Autom. Constr. 2008, 17, 958–965. [Google Scholar] [CrossRef]
- Dalal, J.; Mohapatra, P.K.; Chandra, M.G. Prioritization of Rural Roads: AHP in Group Decision. Eng. Constr. Archit. Manag. 2010, 17, 135–158. [Google Scholar] [CrossRef]
- Zou, P.X.W.; Li, J. Risk Identification and Assessment in Subway Projects: Case Study of Nanjing Subway Line 2. Constr. Manag. Econ. 2010, 28, 1219–1238. [Google Scholar] [CrossRef]
- Li, J.; Zou, P.X.W. Fuzzy AHP-Based Risk Assessment Methodology for PPP Projects. J. Constr. Eng. Manag. 2011, 137, 1205–1209. [Google Scholar] [CrossRef]
- Pan, W.; Dainty, A.R.J.; Gibb, A.G.F. Establishing and Weighting Decision Criteria for Building System Selection in Housing Construction. J. Constr. Eng. Manag. 2012, 138, 1239–1250. [Google Scholar] [CrossRef] [Green Version]
- Akadiri, P.O.; Olomolaiye, P.O.; Chinyio, E.A. Multi-Criteria Evaluation Model for the Selection of Sustainable Materials for Building Projects. Autom. Constr. 2013, 30, 113–125. [Google Scholar] [CrossRef]
- Chou, J.; Pham, A.; Wang, H. Bidding Strategy to Support Decision-Making by Integrating Fuzzy AHP and Regression-Based Simulation. Autom. Constr. 2013, 35, 517–527. [Google Scholar] [CrossRef]
- Darko, A.; Chan, A.; Ameyaw, E.; Owusu, E.; Pärn, E.; Edwards, D. Review of Application of Analytic Hierarchy Process (AHP) in Construction. Int. J. Constr. Manag. 2018, 19, 436–452. [Google Scholar] [CrossRef]
- Saaty, T.L. Theory and Applications of the Analytic Network Process: Decision Making with Benefits, Opportunities, Costs, and Risks; RWS publications: Pittsburgh, PA, USA, 2005. [Google Scholar]
- Adamo, J.M. Fuzzy Decision Tree. Fuzzy Sets Syst. 1980, 4, 207–219. [Google Scholar] [CrossRef]
- Kwong, C.K.; Bai, H. A Fuzzy AHP Approach to the Determination of Importance Weights of Customer Requirements in Quality Function Deployment. J. Intell. Manuf. 2002, 13, 367–377. [Google Scholar] [CrossRef]
- Lin, R.; Lin, J.S.-J.; Chang, J.; Tang, D.; Chao, H.; Julian, P.C. Note on Group Consistency in Analytic Hierarchy Process. Eur. J. Oper. Res. 2008, 190, 672–678. [Google Scholar] [CrossRef]
- Saaty, T.L. How to Make a Decision: The Analytic Hierarchy Process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- Saaty, T.L.; Vargas, L.G. Diagnosis with Dependent Symptoms: Bayes Theorem and the Analytic Hierarchy Process. Oper. Res. 1998, 46, 491–502. [Google Scholar] [CrossRef]
- Tseng, M.L.; Lin, Y.H.; Chiu, A.S.F.; Liao, J.C.H. Using FANP Approach on Selection of Competitive Priorities Based on Cleaner Production Implementation: A Case Study in PCB Manufacturer, Taiwan. Clean Technol. Environ. Policy 2008, 10, 17–29. [Google Scholar] [CrossRef]
- Wang, C.-N.; Yang, C.-Y.; Cheng, H.-C. Fuzzy Multi-Criteria Decision-Making Model for Supplier Evaluation and Selection in a Wind Power Plant Project. Mathematics 2019, 7, 417. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.-N.; Su, C.-C.; Nguyen, V.T. Nuclear Power Plant Location Selection in Vietnam under Fuzzy Environment Conditions. Symmetry 2018, 10, 548. [Google Scholar] [CrossRef] [Green Version]
- Matzler, K.; Sauerwein, E. The Factor Structure of Customer Satisfaction: An Empirical Test of the Importance Grid and the Penalty-reward-contrast Analysis. Int. J. Serv. Ind. Manag. 2002, 13, 314–332. [Google Scholar] [CrossRef]
- Kim, W.; Kang, G.; Chul, K.Y. The Determinants of Continuous Usage Intention for One-on-one Online English Education Program. J. Internet Electron. Commer. Res. 2019, 19, 113–126. [Google Scholar] [CrossRef]
- Uppal, M.A.; Ali, S.; Gulliver, S.R. Factors Determining E-Learning Service Quality. Br. J. Educ. Technol. 2018, 49, 412–426. [Google Scholar] [CrossRef]
- Sumi, R.S. Satisfaction of E-Learners with Electronic Learning Service Quality Using the SERVQUAL Model. J. Open Innov. Technol. Mark. Complex. 2021, 7, 227. [Google Scholar] [CrossRef]
- Ma, Y.-Y.; Chen, J.-J.; Lin, C.-L. Research on the Priority of Service Quality Index for Online English Teaching during the COVID-19 Pandemic: Dual Perspective. Mathematics 2022, 10, 3642. [Google Scholar] [CrossRef]
Triangular Fuzzy Number | Linguistic Variables |
---|---|
Equally Preferred | |
Intermediate | |
Moderately Preferred | |
Intermediate | |
Strongly Preferred | |
Intermediate | |
Very Strongly Preferred | |
Intermediate | |
Extremely Preferred |
The Order of Matrix | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R.I. | - | - | 0.58 | 0.90 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 | 1.49 | 1.51 | 1.53 | 1.56 | 1.57 | 1.59 |
No. | Given Name | Surname | Job Title | Field | Job Tenure |
---|---|---|---|---|---|
1 | W.-L. | Wang | Senior Human Resources Manager | Digital Media | 10 |
2 | W.-H. | Lin | Senior Marketing Manager | Design Education | 15 |
3 | J.-Y. | Liao | Senior Curriculum Development Manager | Design Education | 12 |
4 | Y.-Z. | Huang | General Manager | Multimedia Design | 25 |
5 | Z.-Y. | Huang | Senior Curriculum Development Manager | Design Education | 17 |
6 | M.-Z. | Lin | Professor | Multimedia Design | 30 |
7 | S.-J. | Chen | Associate Professor | Digital Media | 20 |
8 | J.-Y. | Yang | Associate Professor | Industrial Design | 23 |
9 | J. | Deng | Assistant Professor | Computer Animation | 18 |
10 | P.-W. | Hsiao | Lecturer | Multimedia Design | 12 |
Dimensions | Tangibility (A) | Reliability (B) | Responsiveness (C) | Assurance (D) | Empathy (E) |
---|---|---|---|---|---|
Tangibility (A) | (1,1,1) | (1/8,1/7,1/6) | (1/9,1/8,1/7) | (1/9,1/8,1/7) | (1/5,1/4,1/3) |
Reliability (B) | (6,7,8) | (1,1,1) | (1/3,1/2,1) | (1/3,1/2,1) | (1,2,3) |
Responsiveness (C) | (7,8,9) | (1,2,3) | (1,1,1) | (1,1,1) | (1,2,3) |
Assurance (D) | (7,8,9) | (1,2,3) | (1,1,1) | (1,1,1) | (2,3,4) |
Empathy (E) | (3,4,5) | (1/3,1/2,1) | (1/3,1/2,1) | (1/4,1/3,1/2) | (1,1,1) |
Dimensions | Tangibility (A) | Reliability (B) | Responsiveness (C) | Assurance (D) | Empathy (E) |
---|---|---|---|---|---|
Tangibility (A) | 1 | 1/7 | 1/8 | 1/8 | 1/4 |
Reliability (B) | 7 | 1 | 1/2 | 1/2 | 2 |
Responsiveness (C) | 8 | 2 | 1 | 1 | 2 |
Assurance (D) | 8 | 2 | 1 | 1 | 3 |
Empathy (E) | 4 | 1/2 | 1/2 | 1/3 | 1 |
Dimensions | The Calculation of Weight |
---|---|
Tangibility (A) | |
Reliability (B) | |
Responsiveness (C) | |
Assurance (D) | |
Empathy (E) |
Dimensions | Tangibility (A) | Reliability (B) | Responsiveness (C) | Assurance (D) | Empathy (E) |
---|---|---|---|---|---|
Tangibility (A) | |||||
Reliability (B) | 1 | ||||
Responsiveness (C) | |||||
Assurance (D) | |||||
Empathy (E) |
Dimensions | A | B | C | D | E | Total | ||
---|---|---|---|---|---|---|---|---|
A | 0.0345 | 0.0283 | 0.0386 | 0.0418 | 0.0310 | 0.1742 | 0.0345 | |
B | 0.2415 | 0.1983 | 0.1543 | 0.1674 | 0.2478 | 1.0092 | 0.1983 | |
C | 0.2760 | 0.3965 | 0.3086 | 0.3347 | 0.2478 | 1.5636 | 0.3086 | |
D | 0.2760 | 0.3965 | 0.3086 | 0.3347 | 0.3716 | 1.6875 | 0.3347 | |
E | 0.1380 | 0.0991 | 0.1543 | 0.1116 | 0.1239 | 0.6269 | 0.1239 |
Dimensions | Tangibility (A) | Reliability (B) | Responsiveness (C) | Assurance (D) | Empathy (E) | Weights |
---|---|---|---|---|---|---|
Tangibility (A) | 1 | 1/7 | 1/8 | 1/8 | 1/4 | 0.0345 |
Reliability (B) | 7 | 1 | 1/2 | 1/2 | 2 | 0.1983 |
Responsiveness (C) | 8 | 2 | 1 | 1 | 2 | 0.3086 |
Assurance (D) | 8 | 2 | 1 | 1 | 3 | 0.3347 |
Empathy (E) | 4 | 1/2 | 1/2 | 1/3 | 1 | 0.1239 |
Total | 1 | |||||
Compare Respect to | Group | Pairwise Comparison | C.I. | C.R. | |
---|---|---|---|---|---|
Dimensions | C | B and C, B and E, C and E | 0.0268 | 0.0462 | |
D | B and C, B and D, B and E, C and D, C and E, D and E | 0.0270 | 0.0300 | ||
Indicators | Goal | A | A1 and A2, A1 and A3, A1 and A4, A2 and A3, A2 and A4, A3 and A4 | 0.0034 | 0.0038 |
B | B1 and B2, B1 and B3, B1 and B4, B2 and B3, B2 and B4, B3 and B4 | 0.0382 | 0.0424 | ||
C | C1 and C2, C1 and C3, C2 and C3 | 0.0000 | 0.0000 | ||
D | D1 and D2, D1 and D3, D1 and D4, D2 and D3, D2 and D4, D3 and D4 | 0.0131 | 0.0145 | ||
E | E1 and E2, E1 and E3, E1 and E4, E1 and E5, E2 and E3, E2 and E4, E2 and E5, E3 and E4, E3 and E5, E4 and E5 | 0.0138 | 0.0123 | ||
B3 | B | B1 and B2 | 0.0000 | 0.0000 | |
C3 | C | C1 and C2 | 0.0000 | 0.0000 |
Compare Respect to | Group | Pairwise Comparison | C.I. | C.R. | |
---|---|---|---|---|---|
Indicators | A1 | All Alternatives | 0.0137 | 0.0097 | |
A2 | All Alternatives | 0.0251 | 0.0178 | ||
A3 | All Alternatives | 0.0242 | 0.0171 | ||
A4 | All Alternatives | 0.0525 | 0.0372 | ||
B1 | All Alternatives | 0.0529 | 0.0375 | ||
B2 | All Alternatives | 0.0260 | 0.0184 | ||
B3 | All Alternatives | 0.0119 | 0.0084 | ||
B4 | All Alternatives | 0.0022 | 0.0015 | ||
C1 | All Alternatives | 0.0025 | 0.0018 | ||
C2 | All Alternatives | 0.0067 | 0.0048 | ||
C3 | All Alternatives | 0.0291 | 0.0206 | ||
D1 | All Alternatives | 0.0212 | 0.0150 | ||
D2 | All Alternatives | 0.0457 | 0.0324 | ||
D3 | All Alternatives | 0.0808 | 0.0573 | ||
D4 | All Alternatives | 0.0656 | 0.0465 | ||
E1 | All Alternatives | 0.0112 | 0.0079 | ||
E2 | All Alternatives | 0.0455 | 0.0322 | ||
E3 | All Alternatives | 0.0076 | 0.0053 | ||
E4 | All Alternatives | 0.0301 | 0.0213 | ||
E5 | All Alternatives | 0.0333 | 0.0236 |
Indicators | Description | Weight |
---|---|---|
A1 | Blended design teaching service team has up-to-date equipment | 0.0028 |
A2 | Physical facilities of blended design teaching service team are visually appealing | 0.0025 |
A3 | Employees of blended design teaching service team are well-dressed and appear neat | 0.0095 |
A4 | Equipment matches the service | 0.0042 |
B1 | When blended design teaching service team promises to do something by a certain time, it does so | 0.1000 |
B2 | When consumer has problem, blended design teaching service team is sympathetic and reassuring | 0.1643 |
B3 | Blended design teaching service team provides service legally, safely and reliably | 0.0561 |
B4 | Blended design teaching service team keeps its records accurately | 0.0954 |
C1 | Blended design teaching service team tells customers exactly when service will be performed | 0.0609 |
C2 | Employees of blended design teaching service team are always willing to help customers and provide prompt service | 0.0733 |
C3 | Employees of blended design teaching service team are never too busy to respond to customer requests promptly | 0.0793 |
D1 | Customers can trust employees of blended design teaching service team and feel safe | 0.0232 |
D2 | Customers feel safe in their transactions with blended design teaching service team | 0.1396 |
D3 | Employees of blended design teaching service team are polite | 0.0145 |
D4 | Employees are professional and get adequate support to do their jobs well | 0.0323 |
E1 | Blended design teaching service team has operating hours convenient to all their customers | 0.0107 |
E2 | Blended design teaching service team can provide customers with flexible trading hours | 0.0054 |
E3 | Blended design teaching service team’s employees care about the needs of customers and keep them in mind | 0.0147 |
E4 | Blended design teaching service team pays great attention to what the customer wants | 0.0889 |
E5 | Blended design teaching service team knows what customer’s needs are and gives care | 0.0223 |
Indicators | Alternatives | |||||||
---|---|---|---|---|---|---|---|---|
ALT 1 | ALT 2 | ALT 3 | ALT 4 | ALT 5 | ALT 6 | ALT 7 | ALT 8 | |
A1 | 2.35 | 1.32 | 1.64 | 1.00 | 3.10 | 1.32 | 1.25 | 1.00 |
A2 | 1.78 | 1.32 | 1.89 | 1.00 | 2.93 | 1.32 | 1.15 | 1.00 |
A3 | 1.64 | 1.74 | 1.00 | 1.15 | 2.93 | 1.52 | 1.00 | 1.00 |
A4 | 5.07 | 2.55 | 1.15 | 1.15 | 1.15 | 1.32 | 4.57 | 1.00 |
B1 | 4.74 | 5.77 | 3.18 | 1.32 | 3.78 | 2.00 | 2.76 | 1.15 |
B2 | 1.52 | 5.98 | 3.32 | 1.32 | 3.32 | 2.00 | 2.17 | 7.00 |
B3 | 1.32 | 3.93 | 3.32 | 1.32 | 3.06 | 5.53 | 1.52 | 1.15 |
B4 | 1.32 | 5.32 | 4.64 | 1.32 | 4.32 | 5.45 | 2.00 | 4.79 |
C1 | 1.15 | 5.98 | 3.95 | 5.00 | 4.18 | 5.59 | 4.18 | 4.00 |
C2 | 1.32 | 4.11 | 4.13 | 5.38 | 3.00 | 5.67 | 1.64 | 4.00 |
C3 | 1.52 | 5.77 | 3.95 | 5.38 | 5.93 | 5.29 | 1.52 | 1.52 |
D1 | 1.74 | 4.46 | 3.95 | 2.77 | 4.74 | 5.76 | 1.52 | 1.64 |
D2 | 1.15 | 4.11 | 4.13 | 5.72 | 5.00 | 5.66 | 1.52 | 1.52 |
D3 | 1.15 | 1.41 | 4.64 | 4.37 | 4.13 | 4.68 | 1.64 | 1.43 |
D4 | 1.32 | 1.62 | 3.95 | 4.57 | 1.89 | 5.91 | 1.52 | 1.00 |
E1 | 1.52 | 1.62 | 3.57 | 1.15 | 2.00 | 4.63 | 5.30 | 3.78 |
E2 | 1.15 | 1.62 | 5.33 | 1.00 | 1.15 | 4.40 | 6.58 | 3.57 |
E3 | 1.52 | 3.37 | 3.78 | 1.00 | 1.15 | 1.32 | 1.00 | 4.79 |
E4 | 1.32 | 3.00 | 5.14 | 1.00 | 1.15 | 1.52 | 1.00 | 4.79 |
E5 | 2.35 | 3.00 | 1.15 | 2.93 | 1.74 | 1.15 | 1.00 | 4.79 |
Indicators | Alternatives | |||||||
---|---|---|---|---|---|---|---|---|
ALT 1 | ALT 2 | ALT 3 | ALT 4 | ALT 5 | ALT 6 | ALT 7 | ALT 8 | |
A1 | 0.0018 | 0.0004 | 0.0009 | 0.0000 | 0.0028 | 0.0004 | 0.0003 | 0.0000 |
A2 | 0.0010 | 0.0004 | 0.0012 | 0.0000 | 0.0025 | 0.0004 | 0.0002 | 0.0000 |
A3 | 0.0031 | 0.0036 | 0.0000 | 0.0007 | 0.0095 | 0.0026 | 0.0000 | 0.0000 |
A4 | 0.0042 | 0.0016 | 0.0002 | 0.0002 | 0.0002 | 0.0003 | 0.0037 | 0.0000 |
B1 | 0.0817 | 0.1008 | 0.0462 | 0.0039 | 0.0598 | 0.0193 | 0.0366 | 0.0000 |
B2 | 0.0058 | 0.1287 | 0.0576 | 0.0000 | 0.0576 | 0.0196 | 0.0245 | 0.1636 |
B3 | 0.0016 | 0.0252 | 0.0208 | 0.0016 | 0.0183 | 0.0561 | 0.0035 | 0.0000 |
B4 | 0.0000 | 0.0666 | 0.0579 | 0.0000 | 0.0523 | 0.0954 | 0.0119 | 0.0605 |
C1 | 0.0000 | 0.0527 | 0.0318 | 0.0437 | 0.0344 | 0.0616 | 0.0344 | 0.0323 |
C2 | 0.0000 | 0.0349 | 0.0373 | 0.0539 | 0.0223 | 0.0726 | 0.0042 | 0.0356 |
C3 | 0.0000 | 0.0700 | 0.0419 | 0.0666 | 0.0760 | 0.0793 | 0.0000 | 0.0000 |
D1 | 0.0009 | 0.0117 | 0.0103 | 0.0053 | 0.0136 | 0.0232 | 0.0000 | 0.0005 |
D2 | 0.0000 | 0.0668 | 0.0711 | 0.1091 | 0.0919 | 0.1396 | 0.0088 | 0.0088 |
D3 | 0.0000 | 0.0006 | 0.0127 | 0.0117 | 0.0109 | 0.0145 | 0.0018 | 0.0010 |
D4 | 0.0018 | 0.0029 | 0.0164 | 0.0199 | 0.0050 | 0.0323 | 0.0029 | 0.0000 |
E1 | 0.0010 | 0.0010 | 0.0062 | 0.0000 | 0.0022 | 0.0096 | 0.0107 | 0.0068 |
E2 | 0.0001 | 0.0005 | 0.0042 | 0.0000 | 0.0001 | 0.0036 | 0.0054 | 0.0025 |
E3 | 0.0020 | 0.0092 | 0.0108 | 0.0000 | 0.0006 | 0.0012 | 0.0000 | 0.0147 |
E4 | 0.0069 | 0.0430 | 0.0889 | 0.0000 | 0.0032 | 0.0112 | 0.0000 | 0.0814 |
E5 | 0.0079 | 0.0118 | 0.0009 | 0.0114 | 0.0044 | 0.0009 | 0.0000 | 0.0223 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.-L.; Chen, J.-J.; Ma, Y.-Y. Ranking of Service Quality Solution for Blended Design Teaching Using Fuzzy ANP and TOPSIS in the Post-COVID-19 Era. Mathematics 2023, 11, 1255. https://doi.org/10.3390/math11051255
Lin C-L, Chen J-J, Ma Y-Y. Ranking of Service Quality Solution for Blended Design Teaching Using Fuzzy ANP and TOPSIS in the Post-COVID-19 Era. Mathematics. 2023; 11(5):1255. https://doi.org/10.3390/math11051255
Chicago/Turabian StyleLin, Chia-Liang, Jwu-Jenq Chen, and Yu-Yu Ma. 2023. "Ranking of Service Quality Solution for Blended Design Teaching Using Fuzzy ANP and TOPSIS in the Post-COVID-19 Era" Mathematics 11, no. 5: 1255. https://doi.org/10.3390/math11051255
APA StyleLin, C. -L., Chen, J. -J., & Ma, Y. -Y. (2023). Ranking of Service Quality Solution for Blended Design Teaching Using Fuzzy ANP and TOPSIS in the Post-COVID-19 Era. Mathematics, 11(5), 1255. https://doi.org/10.3390/math11051255