Analytically Computing the Moments of a Conic Combination of Independent Noncentral Chi-Square Random Variables and Its Application for the Extended Cox–Ingersoll–Ross Process with Time-Varying Dimension
Abstract
:1. Introduction
2. The PDF of Yn
3. The Moment of Yn
3.1. Our Explicit Formula for
3.2. Estimates for Truncation Errors of
3.3. Analytical Formulas for Other Conic Combinations of Independent Random Variables
4. Extensions to the ECIR Process with Time-Varying Dimension
4.1. The Exact TPDF of the ECIR Process with Time-Varying Dimension
4.2. The Conditional Moment of the ECIR Process with Time-Varying Dimension
4.2.1. Comparison with Other Formulas
5. Numerical Results and Discussions
5.1. The accuracy of Our Explicit Formula for
5.2. The Performance of Our Explicit Formula for
5.3. Extended Results for the ECIR Process with Time-Varying Dimension
5.3.1. The Accuracy of Our Explicit Formula for the TPDF of the ECIR Process with Time-Varying Dimension
5.3.2. The performance of Our Explicit Formula for
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ECIR | Extended Cox–Ingersoll–Ross |
CIR | Cox–Ingersoll–Ross |
K-S | Kolmogorov–Smirnov |
MC | Monte Carlo |
ODE | Ordinary differential equation |
PDE | Partial differential equation |
Probability density function | |
SDE | Stochastic differential equation |
TPDF | Transition probability density function |
Appendix A. Omitted Proofs from Section 2
Appendix B. Omitted Proofs from Section 3
Appendix C. Omitted Proofs from Section 4
References
- Johnson, N.L.; Kotz, S.; Balakrishnan, N. Continuous Univariate Distributions, Volume 2; John Wiley & Sons: Hoboken, NJ, USA, 1995; Volume 289. [Google Scholar]
- Moore, D.S.; Spruill, M.C. Unified large-sample theory of general chi-squared statistics for tests of fit. Ann. Stat. 1975, 3, 599–616. [Google Scholar] [CrossRef]
- Francq, C.; Roy, R.; Zakoïan, J.M. Diagnostic checking in ARMA models with uncorrelated errors. J. Am. Stat. Assoc. 2005, 100, 532–544. [Google Scholar] [CrossRef]
- Ljung, G.M. Diagnostic testing of univariate time series models. Biometrika 1986, 73, 725–730. [Google Scholar] [CrossRef]
- Peña, D.; Rodríguez, J. A powerful portmanteau test of lack of fit for time series. J. Am. Stat. Assoc. 2002, 97, 601–610. [Google Scholar] [CrossRef] [Green Version]
- Chumpong, K.; Mekchay, K.; Rujivan, S.; Thamrongrat, N. Simple Analytical Formulas for Pricing and Hedging Moment Swaps. Thai J. Math. 2022, 20, 693–713. [Google Scholar]
- Chumpong, K.; Mekchay, K.; Thamrongrat, N. Analytical formulas for pricing discretely-sampled skewness and kurtosis swaps based on Schwartz’s one-factor model. Songklanakarin J. Sci. Technol. 2021, 43, 1–6. [Google Scholar]
- Boonklurb, R.; Duangpan, A.; Rakwongwan, U.; Sutthimat, P. A Novel Analytical Formula for the Discounted Moments of the ECIR Process and Interest Rate Swaps Pricing. Fractal Fract. 2022, 6, 58. [Google Scholar] [CrossRef]
- Duangpan, A.; Boonklurb, R.; Rakwongwan, U.; Sutthimat, P. Analytical Formulas Using Affine Transformation for Pricing Generalized Swaps in Commodity Markets with Stochastic Convenience Yields. Symmetry 2022, 14, 2385. [Google Scholar] [CrossRef]
- Rujivan, S. Valuation of volatility derivatives with time-varying volatility: An analytical probabilistic approach using a mixture distribution for pricing nonlinear payoff volatility derivatives in discrete observation case. J. Comput. Appl. Math. 2023, 418, 114672. [Google Scholar] [CrossRef]
- Rujivan, S.; Rakwongwan, U. Analytically pricing volatility swaps and volatility options with discrete sampling: Nonlinear payoff volatility derivatives. Commun. Nonlinear Sci. Numer. Simul. 2021, 100, 105849. [Google Scholar] [CrossRef]
- Rujivan, S. A closed-form formula for the conditional moments of the extended CIR process. J. Comput. Appl. Math. 2016, 297, 75–84. [Google Scholar] [CrossRef]
- Marchand, E. Computing the moments of a truncated noncentral chi-square distribution. J. Stat. Comput. Simul. 1996, 54, 387–391. [Google Scholar] [CrossRef]
- Bodenham, D.A.; Adams, N.M. A comparison of efficient approximations for a weighted sum of chi-squared random variables. Stat. Comput. 2016, 26, 917–928. [Google Scholar] [CrossRef] [Green Version]
- Castaño-Martínez, A.; López-Blázquez, F. Distribution of a sum of weighted central chi-square variables. Commun. Stat. Theory Methods 2005, 34, 515–524. [Google Scholar] [CrossRef]
- Castaño-Martínez, A.; López-Blázquez, F. Distribution of a sum of weighted noncentral chi-square variables. Test 2005, 14, 397–415. [Google Scholar] [CrossRef]
- Davis, A. A differential equation approach to linear combinations of independent chi-squares. J. Am. Stat. Assoc. 1977, 72, 212–214. [Google Scholar] [CrossRef]
- Duchesne, P.; De Micheaux, P.L. Computing the distribution of quadratic forms: Further comparisons between the Liu–Tang–Zhang approximation and exact methods. Comput. Stat. Data Anal. 2010, 54, 858–862. [Google Scholar] [CrossRef]
- Grau, D. Moments of the unbalanced non-central chi-square distribution. Stat. Probab. Lett. 2009, 79, 361–367. [Google Scholar] [CrossRef]
- Ha, H.T. An accurate approximation to the distribution of a linear combination of non-central chi-square random variables. REVSTAT-Stat. J. 2013, 11, 231–254. [Google Scholar]
- Kotz, S.; Johnson, N.L.; Boyd, D. Series representations of distributions of quadratic forms in normal variables II. Non-central case. Ann. Math. Stat. 1967, 38, 838–848. [Google Scholar] [CrossRef]
- Koutras, M. On the generalized noncentral chi-squared distribution induced by an elliptical gamma law. Biometrika 1986, 73, 528–532. [Google Scholar]
- Liu, H.; Tang, Y.; Zhang, H.H. A new chi-square approximation to the distribution of non-negative definite quadratic forms in non-central normal variables. Comput. Stat. Data Anal. 2009, 53, 853–856. [Google Scholar] [CrossRef]
- Ruben, H. Probability content of regions under spherical normal distributions, IV: The distribution of homogeneous and non-homogeneous quadratic functions of normal variables. Ann. Math. Stat. 1962, 33, 542–570. [Google Scholar] [CrossRef]
- Shah, B.; Khatri, C. Distribution of a definite quadratic form for non-central normal variates. Ann. Math. Stat. 1961, 32, 883–887. [Google Scholar] [CrossRef]
- Shah, B. Distribution of definite and of indefinite quadratic forms from a non-central normal distribution. Ann. Math. Stat. 1963, 34, 186–190. [Google Scholar]
- Maghsoodi, Y. Solution of the extended CIR term structure and bond option valuation. Math. Financ. 1996, 6, 89–109. [Google Scholar] [CrossRef]
- Dufresne, D. The integrated square-root process. In Research Paper; Centre for Actuarial Studies, Department of Economics, University of Melbourne: Parkville, VIC, Australia, 2001; pp. 1–34. [Google Scholar]
- Mirevski, S.; Boyadjiev, L. On some fractional generalizations of the Laguerre polynomials and the Kummer function. Comput. Math. Appl. 2010, 59, 1271–1277. [Google Scholar] [CrossRef] [Green Version]
- Slater, L.J. Generalized Hypergeometric Functions; Cambridge University Press: Cambridge, UK, 1966. [Google Scholar]
- Kajihara, Y. Euler transformation formula for multiple basic hypergeometric series of type A and some applications. Adv. Math. 2004, 187, 53–97. [Google Scholar]
- Mathai, A.M. Storage capacity of a dam with gamma type inputs. Ann. Inst. Stat. Math. 1982, 34, 591–597. [Google Scholar]
- Alouini, M.S.; Abdi, A.; Kaveh, M. Sum of gamma variates and performance of wireless communication systems over Nakagami-fading channels. IEEE Trans. Veh. Technol. 2001, 50, 1471–1480. [Google Scholar]
- Amari, S.V.; Misra, R.B. Closed-form expressions for distribution of sum of exponential random variables. IEEE Trans. Reliab. 1997, 46, 519–522. [Google Scholar] [CrossRef]
- Maxwell, J.C.V. Illustrations of the dynamical theory of gases.—Part I. On the motions and collisions of perfectly elastic spheres. London Edinburgh Dublin Philos. Mag. J. Sci. 1860, 19, 19–32. [Google Scholar] [CrossRef]
- Cox, J.C.; Ingersoll, J.E.; Ross, S. A theory of the term structure of interest rates. Econometrica 1985, 53, 385–407. [Google Scholar] [CrossRef]
- Peng, Q.; Schellhorn, H. On the distribution of extended CIR model. Stat. Probab. Lett. 2018, 142, 23–29. [Google Scholar] [CrossRef]
- Chumpong, K.; Mekchay, K.; Rujivan, S. A simple closed-form formula for the conditional moments of the Ornstein-Uhlenbeck process. Songklanakarin J. Sci. Technol. 2020, 42, 836–845. [Google Scholar]
- Sutthimat, P.; Mekchay, K. Closed-form formulas for conditional moments of inhomogeneous Pearson diffusion processes. Commun. Nonlinear Sci. Numer. Simul. 2022, 106, 106095. [Google Scholar] [CrossRef]
- Sutthimat, P.; Mekchay, K.; Rujivan, S. Closed-form formula for conditional moments of generalized nonlinear drift CEV process. Appl. Math. Comput. 2022, 428, 127213. [Google Scholar] [CrossRef]
- Sutthimat, P.; Rujivan, S.; Mekchay, K.; Rakwongwan, U. Analytical formula for conditional expectations of path-dependent product of polynomial and exponential functions of extended Cox–Ingersoll–Ross process. Res. Math. Sci. 2022, 9, 10. [Google Scholar] [CrossRef]
- Daniel, W.W. Applied Nonparametric Statistics; Houghton Mifflin: Boston, MA, USA, 1978. [Google Scholar]
- Zwillinger, D.; Jeffrey, A. Table of Integrals, Series, and Products; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
k | |||||||||
0 | |||||||||
1 | 0 | 0 | 0 | ||||||
2 | 0 | 0 | 0 | 0 | 0 | 0 | |||
3 | 0 | 0 | 0 | 0 | 0 | 0 | |||
4 | 0 | 0 | 0 | 0 | 0 | 0 | |||
5 | 0 | 0 | 0 | 0 | 0 | 0 | |||
6 | 0 | 0 | 0 | 0 | 0 | 0 | |||
7 | 0 | 0 | 0 | 0 | 0 | 0 | |||
8 | 0 | 0 | 0 | 0 | 0 | 0 | |||
9 | 0 | 0 | 0 | 0 | 0 | 0 | |||
10 | 0 | 0 | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rujivan, S.; Sutchada, A.; Chumpong, K.; Rujeerapaiboon, N. Analytically Computing the Moments of a Conic Combination of Independent Noncentral Chi-Square Random Variables and Its Application for the Extended Cox–Ingersoll–Ross Process with Time-Varying Dimension. Mathematics 2023, 11, 1276. https://doi.org/10.3390/math11051276
Rujivan S, Sutchada A, Chumpong K, Rujeerapaiboon N. Analytically Computing the Moments of a Conic Combination of Independent Noncentral Chi-Square Random Variables and Its Application for the Extended Cox–Ingersoll–Ross Process with Time-Varying Dimension. Mathematics. 2023; 11(5):1276. https://doi.org/10.3390/math11051276
Chicago/Turabian StyleRujivan, Sanae, Athinan Sutchada, Kittisak Chumpong, and Napat Rujeerapaiboon. 2023. "Analytically Computing the Moments of a Conic Combination of Independent Noncentral Chi-Square Random Variables and Its Application for the Extended Cox–Ingersoll–Ross Process with Time-Varying Dimension" Mathematics 11, no. 5: 1276. https://doi.org/10.3390/math11051276
APA StyleRujivan, S., Sutchada, A., Chumpong, K., & Rujeerapaiboon, N. (2023). Analytically Computing the Moments of a Conic Combination of Independent Noncentral Chi-Square Random Variables and Its Application for the Extended Cox–Ingersoll–Ross Process with Time-Varying Dimension. Mathematics, 11(5), 1276. https://doi.org/10.3390/math11051276