Significance of Nanoparticle Radius and Gravity Modulation on Dynamics of Nanofluid over Stretched Surface via Finite Element Simulation: The Case of Water-Based Copper Nanoparticles
Abstract
:1. Introduction
- How does the radius of nanoparticles influence the transport phenomena of -nanofluids in micro gravity environment?
- What role does the variable radius of nanoparticles have in the decreased and regulated factor of skin friction, thermal transfer rate, and couple stress at the inclined surface?
- What is the role of modulation amplitude and oscillation frequency on fluid dynamics with mixed convection due to the inclined and expanding surface in microgravity environments?
2. Mathematical Formulation
Physical Properties | (kg m) | (J kg K) | (Wm K) | × 10 (K) |
---|---|---|---|---|
0991.1 | 4179.0 | 00.613 | 21.000 | |
8933.0 | 0385.0 | 0401.0 | 1.6700 |
Properties | Nanofluid |
---|---|
Viscosity | |
Density | |
Heat capacity | |
Thermal conductivity (k) | |
Electrical conductivity | |
Coefficient of thermal expansion |
Numerical Procedure
3. Results and Discussion
M | Ali et al. [54] | Abdal et al. [19] | Present Results | ||||
---|---|---|---|---|---|---|---|
0.0 | 0.2 | −0.909698 | 0.094995 | −0.909798 | 0.094895 | −0.909841 | 0.095001 |
0.5 | − | −1.114368 | 0.105085 | −1.114378 | 0.105088 | −1.114368 | 0.105094 |
1.0 | − | −1.287147 | 0.112058 | −1.287148 | 0.112048 | −1.287114 | 0.112120 |
1.0 | 0.0 | −1.414208 | 0.000000 | −1.414228 | 0.000000 | −1.414233 | 0.000001 |
− | 0.5 | −1.140781 | 0.211157 | −1.140772 | 0.211165 | −1.140730 | 0.211159 |
− | 2.0 | −0.769749 | 0.358659 | −0.769755 | 0.358646 | −0.769763 | 0.358608 |
4. Conclusions
- The increment in the radius of nanoentities augments the velocity , and
- reduces the temperature of Cu-nanofluids;
- recedes the micromotion close the sheet’s boundary and twists to obtain rising values far off from the inclined sheet;
- reduces the skin friction magnitude and enhances the Nusselt number and couple stress.
- The growing strength of frequency of oscillation and inclination angle leads to a decline in the values of reduced skin friction and heat transfer coefficient; however, an opposite trend is reported when the thermal buoyancy parameter is enhanced.
- The stronger magnetic parameter M reduces the component of velocity , and
- Nusselt number attains lower values but skin friction coefficients gain larger values;
- the rise of temperature is reported and exhibits the opposite trend for microrotation distribution.
- The rising values of heat source, nanoparticles radius, and frequency of oscillation lead to a decrease in reduced skin friction and heat transfer coefficient, while an opposite trend is observed for Nusselt number against increasing radius.
- Increase in the material parameter (), which is responsible for the increase in the velocity component , and
- temperature distribution diminishes but the microrotation profile attains higher values.
- Nusselt number , skin friction factor, and couple stress attain higher values.
- The larger improves the oscillating value of , the amplitude of modulated heat transfer rate at the wall, and couple stress.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khodadadi, H.; Toghraie, D.; Karimipour, A. Effects of nanoparticles to present a statistical model for the viscosity of MgO-Water nanofluid. Powder Technol. 2019, 342, 166–180. [Google Scholar] [CrossRef]
- Ali, B.; Nie, Y.; Hussain, S.; Habib, D.; Abdal, S. Insight into the dynamics of fluid conveying tiny particles over a rotating surface subject to Cattaneo–Christov heat transfer, Coriolis force, and Arrhenius activation energy. Comput. Math. Appl. 2021, 93, 130–143. [Google Scholar] [CrossRef]
- Wei, Y.; Rehman, S.U.; Fatima, N.; Ali, B.; Ali, L.; Chung, J.D.; Shah, N.A. Significance of dust particles, nanoparticles radius, coriolis and lorentz forces: The case of maxwell dusty fluid. Nanomaterials 2022, 12, 1512. [Google Scholar] [CrossRef] [PubMed]
- Goodarzi, M.; Toghraie, D.; Reiszadeh, M.; Afrand, M. Experimental evaluation of dynamic viscosity of ZnO–MWCNTs/engine oil hybrid nanolubricant based on changes in temperature and concentration. J. Therm. Anal. Calorim. 2019, 136, 513–525. [Google Scholar] [CrossRef]
- Zadeh, A.D.; Toghraie, D. Experimental investigation for developing a new model for the dynamic viscosity of silver/ethylene glycol nanofluid at different temperatures and solid volume fractions. J. Therm. Anal. Calorim. 2018, 131, 1449–1461. [Google Scholar] [CrossRef]
- Hamid, M.; Usman, M.; Zubair, T.; Haq, R.U.; Wang, W. Shape effects of MoS2 nanoparticles on rotating flow of nanofluid along a stretching surface with variable thermal conductivity: A Galerkin approach. Int. J. Heat Mass Transf. 2018, 124, 706–714. [Google Scholar] [CrossRef]
- Yapici, K.; Osturk, O.; Uludag, Y. Dependency of nanofluid rheology on particle size and concentration of various metal oxide nanoparticles. Braz. J. Chem. Eng. 2018, 35, 575–586. [Google Scholar] [CrossRef] [Green Version]
- Gajghate, S.S.; Bandurkar, A.V.; Das, S.; Saha, B.B.; Bhaumik, S. Effect of ZrO2 nanoparticle deposited layer on Pool boiling heat transfer enhancement. Heat Transf. Eng. 2020, 42, 1184–1202. [Google Scholar] [CrossRef]
- Shah, N.A.; Animasaun, I.; Chung, J.D.; Wakif, A.; Alao, F.; Raju, C. Significance of nanoparticle’s radius, heat flux due to concentration gradient, and mass flux due to temperature gradient: The case of Water conveying copper nanoparticles. Sci. Rep. 2021, 11, 1882. [Google Scholar] [CrossRef]
- Ali, B.; Siddique, I.; Hussain, S.; Ali, L.; Baleanu, D. Boger nanofluid: Significance of Coriolis and Lorentz forces on dynamics of rotating fluid subject to suction/injection via finite element simulation. Sci. Rep. 2022, 12, 1612. [Google Scholar] [CrossRef]
- Alhowaity, A.; Bilal, M.; Hamam, H.; Alqarni, M.; Mukdasai, K.; Ali, A. Non-Fourier energy transmission in power-law hybrid nanofluid flow over a moving sheet. Sci. Rep. 2022, 12, 10406. [Google Scholar] [CrossRef]
- Nadeem, M.; Siddique, I.; Awrejcewicz, J.; Bilal, M. Numerical analysis of a second-grade fuzzy hybrid nanofluid flow and heat transfer over a permeable stretching/shrinking sheet. Sci. Rep. 2022, 12, 1631. [Google Scholar] [CrossRef]
- Barnoon, P.; Toghraie, D.; Dehkordi, R.B.; Abed, H. MHD mixed convection and entropy generation in a lid-driven cavity with rotating cylinders filled by a nanofluid using two phase mixture model. J. Magn. Magn. Mater. 2019, 483, 224–248. [Google Scholar] [CrossRef]
- Abdal, S.; Siddique, I.; Alrowaili, D.; Al-Mdallal, Q.; Hussain, S. Exploring the magnetohydrodynamic stretched flow of Williamson Maxwell nanofluid through porous matrix over a permeated sheet with bioconvection and activation energy. Sci. Rep. 2022, 12, 278. [Google Scholar] [CrossRef]
- Eringen, A.C. Theory of micropolar elasticity. In Microcontinuum Field Theories; Springer: Berlin/Heidelberg, Germany, 1999; pp. 101–248. [Google Scholar]
- Eringen, A.C. Theory of thermomicrofluids. J. Math. Anal. Appl. 1972, 38, 480–496. [Google Scholar] [CrossRef] [Green Version]
- Willson, A. Boundary layers in micropolar liquids. Math. Proc. Camb. Philos. Soc. 1970, 67, 469–476. [Google Scholar] [CrossRef]
- Shafie, S.; Amin, N.S.; Pop, I. G-Jitter free convection boundary layer flow of a micropolar fluid near a three-dimensional stagnation point of attachment. Int. J. Fluid Mech. Res. 2005, 32, 291–309. [Google Scholar] [CrossRef]
- Abdal, S.; Ali, B.; Younas, S.; Ali, L.; Mariam, A. Thermo-Diffusion and Multislip Effects on MHD Mixed Convection Unsteady Flow of Micropolar Nanofluid over a Shrinking/Stretching Sheet with Radiation in the Presence of Heat Source. Symmetry 2020, 12, 49. [Google Scholar] [CrossRef] [Green Version]
- Ali, B.; Raju, C.; Ali, L.; Hussain, S.; Kamran, T. G-Jitter impact on magnetohydrodynamic non-Newtonian fluid over an inclined surface: Finite element simulation. Chin. J. Phys. 2021, 71, 479–491. [Google Scholar] [CrossRef]
- Pan, B.; Shang, D.; Li, B.; De Groh, H. Magnetic field effects on g-jitter induced flow and solute transport. Int. J. Heat Mass Transf. 2002, 45, 125–144. [Google Scholar] [CrossRef]
- Ma, N.; Walker, J.S. Magnetic damping of buoyant convection during semiconductor crystal growth in microgravity: Spikes on residual acceleration. Phys. Fluids 1996, 8, 944–949. [Google Scholar] [CrossRef]
- Li, K.; Li, B.; De Groh, H. Effect of magnetic field on g-jitter induced convection and solute striation during solidification in space. Int. J. Heat Mass Transf. 2003, 46, 4799–4811. [Google Scholar] [CrossRef]
- Baumgartl, J.; Müller, G. The use of magnetic fields for damping the action of gravity fluctuations (g-jitter) during crystal growth under microgravity. J. Cryst. Growth 1996, 169, 582–586. [Google Scholar] [CrossRef]
- Li, B. Stability of modulated-gravity-induced thermal convection in magnetic fields. Phys. Rev. E 2001, 63, 041508. [Google Scholar] [CrossRef] [PubMed]
- Dou, X.; Chen, Z.; Zuo, P.; Cao, X.; Liu, J. Directional motion of the foam carrying oils driven by the magnetic field. Sci. Rep. 2021, 11, 21282. [Google Scholar] [CrossRef] [PubMed]
- Li, B.Q. g-Jitter induced free convection in a transverse magnetic field. Int. J. Heat Mass Transf. 1996, 39, 2853–2860. [Google Scholar] [CrossRef]
- Rees, D.A.S.; Pop, I. The effect of large-amplitude g-jitter vertical free convection boundary-layer flow in porous media. Int. J. Heat Mass Transf. 2003, 46, 1097–1102. [Google Scholar] [CrossRef]
- Siddheshwar, P.G.; Pranesh, S. Effect of temperature/gravity modulation on the onset of magneto-convection in weak electrically conducting fluids with internal angular momentum. J. Magn. Magn. Mater. 1999, 192, 159–176. [Google Scholar] [CrossRef]
- Sharidan, S.; Amin, N.; Pop, I. g-Jitter mixed convection adjacent to a vertical stretching sheet. Microgravity-Sci. Technol. 2006, 18, 5–14. [Google Scholar] [CrossRef]
- Kiran, P. Throughflow and Gravity Modulation Effects on Heat Transport in a Porous Medium. J. Appl. Fluid Mech. 2016, 9, 1105–1113. [Google Scholar] [CrossRef]
- Ashraf, M.A.; Peng, W.; Zare, Y.; Rhee, K.Y. Effects of size and aggregation/agglomeration of nanoparticles on the interfacial/interphase properties and tensile strength of polymer nanocomposites. Nanoscale Res. Lett. 2018, 13, 1–7. [Google Scholar] [CrossRef]
- Vishal, C.C.; Kanala, R.K.; Raju, C.S.K.; Madathil, P.K.; Saha, P.; Rao, B.R.; Sriganesh, G.; Ramesh, K. Sub-micron sized metal oxides based organic thermic fluids with enhanced thermo-physical properties. Appl. Therm. Eng. 2019, 163, 114337. [Google Scholar] [CrossRef]
- Ali, B.; Naqvi, R.A.; Mariam, A.; Ali, L.; Aldossary, O.M. Finite Element Study for Magnetohydrodynamic (MHD) Tangent Hyperbolic Nanofluid Flow over a Faster/Slower Stretching Wedge with Activation Energy. Mathematics 2021, 9, 25. [Google Scholar] [CrossRef]
- Khan, S.A.; Nie, Y.; Ali, B. Multiple slip effects on magnetohydrodynamic axisymmetric buoyant nanofluid flow above a stretching sheet with radiation and chemical reaction. Symmetry 2019, 11, 1171. [Google Scholar] [CrossRef] [Green Version]
- Rawi, N.A.; Kasim, A.R.M.; Ali, A.; Isa, M.; Shafie, S. The effect of g-jitter on double diffusion by mixed convection past an inclined stretching sheet. AIP Conf. Proc. 2014, 1605, 392–397. [Google Scholar]
- Rawi, N.A.; Zin, N.A.M.; Kasim, A.R.M.; Shafie, S. g-Jitter induced MHD mixed convection flow of nanofluids past a vertical stretching sheet. AIP Conf. Proc. 2016, 1750, 030017. [Google Scholar]
- Kumar, L. Finite element analysis of combined heat and mass transfer in hydromagnetic micropolar flow along a stretching sheet. Comput. Mater. Sci. 2009, 46, 841–848. [Google Scholar] [CrossRef]
- Alanazi, M.M.; Hendi, A.A.; Ahammad, N.A.; Ali, B.; Majeed, S.; Shah, N.A. Significance of Ternary Hybrid Nanoparticles on the Dynamics of Nanofluids over a Stretched Surface Subject to Gravity Modulation. Mathematics 2023, 11, 809. [Google Scholar] [CrossRef]
- Ali, B.; Naqvi, R.A.; Ali, L.; Abdal, S.; Hussain, S. A Comparative Description on Time-Dependent Rotating Magnetic Transport of a Water Base Liquid H2O With Hybrid Nano-materials Al2O3-Cu and Al2O3-TiO2 Over an Extending Sheet Using Buongiorno Model: Finite Element Approach. Chin. J. Phys. 2021, 70, 125–139. [Google Scholar] [CrossRef]
- Devi, S.S.U.; Devi, S.A. Numerical investigation of three-dimensional hybrid Cu–Al2O3/water nanofluid flow over a stretching sheet with effecting Lorentz force subject to Newtonian heating. Can. J. Phys. 2016, 94, 490–496. [Google Scholar] [CrossRef]
- Graham, A.L. On the viscosity of suspensions of solid spheres. Appl. Sci. Res. 1981, 37, 275–286. [Google Scholar] [CrossRef]
- Gosukonda, S.; Gorti, V.S.; Baluguri, S.B.; Sakam, S.R. Particle spacing and chemical reaction effects on convective heat transfer through a nano-fluid in cylindrical annulus. Procedia Eng. 2015, 127, 263–270. [Google Scholar] [CrossRef] [Green Version]
- Ali, B.; Hussain, S.; Nie, Y.; Ali, L.; Hassan, S.U. Finite element simulation of bioconvection and cattaneo-Christov effects on micropolar based nanofluid flow over a vertically stretching sheet. Chin. J. Phys. 2020, 68, 654–670. [Google Scholar] [CrossRef]
- Reddy, J.N. Solutions Manual for an Introduction to the Finite Element Method; McGraw-Hill: New York, NY, USA, 1993; p. 41. [Google Scholar]
- Jyothi, K.; Reddy, P.S.; Reddy, M.S. Carreau nanofluid heat and mass transfer flow through wedge with slip conditions and nonlinear thermal radiation. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 415. [Google Scholar] [CrossRef]
- Ali, B.; Pattnaik, P.; Naqvi, R.A.; Waqas, H.; Hussain, S. Brownian motion and thermophoresis effects on bioconvection of rotating Maxwell nanofluid over a Riga plate with Arrhenius activation energy and Cattaneo-Christov heat flux theory. Therm. Sci. Eng. Prog. 2021, 100863. [Google Scholar] [CrossRef]
- Ali, B.; Yu, X.; Sadiq, M.T.; Rehman, A.U.; Ali, L. A Finite Element Simulation of the Active and Passive Controls of the MHD Effect on an Axisymmetric Nanofluid Flow with Thermo-Diffusion over a Radially Stretched Sheet. Processes 2020, 8, 207. [Google Scholar] [CrossRef] [Green Version]
- Namburu, P.; Kulkarni, D.; Dandekar, A.; Das, D. Experimental investigation of viscosity and specific heat of silicon dioxide nanofluids. Micro Nano Lett. 2007, 2, 67–71. [Google Scholar] [CrossRef]
- Pastoriza-Gallego, M.J.; Lugo, L.; Legido, J.L.; Piñeiro, M.M. Thermal conductivity and viscosity measurements of ethylene glycol-based Al2O3 nanofluids. Nanoscale Res. Lett. 2011, 6, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Vickers, N.J. Animal communication: When i’m calling you, will you answer too? Curr. Biol. 2017, 27, R713–R715. [Google Scholar] [CrossRef]
- Esfe, M.H.; Saedodin, S.; Wongwises, S.; Toghraie, D. An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids. J. Therm. Anal. Calorim. 2015, 119, 1817–1824. [Google Scholar] [CrossRef]
- Arani, A.A.; Amani, J. Experimental investigation of diameter effect on heat transfer performance and pressure drop of TiO2–water nanofluid. Exp. Therm. Fluid Sci. 2013, 44, 520–533. [Google Scholar] [CrossRef]
- Ali, L.; Liu, X.; Ali, B.; Mujeed, S.; Abdal, S. Finite Element Simulation of Multi-Slip Effects on Unsteady MHD Bioconvective Micropolar nanofluid Flow Over a Sheet with Solutal and Thermal Convective Boundary Conditions. Coatings 2019, 9, 842. [Google Scholar] [CrossRef]
- Khan, S.A.; Nie, Y.; Ali, B. Multiple slip effects on MHD unsteady viscoelastic nano-fluid flow over a permeable stretching sheet with radiation using the finite element method. SN Appl. Sci. 2020, 2, 66. [Google Scholar] [CrossRef] [Green Version]
- Ali, L.; Liu, X.; Ali, B.; Mujeed, S.; Abdal, S. Finite Element Analysis of Thermo-Diffusion and Multi-Slip Effects on MHD Unsteady Flow of Casson Nano-Fluid over a Shrinking/Stretching Sheet with Radiation and Heat Source. Appl. Sci. 2019, 9, 5217. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, B.; Shafiq, A.; Alanazi, M.M.; Hendi, A.A.; Hussein, A.K.; Shah, N.A. Significance of Nanoparticle Radius and Gravity Modulation on Dynamics of Nanofluid over Stretched Surface via Finite Element Simulation: The Case of Water-Based Copper Nanoparticles. Mathematics 2023, 11, 1266. https://doi.org/10.3390/math11051266
Ali B, Shafiq A, Alanazi MM, Hendi AA, Hussein AK, Shah NA. Significance of Nanoparticle Radius and Gravity Modulation on Dynamics of Nanofluid over Stretched Surface via Finite Element Simulation: The Case of Water-Based Copper Nanoparticles. Mathematics. 2023; 11(5):1266. https://doi.org/10.3390/math11051266
Chicago/Turabian StyleAli, Bagh, Anum Shafiq, Meznah M. Alanazi, Awatif A. Hendi, Ahmed Kadhim Hussein, and Nehad Ali Shah. 2023. "Significance of Nanoparticle Radius and Gravity Modulation on Dynamics of Nanofluid over Stretched Surface via Finite Element Simulation: The Case of Water-Based Copper Nanoparticles" Mathematics 11, no. 5: 1266. https://doi.org/10.3390/math11051266
APA StyleAli, B., Shafiq, A., Alanazi, M. M., Hendi, A. A., Hussein, A. K., & Shah, N. A. (2023). Significance of Nanoparticle Radius and Gravity Modulation on Dynamics of Nanofluid over Stretched Surface via Finite Element Simulation: The Case of Water-Based Copper Nanoparticles. Mathematics, 11(5), 1266. https://doi.org/10.3390/math11051266