Material Property Characterization and Parameter Estimation of Thermoelectric Generator by Using a Master–Slave Strategy Based on Metaheuristics Techniques
Abstract
:1. Introduction
- Proposal of a new master–slave methodology, based on metaheuristics optimization techniques for solving the parameter estimation problem for TEG modules from experimental data.
- Use of a mathematical model that includes the Thomson effect and temperature-dependent material properties to evaluate the error obtained by the configuration of parameters proposed in the master–slave techniques.
- Use of optimization metaheuristic techniques VSA, CGA, and CSA for solving the parametrization of other distributed energy resources.
- Development of more efficient, accurate, reliable, and sustainable energy model systems in smart and micro grid integrations.
- Use of the proposed methodology in the field of TEGs to improve their performance from experimental and actual tests.
- The execution of several optimization algorithms to evaluate the effectiveness and robustness of the proposed solution, which can be applied to real-world scenarios.
- The methodology proposed in this study circumvents the need for destructive characterization of the thermoelectric generator (TEG) to obtain geometric parameters, resulting in a reduction in costs associated with the characterization process.
2. Solution Methodology
2.1. Master Stage
2.1.1. Vortex Search Algorithm: VSA
Algorithm 1 Algorithm proposed for the master–slave methodology based on the VSA |
2.1.2. Continuos Genetic Algorithm: CGA
Algorithm 2 Algorithm proposed for the master–slave methodology based on the GA |
2.1.3. Crow Search Algorithm
Algorithm 3 Algorithm proposed for the master–slave methodology based on the CSA |
2.2. Slave Stage
3. Test Scenario
4. Simulation Results
5. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sanin-Villa, D. Recent Developments in Thermoelectric Generation: A Review. Sustainability 2022, 14, 16821. [Google Scholar] [CrossRef]
- Zoui, M.A.; Bentouba, S.; Stocholm, J.G.; Bourouis, M. A review on thermoelectric generators: Progress and applications. Energies 2020, 13, 3606. [Google Scholar] [CrossRef]
- Rjafallah, A.; Cotfas, D.T.; Cotfas, P.A. Legs Geometry Influence on the Performance of the Thermoelectric Module. Sustainability 2022, 14, 15823. [Google Scholar] [CrossRef]
- Koketsu, K.; Tanzawa, T. A Design of a Thermoelectric Energy Harvester for Minimizing Sensor Module Cost. Electronics 2022, 11, 3441. [Google Scholar] [CrossRef]
- Cotfas, D.; Cotfas, P.; Mahmoudinezhad, S.; Louzazni, M. Critical factors and parameters for hybrid photovoltaic-thermoelectric systems; review. Appl. Therm. Eng. 2022, 215, 118977. [Google Scholar] [CrossRef]
- Mwasilu, F.; Justo, J.J.; Kim, E.K.; Do, T.D.; Jung, J.W. Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration. Renew. Sustain. Energy Rev. 2014, 34, 501–516. [Google Scholar] [CrossRef]
- Sanin-Villa, D.; Monsalve-Cifuentes, O.D.; Del Rio, J.S. Early fever detection on COVID-19 infection using thermoelectric module generators. Int. J. Electr. Comput. Eng 2021, 11, 3828–3837. [Google Scholar] [CrossRef]
- Luo, D.; Liu, Z.; Yan, Y.; Li, Y.; Wang, R.; Zhang, L.; Yang, X. Recent advances in modeling and simulation of thermoelectric power generation. Energy Convers. Manag. 2022, 273, 116389. [Google Scholar] [CrossRef]
- Xu, Y.; Xue, Y.; Cai, W.; Qi, H.; Li, Q. Experimental study on performances of flat-plate pulsating heat pipes coupled with thermoelectric generators for power generation. Int. J. Heat Mass Transf. 2023, 203, 123784. [Google Scholar] [CrossRef]
- Jiang, H.; Fang, Q.; Xavier, T.F.; Hu, G.; Wang, H.; Suo, Y.; Ye, Y.; Li, G.; Zheng, Y.; Zhang, Z. A novel thermoelectric distiller integrated with water cooling circulation for alcohol distillation. Appl. Therm. Eng. 2023, 219, 119392. [Google Scholar] [CrossRef]
- Xu, G.; Duan, Y.; Chen, X.; Ming, T.; Huang, X. Effects of thermal and electrical contact resistances on the performance of a multi-couple thermoelectric cooler with non-ideal heat dissipation. Appl. Therm. Eng. 2020, 169, 114933. [Google Scholar] [CrossRef]
- Kim, C.N. Development of a numerical method for the performance analysis of thermoelectric generators with thermal and electric contact resistance. Appl. Therm. Eng. 2018, 130, 408–417. [Google Scholar] [CrossRef]
- Nesarajah, M.; Felgner, F.; Frey, G. Modeling and simulation of a thermoelectric energy harvesting system for control design purposes. In Proceedings of the 16th International Conference on Mechatronics-Mechatronika 2014, Brno, Czech Republic, 3–5 December 2014; pp. 170–177. [Google Scholar]
- Gachovska, T.K.; Hudgins, J.L.; Santi, E.; Bryant, A.; Palmer, P.R. Modeling bipolar power semiconductor devices. Synth. Lect. Power Electron. 2013, 4, 1–93. [Google Scholar]
- Yazdanshenas, E.; Rezania, A.; Karami Rad, M.; Rosendahl, L. Electrical response of thermoelectric generator to geometry variation under transient thermal boundary condition. J. Renew. Sustain. Energy 2018, 10, 064705. [Google Scholar] [CrossRef]
- Torrecilla, M.C.; Montecucco, A.; Siviter, J.; Strain, A.; Knox, A.R. Transient response of a thermoelectric generator to load steps under constant heat flux. Appl. Energy 2018, 212, 293–303. [Google Scholar] [CrossRef] [Green Version]
- Martinez, A.; de Garayo, S.D.; Aranguren, P.; Araiz, M.; Catalán, L. Simulation of thermoelectric heat pumps in nearly zero energy buildings: Why do all models seem to be right? Energy Convers. Manag. 2021, 235, 113992. [Google Scholar] [CrossRef]
- Martinez, A.; de Garayo, S.D.; Aranguren, P.; Astrain, D. Assessing the reliability of current simulation of thermoelectric heat pumps for nearly zero energy buildings: Expected deviations and general guidelines. Energy Convers. Manag. 2019, 198, 111834. [Google Scholar] [CrossRef]
- Li, W.; Paul, M.; Montecucco, A.; Siviter, J.; Knox, A.; Sweet, T.; Gao, M.; Baig, H.; Mallick, T.; Han, G.; et al. Multiphysics simulations of thermoelectric generator modules with cold and hot blocks and effects of some factors. Case Stud. Therm. Eng. 2017, 10, 63–72. [Google Scholar] [CrossRef]
- Chen, W.H.; Wu, P.H.; Lin, Y.L. Performance optimization of thermoelectric generators designed by multi-objective genetic algorithm. Appl. Energy 2018, 209, 211–223. [Google Scholar] [CrossRef]
- Meng, J.H.; Zhang, X.X.; Wang, X.D. Multi-objective and multi-parameter optimization of a thermoelectric generator module. Energy 2014, 71, 367–376. [Google Scholar] [CrossRef]
- Liu, Z.; Zhu, S.; Ge, Y.; Shan, F.; Zeng, L.; Liu, W. Geometry optimization of two-stage thermoelectric generators using simplified conjugate-gradient method. Appl. Energy 2017, 190, 540–552. [Google Scholar] [CrossRef]
- Wen, Z.; Sun, Y.; Zhang, A.; Wang, B.; Wang, J.; Du, J. Performance analysis of a segmented annular thermoelectric generator. J. Electron. Mater. 2020, 49, 4830–4842. [Google Scholar] [CrossRef]
- Ge, Y.; Liu, Z.; Sun, H.; Liu, W. Optimal design of a segmented thermoelectric generator based on three-dimensional numerical simulation and multi-objective genetic algorithm. Energy 2018, 147, 1060–1069. [Google Scholar] [CrossRef]
- Zhu, L.; Li, H.; Chen, S.; Tian, X.; Kang, X.; Jiang, X.; Qiu, S. Optimization analysis of a segmented thermoelectric generator based on genetic algorithm. Renew. Energy 2020, 156, 710–718. [Google Scholar] [CrossRef]
- Wang, X.; Henshaw, P.; Ting, D.S.K. Exergoeconomic analysis for a thermoelectric generator using mutation particle swarm optimization (M-PSO). Appl. Energy 2021, 294, 116952. [Google Scholar] [CrossRef]
- Yin, E.; Li, Q. Multi-objective optimization of a concentrated spectrum splitting photovoltaic-thermoelectric hybrid system. Appl. Therm. Eng. 2023, 219, 119518. [Google Scholar] [CrossRef]
- Sanin-Villa, D.; Henao-Bravo, E.; Ramos-Paja, C.; Chejne, F. Evaluation of Power Harvesting on DC-DC Converters to Extract the Maximum Power Output from TEGs Arrays under Mismatching Conditions. J. Oper. Autom. Power Eng. 2023. [Google Scholar] [CrossRef]
- Montano, J.; Tobón, A.; Villegas, J.; Durango, M. Grasshopper optimization algorithm for parameter estimation of photovoltaic modules based on the single diode model. Int. J. Energy Environ. Eng. 2020, 11, 367–375. [Google Scholar] [CrossRef]
- Restrepo-Cuestas, B.J.; Montano, J.; Ramos-Paja, C.A.; Trejos-Grisales, L.A.; Orozco-Gutierrez, M.L. Parameter estimation of the bishop photovoltaic model using a genetic algorithm. Appl. Sci. 2022, 12, 2927. [Google Scholar] [CrossRef]
- Rosales-Muñoz, A.A.; Grisales-Noreña, L.F.; Montano, J.; Montoya, O.D.; Perea-Moreno, A.J. Application of the multiverse optimization method to solve the optimal power flow problem in direct current electrical networks. Sustainability 2021, 13, 8703. [Google Scholar] [CrossRef]
- Chi, R.; Li, H.; Shen, D.; Hou, Z.; Huang, B. Enhanced P-type control: Indirect adaptive learning from set-point updates. IEEE Trans. Autom. Control 2022. [Google Scholar] [CrossRef]
- Roman, R.C.; Precup, R.E.; Petriu, E.M. Hybrid data-driven fuzzy active disturbance rejection control for tower crane systems. Eur. J. Control 2021, 58, 373–387. [Google Scholar] [CrossRef]
- Stewart, W.E.; Caracotsios, M.; Sørensen, J.P. Parameter estimation from multiresponse data. AIChE J. 1992, 38, 641–650. [Google Scholar] [CrossRef]
- Montoya, O.D.; Grisales-Noreña, L.F.; Perea-Moreno, A.J. Optimal Investments in PV Sources for Grid-Connected Distribution Networks: An Application of the Discrete–Continuous Genetic Algorithm. Sustainability 2021, 13, 13633. [Google Scholar] [CrossRef]
- Rendón, R.A.G.; Ocampo, E.M.T.; Zuluaga, A.H.E. Técnicas Heurísticas y Metaheurísticas; Universidad Tecnológica de Pereira: Pereira, Colombia, 2015. [Google Scholar]
- Ćalasan, M.; Aleem, S.H.A.; Zobaa, A.F. On the root mean square error (RMSE) calculation for parameter estimation of photovoltaic models: A novel exact analytical solution based on Lambert W function. Energy Convers. Manag. 2020, 210, 112716. [Google Scholar] [CrossRef]
- Grisales-Noreña, L.F.; Montoya, O.D.; Ramos-Paja, C.A. An energy management system for optimal operation of BSS in DC distributed generation environments based on a parallel PSO algorithm. J. Energy Storage 2020, 29, 101488. [Google Scholar] [CrossRef]
- Montano, J.J.; Noreña, L.F.G.; Tobon, A.F.; Montoya, D.G. Estimation of the parameters of the mathematical model of an equivalent diode of a photovoltaic panel using a continuous genetic algorithm. IEEE Lat. Am. Trans. 2022, 20, 616–623. [Google Scholar] [CrossRef]
- Grisales-Noreña, L.F.; Rosales-Muñoz, A.A.; Cortés-Caicedo, B.; Montoya, O.D.; Andrade, F. Optimal Operation of PV Sources in DC Grids for Improving Technical, Economical, and Environmental Conditions by Using Vortex Search Algorithm and a Matrix Hourly Power Flow. Mathematics 2023, 11, 93. [Google Scholar] [CrossRef]
- Cortés-Caicedo, B.; Molina-Martin, F.; Grisales-Noreña, L.F.; Montoya, O.D.; Hernández, J.C. Optimal design of PV Systems in electrical distribution networks by minimizing the annual equivalent operative costs through the discrete-continuous vortex search algorithm. Sensors 2022, 22, 851. [Google Scholar] [CrossRef]
- Velásquez, L.; Posada, A.; Chica, E. Surrogate modeling method for multi-objective optimization of the inlet channel and the basin of a gravitational water vortex hydraulic turbine. Appl. Energy 2023, 330, 120357. [Google Scholar] [CrossRef]
- Doğan, B.; Ölmez, T. A new metaheuristic for numerical function optimization: Vortex Search algorithm. Inf. Sci. 2015, 293, 125–145. [Google Scholar] [CrossRef]
- Grisales-Noreña, L.F.; Montoya, O.D.; Hincapié-Isaza, R.A.; Granada Echeverri, M.; Perea-Moreno, A.J. Optimal location and sizing of DGs in DC networks using a hybrid methodology based on the PPBIL algorithm and the VSA. Mathematics 2021, 9, 1913. [Google Scholar] [CrossRef]
- Askarzadeh, A. A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm. Comput. Struct. 2016, 169, 1–12. [Google Scholar] [CrossRef]
- Grisales-Noreña, L.F.; Cortés-Caicedo, B.; Alcalá, G.; Montoya, O.D. Applying the Crow Search Algorithm for the Optimal Integration of PV Generation Units in DC Networks. Mathematics 2023, 11, 387. [Google Scholar] [CrossRef]
- Schubert, A.L.; Hagemann, D.; Voss, A.; Bergmann, K. Evaluating the model fit of diffusion models with the root mean square error of approximation. J. Math. Psychol. 2017, 77, 29–45. [Google Scholar] [CrossRef]
- Karunasingha, D.S.K. Root mean square error or mean absolute error? Use their ratio as well. Inf. Sci. 2022, 585, 609–629. [Google Scholar] [CrossRef]
- Sanin-Villa, D.; Monsalve-Cifuentes, O.D.; Henao-Bravo, E.E. Evaluation of Thermoelectric Generators under Mismatching Conditions. Energies 2021, 14, 8016. [Google Scholar] [CrossRef]
- Wee, D. Analysis of thermoelectric energy conversion efficiency with linear and nonlinear temperature dependence in material properties. Energy Convers. Manag. 2011, 52, 3383–3390. [Google Scholar] [CrossRef]
- Ju, C.; Dui, G.; Zheng, H.H.; Xin, L. Revisiting the temperature dependence in material properties and performance of thermoelectric materials. Energy 2017, 124, 249–257. [Google Scholar] [CrossRef]
- TECTEG MFR. Div. of Thermal Electronics Corp. Specifications TEG Module TEG1-12611-6.0. 2022. Available online: https://tecteg.com/wp-content/uploads/2014/09/SpecTEG1-12611-6.0TEG-POWERGENERATOR-new.pdf (accessed on 9 January 2022).
Method | Minimum RMS Error | Average RMS Error | Standard Deviation (%) | Processing Time (s) |
---|---|---|---|---|
VSA | 0.0018 | 0.0021 | 8.4311 | 212.1074 |
CGA | 0.0021 | 0.0028 | 13.6212 | 217.6131 |
SCA | 0.0019 | 0.0066 | 99.9015 | 893.2618 |
Method | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
VSA | 6.0609 | −0.0305 | 4.36 × 10−5 | 1.62 × 10−5 | 8.38 × 10−7 | −1.09 × 10−9 | 5.25 × 10−7 | 1.50 × 10−8 | 6.79 × 10−11 | 67.00 | 1.038 × 10−6 |
CGA | 6.5776 | −0.0276 | 4.23 × 10−5 | 9.75 × 10−6 | 8.71 × 10−7 | −1.08 × 10−9 | 4.96 × 10−7 | 1.75 × 10−8 | 6.26 × 10−11 | 66.00 | 1.021 × 10−6 |
SCA | 6.0250 | −0.0255 | 4.09 × 10−5 | 7.45 × 10−6 | 8.54 × 10−7 | −1.09× 10−9 | 4.92 × 10−7 | 1.48 × 10−8 | 6.82 × 10−11 | 69.00 | 1.051 × 10−6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanin-Villa, D.; Montoya, O.D.; Grisales-Noreña, L.F. Material Property Characterization and Parameter Estimation of Thermoelectric Generator by Using a Master–Slave Strategy Based on Metaheuristics Techniques. Mathematics 2023, 11, 1326. https://doi.org/10.3390/math11061326
Sanin-Villa D, Montoya OD, Grisales-Noreña LF. Material Property Characterization and Parameter Estimation of Thermoelectric Generator by Using a Master–Slave Strategy Based on Metaheuristics Techniques. Mathematics. 2023; 11(6):1326. https://doi.org/10.3390/math11061326
Chicago/Turabian StyleSanin-Villa, Daniel, Oscar Danilo Montoya, and Luis Fernando Grisales-Noreña. 2023. "Material Property Characterization and Parameter Estimation of Thermoelectric Generator by Using a Master–Slave Strategy Based on Metaheuristics Techniques" Mathematics 11, no. 6: 1326. https://doi.org/10.3390/math11061326
APA StyleSanin-Villa, D., Montoya, O. D., & Grisales-Noreña, L. F. (2023). Material Property Characterization and Parameter Estimation of Thermoelectric Generator by Using a Master–Slave Strategy Based on Metaheuristics Techniques. Mathematics, 11(6), 1326. https://doi.org/10.3390/math11061326