Discussion on Fuzzy Integral Inequalities via Aumann Integrable Convex Fuzzy-Number Valued Mappings over Fuzzy Inclusion Relation
Abstract
:1. Introduction
2. Preliminaries
- Let . Then, is referred to as a fuzzy number or fuzzy interval if the following properties are satisfied by :
- (1)
- should be normal if and
- (2)
- should be upper semi-continuous on if, for a given , and such that for all with
- (3)
- should be fuzzy convex, that is for all and
- (4)
- should be compactly supported, that is is compact.
- In the next work, we appoint to denote the set of all fuzzy numbers of .
3. Fuzzy Aumann Integral Inequalities for Fuzzy-Number Valued --Convexity
- Conversely, let be --convex on Then for all and we have Therefore, from (25), we have
- If then lower - -convex becomes lower -convex , that is
- Hence,
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Niculescu, C.P.; Persson, L.-E. (Eds.) Convex Functions and Their Applications; Springer: New York, NY, USA, 2006; ISBN 978-0-387-24300-9. [Google Scholar]
- Khan, M.B.; Santos-García, G.; Budak, H.; Treanțǎ, S.; Soliman, M.S. Some new versions of Jensen, Schur and Hermite-Hadamard type inequalities for (𝒑, 𝕵)-convex fuzzy-interval-valued functions. AIMS Math. 2023, 8, 7437–7470. [Google Scholar] [CrossRef]
- Khan, M.B.; Othman, H.A.; Voskoglou, M.G.; Abdullah, L.; Alzubaidi, A.M. Some Certain Fuzzy Aumann Integral Inequalities for Generalized Convexity via Fuzzy Number Valued Mappings. Mathematics 2023, 11, 550. [Google Scholar] [CrossRef]
- Khan, M.B.; Rakhmangulov, A.; Aloraini, N.; Noor, M.A.; Soliman, M.S. Generalized Harmonically Convex Fuzzy-Number-ValuedMappings and Fuzzy Riemann–Liouville Fractional Integral Inequalities. Mathematics 2023, 11, 656. [Google Scholar] [CrossRef]
- Khan, M.B.; Catas, A.; Aloraini, N.; Soliman, M.S. Some Certain Fuzzy Fractional Inequalities for Up and Down ℏ-Pre-Invex via Fuzzy-Number Valued Mappings. Fractal Fract. 2023, 7, 171. [Google Scholar] [CrossRef]
- Ibrahim, M.; Saeed, T.; Hekmatifar, M.; Sabetvand, R.; Chu, Y.M.; Toghraie, D. Investigation of dynamical behavior of 3LPT protein-water molecules interactions in atomic structures using molecular dynamics simulation. J. Mol. Liq. 2021, 329, 115615. [Google Scholar] [CrossRef]
- Xiong, P.Y.; Almarashi, A.; Dhahad, H.A.; Alawee, W.H.; Abusorrah, A.M.; Issakhov, A.; Abu-Hamhed, N.H.; Shafee, A.; Chu, Y.M. Nanomaterial transportation and exergy loss modeling incorporating CVFEM. J. Mol. Liq. 2021, 330, 115591. [Google Scholar] [CrossRef]
- Wang, T.; Almarashi, A.; Al-Turki, Y.A.; Abu-Hamdeh, N.H.; Hajizadeh, M.R.; Chu, Y.M. Approaches for expedition of discharging of PCM involving nanoparticles and radial fins. J. Mol. Liq. 2021, 329, 115052. [Google Scholar] [CrossRef]
- Xiong, P.Y.; Almarashi, A.; Dhahad, H.A.; Alawee, W.H.; Issakhov, A.; Chu, Y.M. Nanoparticles for phase change process of water utilizing FEM. J. Mol. Liq. 2021, 334, 116096. [Google Scholar] [CrossRef]
- Chu, Y.M.; Abu-Hamdeh, N.H.; Ben-Beya, B.; Hajizadeh, M.R.; Li, Z.; Bach, Q.V. Nanoparticle enhanced PCM exergy loss and thermal behavior by means of FVM. J. Mol. Liq. 2020, 320 Pt B, 114457. [Google Scholar] [CrossRef]
- Hadamard, J. Étude sur les propriétés des fonctions entiéres en particulier d’une fonction considéréé par Riemann. J. Math. Pures Appl. 1893, 58, 171–215. [Google Scholar]
- Moore, R.E. Interval Analysis; Prentice-Hall: Hoboken, NJ, USA, 1966. [Google Scholar]
- Snyder, J. Interval analysis for computer graphics. SIGGRAPH Comput. Graph. 1992, 26, 121–130. [Google Scholar] [CrossRef]
- Gasilov, N.A.; Emrah Amrahov, S. Solving a nonhomogeneous linear system of interval differential equations. Soft Comput. 2018, 22, 3817–3828. [Google Scholar] [CrossRef]
- De Weerdt, E.; Chu, Q.P.; Mulder, J.A. Neural network output optimization using interval analysis. IEEE Trans. Neural Netw. 2009, 20, 638–653. [Google Scholar] [CrossRef]
- Rothwell, E.J.; Cloud, M.J. Automatic error analysis using intervals. IEEE Trans. Edu 2011, 55, 9–15. [Google Scholar] [CrossRef]
- Chalco-Cano, Y.; Rufián-Lizana, A.; Román-Flores, H.; Jiménez-Gamero, M.D. Calculus for interval-valued functions using generalized Hukuhara derivative and applications. Fuzzy Sets Syst. 2013, 219, 49–67. [Google Scholar] [CrossRef]
- Chalco-Cano, Y.; Silva, G.N.; Rufián-Lizana, A. On the Newton method for solving fuzzy optimization problems. Fuzzy Sets Syst. 2015, 272, 60–69. [Google Scholar] [CrossRef]
- Entani, T.; Inuiguchi, M. Pairwise comparison based interval analysis for group decision aiding with multiple criteria. Fuzzy Sets Syst. 2015, 274, 79–96. [Google Scholar] [CrossRef]
- Osuna-Gómez, R.; Chalco-Cano, Y.; Hernández-Jiménez, B.; Ruiz-Garzón, G. Optimality conditions for generalized differentiable interval-valued functions. Information 2015, 321, 136–146. [Google Scholar] [CrossRef]
- Moore, R.E.; Kearfott, R.B.; Cloud, M.J. Introduction to Interval Analysis; Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, USA, 2009. [Google Scholar]
- Zhao, T.H.; Castillo, O.; Jahanshahi, H.; Yusuf, A.; Alassafi, M.O.; Alsaadi, F.E.; Chu, Y.M. A fuzzy-based strategy to suppress the novel coronavirus (2019-NCOV) massive outbreak. Appl. Comput Math. 2021, 20, 160–176. [Google Scholar]
- Zhao, T.H.; Wang, M.K.; Chu, Y.M. On the bounds of the perimeter of an ellipse. Acta Math. Sci. 2022, 42B, 491–501. [Google Scholar] [CrossRef]
- Zhao, T.H.; Wang, M.K.; Hai, G.J.; Chu, Y.M. Landen inequalities for Gaussian hypergeometric function. RACSAM Rev. R Acad. A 2022, 116, 1–23. [Google Scholar] [CrossRef]
- Wang, M.K.; Hong, M.Y.; Xu, Y.F.; Shen, Z.H.; Chu, Y.M. Inequalities for generalized trigonometric and hyperbolic functions with one parameter. J. Math. Inequal 2020, 14, 1–21. [Google Scholar] [CrossRef]
- Zhao, T.H.; Qian, W.M.; Chu, Y.M. Sharp power mean bounds for the tangent and hyperbolic sine means. J. Math. Inequal 2021, 15, 1459–1472. [Google Scholar] [CrossRef]
- Chu, Y.M.; Wang, G.D.; Zhang, X.H. The Schur multiplicative and harmonic convexities of the complete symmetric function. Math Nachr. 2011, 284, 53–663. [Google Scholar] [CrossRef]
- Kalsoom, H.; Latif, M.A.; Khan, Z.A.; Vivas-Cortez, M. Some New Hermite-Hadamard-Fejér fractional type inequalities for h-convex and harmonically h-Convex interval-valued Functions. Mathematics 2021, 10, 74. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Pecaric, J.; Persson, L.E. Some inequalities of Hadamard type. Soochow J. Math. 1995, 21, 335–341. [Google Scholar]
- Dragomir, S.S. Inequalities of Hermite-Hadamard type for functions of self adjoint operators and matrices. J. Math. Inequal 2017, 11, 241–259. [Google Scholar] [CrossRef]
- Latif, M. On Some New Inequalities of Hermite-Hadamard Type for Functions Whose Derivatives are s-convex in the Second Sense in the Absolute Value. Ukr. Math. J. 2016, 67, 1552–1571. [Google Scholar] [CrossRef]
- Chu, Y.M.; Xia, W.F.; Zhang, X.H. The Schur concavity, Schur multiplicative and harmonic convexities of the second dual form of the Hamy symmetric function with applications. J. Multivariate Anal. 2012, 105, 412–442. [Google Scholar] [CrossRef]
- Hajiseyedazizi, S.N.; Samei, M.E.; Alzabut, J.; Chu, Y.M. On multi-step methods for singular fractional q-integro-differential equations. Open Math. 2021, 19, 1378–1405. [Google Scholar] [CrossRef]
- Jin, F.; Qian, Z.S.; Chu, Y.M.; Rahman, M. On nonlinear evolution model for drinking behavior under Caputo-Fabrizio derivative. J. Appl. Anal. Comput. 2022, 12, 790–806. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.Z.; Khan, M.N.; Ahmad, I.; Ahmad, H.; Abu-Zinadah, H.; Chu, Y.M. Numerical solution of traveling waves in chemical kinetics: Time-fractional fisher’s equations. Fractals 2022, 30, 2240051. [Google Scholar] [CrossRef]
- Chu, Y.M.; Siddiqui, M.K.; Nasir, M. On topological co-indices of polycyclic tetrathiafulvalene and polycyclic oragano silicon dendrimers. Polycycl. Aromat. Compd. 2022, 42, 2179–2197. [Google Scholar] [CrossRef]
- Chu, Y.M.; Rauf, A.; Ishtiaq, M.; Siddiqui, M.K.; Muhammad, M.H. Topological properties of polycyclic aromatic nanostars dendrimers. Polycycl. Aromat. Compd. 2022, 42, 1891–1908. [Google Scholar] [CrossRef]
- Chu, Y.M.; Numan, M.; Butt, S.I.; Siddiqui, M.K.; Ullah, R.; Cancan, M.; Ali, U. Degree-based topological aspects of polyphenylene nanostructures. Polycycl. Aromat. Compd. 2022, 42, 2591–2606. [Google Scholar] [CrossRef]
- Chu, Y.M.; Muhammad, M.H.; Rauf, A.; Ishtiaq, M.; Siddiqui, M.K. Topological study of polycyclic graphite carbon nitride. Polycycl. Aromat. Compd. 2022, 42, 3203–3215. [Google Scholar] [CrossRef]
- Khan, M.B.; Santos-García, G.; Noor, M.A.; Soliman, M.S. New Class of Preinvex Fuzzy Mappings and Related Inequalities. Mathematics 2022, 10, 3753. [Google Scholar] [CrossRef]
- Khan, M.B.; Macías-Díaz, J.E.; Treanțǎ, S.; Soliman, M.S. Some Fejér-Type Inequalities for Generalized Interval-Valued Convex Functions. Mathematics 2022, 10, 3851. [Google Scholar] [CrossRef]
- Khan, M.B.; Santos-García, G.; Treanțǎ, S.; Soliman, M.S. New Class Up and Down Pre-Invex Fuzzy Number Valued Mappings and Related Inequalities via Fuzzy Riemann Integrals. Symmetry 2022, 14, 2322. [Google Scholar] [CrossRef]
- Khan, M.B.; Macías-Díaz, J.E.; Soliman, M.S.; Noor, M.A. Some New Integral Inequalities for Generalized Preinvex Functions in Interval-Valued Settings. Axioms 2022, 11, 622. [Google Scholar] [CrossRef]
- İşcan, İ. Hermite-Hadamard type inequalities for harmonically convex functions. Hacet. J. Math. Stat. 2014, 43, 935–942. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Awan, M.U.; Costache, S. Some integral inequalities for harmonically h-convex functions. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 2015, 77, 5–16. [Google Scholar]
- Román-Flores, H.; Chalco-Cano, Y.; Lodwick, W.A. Some integral inequalities for interval-valued functions. Comput. Appl. Math. 2018, 37, 1306–1318. [Google Scholar] [CrossRef]
- Chalco-Cano, Y.; Lodwick, W.A. Condori-Equice. Ostrowski type inequalities and applications in numerical integration for interval-valued functions. Soft Comput. 2015, 19, 3293–3300. [Google Scholar] [CrossRef]
- Costa, T.M.; Román-Flores, H.; Chalco-Cano, Y. Opial-type inequalities for interval-valued functions. Fuzzy Set. Syst. 2019, 358, 48–63. [Google Scholar] [CrossRef]
- Zhao, D.; Ali, M.A.; Murtaza, G.; Zhang, Z. On the Hermite-Hadamard inequalities for interval-valued coordinated convex functions. Adv. Differ. Equ. 2020, 2020, 1–14. [Google Scholar] [CrossRef]
- Sharma, N.; Singh, S.K.; Mishra, S.K.; Hamdi, A. Hermite-Hadamard type inequalities for interval-valued preinvex functions via Riemann-Liouville fractional integrals. J. Inequal. Appl. 2021, 2021, 98. [Google Scholar] [CrossRef]
- Nwaeze, E.R.; Khan, M.A.; Chu, Y.M. Fractional inclusions of the Hermite-Hadamard type for m-polynomial convex interval valued functions. Adv. Differ. Equ. 2020, 2020, 507. [Google Scholar] [CrossRef]
- Lai, K.K.; Bisht, J.; Sharma, N.; Mishra, S.K. Hermite-Hadamard-Type Fractional Inclusions for Interval-Valued Preinvex Functions. Mathematics 2022, 10, 264. [Google Scholar] [CrossRef]
- Zhao, T.H.; Bhayo, B.A.; Chu, Y.M. Inequalities for generalized Grötzsch ring function. Comput. Meth. Funct. Theory 2022, 22, 559–574. [Google Scholar] [CrossRef]
- Zhao, T.H.; He, Z.Y.; Chu, Y.M. Sharp bounds for the weighted Hölder mean of the zero-balanced generalized complete elliptic integrals. Comput. Meth. Funct. Theory 2021, 21, 413–426. [Google Scholar] [CrossRef]
- Zhao, T.H.; Wang, M.K.; Chu, Y.M. Concavity and bounds involving generalized elliptic integral of the first kind. J. Math Inequal 2021, 15, 701–724. [Google Scholar] [CrossRef]
- Zhao, T.H.; Wang, M.K.; Chu, Y.M. Monotonicity and convexity involving generalized elliptic integral of the first kind. RACSAM Rev. R Acad. A. 2021, 115, 46. [Google Scholar] [CrossRef]
- Chu, H.H.; Zhao, T.H.; Chu, Y.M. Sharp bounds for the Toader mean of order 3 in terms of arithmetic, quadratic and contra harmonic means. Math Slov. 2020, 70, 1097–1112. [Google Scholar] [CrossRef]
- Zhao, T.H.; He, Z.Y.; Chu, Y.M. On some refinements for inequalities involving zero-balanced hyper geometric function. AIMS Math. 2020, 5, 6479–6495. [Google Scholar] [CrossRef]
- Zhao, T.H.; Wang, M.K.; Chu, Y.M. A sharp double inequality involving generalized complete elliptic integral of the first kind. AIMS Math. 2020, 5, 4512–4528. [Google Scholar] [CrossRef]
- Khan, M.B.; Zaini, H.G.; Santos-García, G.; Noor, M.A.; Soliman, M.S. New Class Up and Down λ-Convex Fuzzy-Number Valued Mappings and Related Fuzzy Fractional Inequalities. Fractal Fract. 2022, 6, 679. [Google Scholar] [CrossRef]
- Khan, M.B.; Santos-García, G.; Treanțǎ, S.; Noor, M.A.; Soliman, M.S. Perturbed Mixed Variational-Like Inequalities and Auxiliary Principle Pertaining to a Fuzzy Environment. Symmetry 2022, 14, 2503. [Google Scholar] [CrossRef]
- Khan, M.B.; Zaini, H.G.; Macías-Díaz, J.E.; Soliman, M.S. Up and Down -Pre-Invex Fuzzy-Number Valued Mappings and Some Certain Fuzzy Integral Inequalities. Axioms 2023, 12, 1. [Google Scholar] [CrossRef]
- Zhao, D.; Chu, Y.M.; Siddiqui, M.K.; Ali, K.; Nasir, M.; Younas, M.T.; Cancan, M. On reverse degree based topological indices of polycyclic metal organic network. Polycycl. Aromat. Compd. 2022, 42, 4386–4403. [Google Scholar] [CrossRef]
- Ibrahim, M.; Saeed, T.; Algehyne, E.A.; Alsulami, H.; Chu, Y.M. Optimization and effect of wall conduction on natural convection in a cavity with constant temperature heat source: Using lattice Boltzmann method and neural network algorithm. J. Therm. Anal. Calorim. 2021, 144, 2449–2463. [Google Scholar] [CrossRef]
- Ibrahim, M.; Berrouk, A.S.; Algehyne, E.A.; Saeed, T.; Chu, Y.M. Numerical evaluation of exergy efficiency of innovative turbulators in solar collector filled with hybrid nanofluid. J. Therm. Anal. Calorim. 2021, 145, 1559–1574. [Google Scholar] [CrossRef]
- Ibrahim, M.; Berrouk, A.S.; Algehyne, E.A.; Saeed, T.; Chu, Y.M. Energetic and exergetic analysis of a new circular micro-heat sink containing nanofluid: Applicable for cooling electronic equipment. J. Therm. Anal. Calorim. 2021, 145, 1547–1557. [Google Scholar] [CrossRef]
- Ibrahim, M.; Saeed, T.; Algehyne, E.A.; Khan, M.; Chu, Y.M. The effects of L-shaped heat source in a quarter-tube enclosure filled with MHD nanofluid on heat transfer and irreversibilities, using LBM: Numerical data, optimization using neural network algorithm (ANN). J. Therm. Anal. Calorim. 2021, 144, 2435–2448. [Google Scholar] [CrossRef]
- Ibrahim, M.; Saleem, S.; Chu, Y.M.; Ullah, M.; Heidarshenas, B. An investigation of the exergy and first and second laws by two-phase numerical simulation of various nanopowders with different diameter on the performance of zigzag-wall micro-heat sink (ZZW-MHS). J. Therm. Anal. Calorim. 2021, 144, 1611–1621. [Google Scholar] [CrossRef]
- Madhukesh, J.K.; Kumar, R.N.; Gowda, R.P.; Prasannakumara, B.C.; Ramesh, G.K.; Khan, M.I.; Khan, S.U.; Chu, Y.M. Numerical simulation of AA7072-AA7075/ water-based hybrid nanofluid flow over a curved stretching sheet with Newtonian heating: A non-Fourier heat flux model approach. J. Mol. Liq. 2021, 335, 116103. [Google Scholar] [CrossRef]
- Li, J.; Alawee, W.H.; Rawa, M.J.; Dhahad, H.A.; Chu, Y.M.; Issakhov, A.; Abu-Hamdeh, N.H.; Hajizadeh, M.R. Heat recovery application of nanomaterial with existence of turbulator. J. Mol. Liq. 2021, 326, 115268. [Google Scholar] [CrossRef]
- Chu, Y.M.; Hajizadeh, M.R.; Li, Z.; Bach, Q.V. Investigation of nano powders influence on melting process within a storage unit. J. Mol. Liq. 2020, 318, 114321. [Google Scholar] [CrossRef]
- Chu, Y.M.; Yadav, D.; Shafee, A.; Li, Z.; Bach, Q.V. Influence of wavy enclosure and nanoparticles on heat release rate of PCM considering numerical study. J. Mol. Liq. 2020, 319, 114121. [Google Scholar] [CrossRef]
- Chu, Y.M.; Ibrahim, M.; Saeed, T.; Berrouk, A.S.; Algehyne, E.A.; Kalbasi, R. Examining rheological behavior of MWCNT-TiO2/5W40 hybrid nanofluid based on experiments and RSM/ANN modeling. J. Mol. Liq. 2021, 333, 115969. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Noor, K.I.; Chu, Y.M. New Hermite-Hadamard type inequalities for -convex fuzzy-interval-valued functions. Adv. Differ. Equ. 2021, 2021, 6–20. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Abdullah, L.; Chu, Y.M. Some new classes of preinvex fuzzy-interval-valued mappings and inequalities. Int. J. Comput. Intell. Syst. 2021, 14, 1403–1418. [Google Scholar] [CrossRef]
- Khan, M.B.; Santos-García, G.; Noor, M.A.; Soliman, M.S. Some new concepts related to fuzzy fractional calculus for up and down convex fuzzy-number valued mappings and inequalities. Chaos Solitons Fractals 2022, 164, 112692. [Google Scholar] [CrossRef]
- Zhao, D.; An, T.; Ye, G.; Liu, W. New Jensen and Hermite-Hadamard type inequalities for h-convex interval-valued functions. J. Inequal. Appl. 2018, 2018, 302. [Google Scholar] [CrossRef]
- Zhao, D.; An, T.; Ye, G.; Torres, D.F. On Hermite-Hadamard type inequalities for harmonical h-convex interval-valued functions. arXiv 2019, arXiv:1911.06900. [Google Scholar]
- An, Y.; Ye, G.; Zhao, D.; Liu, W. Hermite-Hadamard type inequalities for interval (h1, h2)-convex functions. Mathematics 2019, 7, 436. [Google Scholar] [CrossRef]
- Liu, R.; Xu, R. Hermite-Hadamard type inequalities for harmonical (h1, h2) convex interval-valued functions. Math. Found. Comput. 2021, 4, 89. [Google Scholar] [CrossRef]
- Almutairi, O.; Kiliçman, A.A.A. Some integral inequalities for h-Godunova-Levin preinvexity. Symmetry 2019, 11, 1500. [Google Scholar] [CrossRef]
- Diamond, P.; Kloeden, P.E. Metric Spaces of Fuzzy Sets: Theory and Applications; World Scientific: Singapore, 1994. [Google Scholar]
- Bede, B. Mathematics of Fuzzy Sets and Fuzzy Logic, Volume 295 of Studies in Fuzziness and Soft Computing; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Kaleva, O. Fuzzy differential equations. Fuzzy Sets Syst. 1987, 24, 301–317. [Google Scholar] [CrossRef]
- Aubin, J.P.; Cellina, A. Differential Inclusions: Set-Valued Maps and Viability Theory, Grundlehren der Mathematischen Wissenschaften; Springer-Verlag: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
- Aubin, J.P.; Frankowska, H. Set-Valued Analysis; Birkhäuser: Boston, MA, USA, 1990. [Google Scholar]
- Costa, T.M.; Roman-Flores, H. Some integral inequalities for fuzzy-interval-valued functions. Inform Sci. 2017, 420, 110–125. [Google Scholar] [CrossRef]
- Costa, T.M. Jensen’s inequality type integral for fuzzy-interval-valued functions. Fuzzy Sets Syst. 2017, 327, 31–47. [Google Scholar] [CrossRef]
- Zhang, D.; Guo, C.; Chen, D.; Wang, G. Jensen’s inequalities for set-valued and fuzzy set-valued functions. Fuzzy Sets Syst. 2020, 2020, 178–204. [Google Scholar] [CrossRef]
- Nanda, N.; Kar, K. Convex fuzzy mappings. Fuzzy Sets Syst. 1992, 48, 129–132. [Google Scholar] [CrossRef]
- Khan, M.B.; Othman, H.A.; Santos-García, G.; Noor, M.A.; Soliman., M.S. Some new concepts in fuzzy calculus for up and down λ-convex fuzzy-number valued mappings and related inequalities. AIMS Math. 2023, 8, 6777–6803. [Google Scholar] [CrossRef]
- Khan, M.B.; Santos-García, G.; Noor, M.A.; Soliman, M.S. New Hermite–Hadamard Inequalities for Convex Fuzzy-Number-Valued Mappings via Fuzzy Riemann Integrals. Mathematics 2022, 10, 3251. [Google Scholar] [CrossRef]
- Chu, Y.M.; Zhao, T.H. Concavity of the error function with respect to Hölder means. Math. Inequal. Appl. 2016, 19, 589–595. [Google Scholar] [CrossRef]
- Zhao, T.H.; Shi, L.; Chu, Y.M. Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means. RACSAM Rev. R Acad. A. 2020, 114, 96. [Google Scholar] [CrossRef]
- Zhao, T.H.; Zhou, B.C.; Wang, M.K.; Chu, Y.M. On approximating the quasi-arithmetic mean. J. Inequal. Appl. 2019, 2019, 42. [Google Scholar] [CrossRef]
- Zhao, T.H.; Wang, M.K.; Zhang, W.; Chu, Y.M. Quadratic transformation inequalities for Gaussian hyper geometric function. J. Inequal. Appl. 2018, 2018, 251. [Google Scholar] [CrossRef]
- Qian, W.M.; Chu, H.H.; Wang, M.K.; Chu, Y.M. Sharp inequalities for the Toader mean of order –1 in terms of other bivariate means. J. Math Inequal 2022, 16, 127–141. [Google Scholar] [CrossRef]
- Zhao, T.H.; Chu, H.H.; Chu, Y.M. Optimal Lehmer mean bounds for the nth power-type Toader mean of n = −1, 1, 3. J Math. Inequal 2022, 16, 157–168. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Abdeljawad, T.; Mousa, A.A.A.; Abdalla, B.; Alghamdi, S.M. LR-Preinvex Interval-Valued Functions and Riemann–Liouville Fractional Integral Inequalities. Fractal Fract. 2021, 5, 243. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Shah, N.A.; Abualnaja, K.M.; Botmart, T. Some New Versions of Hermite–Hadamard Integral Inequalities in Fuzzy Fractional Calculus for Generalized Pre-Invex Functions via Fuzzy-Interval-Valued Settings. Fractal Fract. 2022, 6, 83. [Google Scholar] [CrossRef]
- Khan, M.B.; Treanțǎ, S.; Soliman, M.S. Generalized Preinvex Interval-Valued Functions and Related Hermite–Hadamard Type Inequalities. Symmetry 2022, 14, 1901. [Google Scholar] [CrossRef]
- Saeed, T.; Khan, M.B.; Treanțǎ, S.; Alsulami, H.H.; Alhodaly, M.S. Interval Fejér-Type Inequalities for Left and Right-λ-Preinvex Functions in Interval-Valued Settings. Axioms 2022, 11, 368. [Google Scholar] [CrossRef]
- Khan, M.B.; Cătaş, A.; Alsalami, O.M. Some New Estimates on Coordinates of Generalized Convex Interval-Valued Functions. Fractal Fract. 2022, 6, 415. [Google Scholar] [CrossRef]
- Ibrahim, M.; Saeed, T.; Alshehri, A.M.; Chu, Y.M. Using artificial neural networks to predict the rheological behavior of non-Newtonian grapheme-ethylene glycol nanofluid. J. Therm. Anal. Calorim. 2021, 145, 1925–1934. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.B.; Othman, H.A.; Rakhmangulov, A.; Soliman, M.S.; Alzubaidi, A.M. Discussion on Fuzzy Integral Inequalities via Aumann Integrable Convex Fuzzy-Number Valued Mappings over Fuzzy Inclusion Relation. Mathematics 2023, 11, 1356. https://doi.org/10.3390/math11061356
Khan MB, Othman HA, Rakhmangulov A, Soliman MS, Alzubaidi AM. Discussion on Fuzzy Integral Inequalities via Aumann Integrable Convex Fuzzy-Number Valued Mappings over Fuzzy Inclusion Relation. Mathematics. 2023; 11(6):1356. https://doi.org/10.3390/math11061356
Chicago/Turabian StyleKhan, Muhammad Bilal, Hakeem A. Othman, Aleksandr Rakhmangulov, Mohamed S. Soliman, and Alia M. Alzubaidi. 2023. "Discussion on Fuzzy Integral Inequalities via Aumann Integrable Convex Fuzzy-Number Valued Mappings over Fuzzy Inclusion Relation" Mathematics 11, no. 6: 1356. https://doi.org/10.3390/math11061356
APA StyleKhan, M. B., Othman, H. A., Rakhmangulov, A., Soliman, M. S., & Alzubaidi, A. M. (2023). Discussion on Fuzzy Integral Inequalities via Aumann Integrable Convex Fuzzy-Number Valued Mappings over Fuzzy Inclusion Relation. Mathematics, 11(6), 1356. https://doi.org/10.3390/math11061356