Next Article in Journal
Personalized Movie Recommendations Based on a Multi-Feature Attention Mechanism with Neural Networks
Previous Article in Journal
Machine-Learning Approach for Risk Estimation and Risk Prediction of the Effect of Climate on Bovine Respiratory Disease
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Discussion on Fuzzy Integral Inequalities via Aumann Integrable Convex Fuzzy-Number Valued Mappings over Fuzzy Inclusion Relation

by
Muhammad Bilal Khan
1,*,
Hakeem A. Othman
2,
Aleksandr Rakhmangulov
3,*,
Mohamed S. Soliman
4 and
Alia M. Alzubaidi
2
1
Department of Mathematics, COMSATS University Islamabad, Islamabad 44000, Pakistan
2
Department of Mathematics, AL-Qunfudhah University College, Umm Al-Qura University, Makkah 24382, Saudi Arabia
3
Department of Logistics and Transportation Systems Management, Nosov Magnitogorsk State Technical University, Magnitogorsk 455000, Russia
4
Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
*
Authors to whom correspondence should be addressed.
Mathematics 2023, 11(6), 1356; https://doi.org/10.3390/math11061356
Submission received: 11 February 2023 / Revised: 8 March 2023 / Accepted: 8 March 2023 / Published: 10 March 2023
(This article belongs to the Section Fuzzy Sets, Systems and Decision Making)

Abstract

:
Convex bodies are naturally symmetrical. There is also a correlation between the two variables of symmetry and convexity. Their use, in either case, has been feasible in recent years because of their interchangeable and similar properties. The proposed analysis provides information on a new class for a convex function which is known as up and down X 1 , X 2 -convex fuzzy-Number valued mappings ( U D - X 1 , X 2 -convex F N V M ). Using this class, we disclosed a number of new versions of integral inequalities. Additionally, we give a number of new related integral inequalities connected to the well-known Hermite-Hadamard-type inequalities. In conclusion, some examples are given to back up and show the value of these new results.

1. Introduction

The convex function hypothesis provides us with incredible standards and techniques to focus on a wide range of problems in both pure and applied sciences. Numerous important scientific researchers consistently work to enhance and benefit from these initial ideas in order to profit from the convexity hypothesis. This hypothesis is assumed to play a significant and vital role in applied mathematics, notably in nonlinear programming, financial mathematics, mathematical statistics, optimization theory, and functional analysis. The investigation of mathematical inequalities relies heavily on the theory of convexity. Because of how their definitions and characteristics behave, there is a close connection between the theory of inequality, fractional integrals, and convex functions.
In a classical approach, a real-valued mapping Υ : K R is called convex if
Υ μ ϰ + 1 μ y μ Υ ϰ + ( 1 μ ) Υ y ,
for all ϰ , y K , μ 0 , 1 , where K is a convex set [1].
Inequalities such as the Hermite-Hadamard (H-H) inequality, the Ostrowski inequality, and Simpson’s inequality are produced by convex functions. One of the findings regarding convex functions that have been the subject of the greatest research is the H-H double inequality. We now have both the required and sufficient conditions for a function to be convex [2,3,4,5,6,7,8,9,10]. One of the most beneficial findings in mathematical analysis is the H-H inequality. This is also known as the classical inequality of the H-H inequality.
The H-H-inequality [11] for convex mapping Υ : K R on an interval K = [ ϛ , ] is
Υ + ς 2 1 ς ς Υ x d x Υ + Υ ς 2 ,
for , ς K .
Interval analysis, which Moore first proposed in his well-known book [12], is one of the most important methods in numerical analysis. As a result, it has found applications in a wide range of industries, including computer graphics [13,14], differential equations for intervals [15], neural network output optimization [16], and many more. Readers interested in these results and applications should read [17,18,19,20,21,22,23,24,25,26,27].
On the other hand, the generalized convexity of mappings is a powerful tool for solving a wide range of problems in applied analysis and nonlinear analysis, including for many concerns in mathematical physics. Several types of convexity are related to the Hermite-Hadamard inequality; see [28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43] for examples. Iscan [44] presented the concept of harmonic convexity and numerous associated Hermite-Hadamard-type inequalities in 2014. The authors of [45] published the first description of harmonic h-convex functions and several related Hermite-Hadamard inequalities in 2015. Various studies have been conducted in recent years to investigate the relationship between integral inequalities and interval-valued functions, generating numerous noteworthy conclusions. The Minkowski-type inequalities and the Beckenbach-type inequalities were established by Roman-Flores [46], Ostrowski-type inequalities were examined by Chalco-Cano [47] using the extended Hukuhara derivative, and Opial-type inequalities were first introduced by Costa [48]. Zhao et al. [49] recently built on this notion by incorporating interval-valued coordinated convex functions and generating related H-H type inequalities. This was also used to support the H-H- and Fejér-type inequalities for the pre-invex function [50] and the convex interval-valued function for n-polynomials [51]. The idea of interval-valued pre-invex functions was first proposed by Lai et al. [52], and recently this concept has been extended to include interval-valued coordinated pre-invex functions. Similarly, different authors have contributed in this filed to define various type of inequalities, e.g., [53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73] and the references therein.
Moreover, Khan et al. extended these concepts in the field of fuzzy environments such as H-H type inequalities for (h1, h2)-convex fuzzy-number valued mappings [74], (h1, h2)-convex fuzzy-number valued mappings [75], and up and down convex fuzzy-number valued mappings [76]. The H-H inequality was expanded to include interval h-convex functions [77], interval harmonic h-convex functions [78], interval (h1, h2)-convex functions [79], and interval harmonically (h1, h2)-convex functions [80] when interval analysis was combined. The authors of [81] used the definition of the h-Godunova-Levin function to account for this inequality. For more information, see [82,83,84,85,86,87,88,89,90,91,92] and the references therein. On the other hand, Chu et al. defined different classes of convex functions and proposed various types of inequalities. Moreover, they found some error bound inequalities, as well as discussing the validity of the results with the help of well-defined examples; see [93,94,95,96,97,98,99,100,101,102,103,104] and the references therein.
The following outline covers the remaining section of this manuscript. Several fundamental principles of fractional calculus are covered in Section 2. The new class of convex fuzzy number-valued mappings and related integral inequalities over fuzzy Aunnam integrals are introduced in Section 3, and rely on the techniques that are typically used in inequalities theory. We also provide illustrative examples of the key findings. In Section 4, we discuss conclusions and future planning.

2. Preliminaries

Let X C be the space of all closed and bounded intervals of R and A X C be defined by
A = A * , A * = ϰ R | A * ϰ A * , A * , A * R
If A * = A * , then A is referred to as degenerate. In this article, all intervals will be non-degenerate intervals. If A * 0 , then A * , A * is referred to as a positive interval. The set of all positive intervals is denoted by X C + and defined as
X C + = A * , A * : A * , A * X C   a n d   A * 0 .
Let i R and i A be defined by
i A = i A * , i A *   i f   i > 0 , 0   i f   i = 0 , i A * , i A *   i f   i < 0 .
Then, the Minkowski difference B A , addition A + B and A × B for A , B X C are defined by
B * , B * + A * , A * = B * + A * , B * + A * ,
B * , B * × A * , A * = m i n B * A * , B * A * , B * A * , B * A * , m a x B * A * , B * A * , B * A * , B * A *
B * , B * A * , A * = B * A * , B * A * ,
 Remark 1 
([89]). For given B * , B * , A * , A * R I , we say that   B * , B * I A * , A * if, and only if,   B * A * , B * A *  ; this is a partial interval or left and right order relation.
  • If  B * , B * , A * , A * R I ,   we say that  B * , B * I A * , A *   if, and only if,    A * B * , B * A *  ; this is an inclusion interval or up and down ( U D  ) order relation.
  • For   B * , B * , A * , A * X C ,   the Hausdorff–Pompeiu distance between intervals   B * , B *  , and  A * , A *   is defined by
    d H B * , B * , A * , A * = m a x B * A * , B * A * .
    It is a familiar fact that X C , d H is a complete metric space [82,85,86].
 Definition 1 
([82,83]). A fuzzy subset  A of R  is distinguished by a mapping   f A : R 0,1 , called the membership mapping of   A  . That is, a fuzzy subset   A of   R is a mapping   f A : R [ 0,1 ]  . So, for further study, we have chosen this notation. We appoint   F R to denote the set of all fuzzy subsets of   R .
  • Let   A F R  . Then,   A is referred to as a fuzzy number or fuzzy interval if the following properties are satisfied by   A  :
(1)
A  should be normal if  ϰ R +  and  A ϰ = 1 ;
(2)
A  should be upper semi-continuous on  R +  if, for a given  ϰ R +  ,  ε > 0  and  δ > 0 ,  such that  A ϰ A y < ε  for all  y R +  with  ϰ y < δ ;
(3)
A  should be fuzzy convex, that is   A 1 ϰ + y m i n A ϰ , A y ,  for all  ϰ , y R + ,  and  [ 0 , 1 ]
(4)
A  should be compactly supported, that is  c l ϰ R + | A ϰ > 0  is compact.
  • In the next work, we appoint   F R to denote the set of all fuzzy numbers of   R + .
 Definition 2 
([82,83]). Given A F R  , the level sets or cut sets are given by   A i = ϰ R + | A ϰ > i for all   i [ 0 , 1 ] and by   A 0 = ϰ R + | A ϰ > 0  . These sets are known as   i  -level sets or   i  -cut sets of   A .
 Proposition 1 
([87]).  Let A , B F R  . Then the relation   F is given on   F R by
A F B   when ,   and   only   when ,   A i I B i ,   for   every   i [ 0 , 1 ]
this is a partial-order or left and right relation.
 Proposition 2. 
([76]).  Let A , B F R  . Then the inclusion relation   F is given on   F R by
A F B
When, and only when, A i I B i , for every i [ 0 , 1 ] .
This is an up and down fuzzy inclusion relation.
Remember the approaching notions, which are offered in the literature. If A , B F R and R , then, for every i 0 , 1 , the arithmetical operations are defined by
A B i = A i + B i ,
A B i = A i × B i ,
A i = . A i .
These operations follow directly from the Equations (6), (7) and (4), respectively.
 Theorem 1 
([82]). The space F R dealing with a supremum metric, i.e., for   A , B F R
d A , B = sup 0 i 1 d H A i , B i ,
is a complete metric space, where   H denotes the well-known Hausdorff metric on space of intervals.
Now, we define and discuss some properties of Riemann integral operators for interval- and fuzzy-number valued mappings.
 Theorem 2 
([82,84]). If Υ : [ ϛ , ] R X C is an interval-valued mapping ( I V M  ) satisfying that   Υ ϰ = Υ * ϰ , Υ * ϰ  , then   Υ is Aumann integrable (IA-integrable) over   [ ϛ , ] when, and only when,   Υ * ϰ and   Υ * ϰ are both integrable over   ϛ , such that
I A ϛ Υ ϰ d ϰ = ϛ Υ * ϰ d ϰ , ϛ Υ * ϰ d ϰ
 Definition 3 
([88]). Let Υ : I R F R be referred to as fuzzy-number valued mapping   ( F N V M )  . Then, parametrized form is given by   Υ i : [ ϛ , ] R K C and defined as   Υ i ϰ = Υ * ϰ , i , Υ * ϰ , i for every   ϰ I and for every   i 0 , 1  . Here, for every   i 0 , 1 , the end point real valued mappings   Υ * , i , Υ * , i : I R are called lower and upper mappings of   Υ .
 Definition 4 
([88]). Let Υ ~ : I R F R be a   F N V M  . Then   Υ ~ ϰ is referred to as continuous at   ϰ I , if for every   i 0 , 1 , Υ i ϰ is continuous when, and only when, both end point mappings   Υ * ϰ , i and   Υ * ϰ , i are continuous at   ϰ I .
 Definition 5 
([84]). Let Υ ~ : [ ϛ , ] R F R be   F N V M  . The fuzzy Aumann integral ( F A  -integral) of   Υ ~ over   ϛ , , denoted by   F A ϛ Υ ~ ϰ d ϰ  , is defined level-wise by
F A ϛ Υ ~ ϰ d ϰ i = I A ϛ Υ i ϰ d ϰ = ϛ Υ ϰ , i d ϰ : Υ ϰ , i S Υ i ,
where   S Υ i = Υ . , i R : Υ . , i   i s   i n t e g r a b l e   a n d   Υ ϰ , i Υ i ϰ ,  for every   i 0 , 1 . Υ ~ is   F A  -integrable over   [ ϛ , ] if   F A ϛ Υ ~ ϰ d ϰ F R .
 Theorem 3 
([87]). Let  Υ : [ ϛ , ] R F R  be a  F N V M , whose parametrized form is given by  Υ i : [ ϛ , ] R K C  and defined as  Υ i ϰ = Υ * ϰ , i , Υ * ϰ , i  for every  ϰ [ ϛ , ]  and for every   i 0 , 1 . Then Υ is F A -integrable over  [ ϛ , ]  when, and only when,   Υ * ϰ , i and Υ * ϰ , i  are both integrable over  [ ϛ , ] . Moreover, if  Υ is F A -integrable over  ϛ , ,  then
F A ϛ Υ ϰ d ϰ i = ϛ Υ * ϰ , i d ϰ , ϛ Υ * ϰ , i d ϰ = I A ϛ Υ i ϰ d ϰ
for every   i 0 , 1 .

3. Fuzzy Aumann Integral Inequalities for Fuzzy-Number Valued U D - X 1 , X 2 -Convexity

In this section, we put forward some definitions of U D - X 1 , X 2 -convex F N V M s and investigate some basic properties using fuzzy Aumann integrals.
 Definition 6. 
Let  K  be a convex set and  X 1 , X 2 : [ 0 , 1 ] K R +  such that  X 1 , X 2 0 . Then  F N V M Υ : K F R  is said to be  U D - X 1 , X 2 -convex  F N V M on K  if
Υ ~ μ ϰ + 1 μ y F X 1 μ X 2 1 μ Υ ~ ϰ X 1 1 μ X 2 μ Υ ~ y ,
for all   ϰ , y K , μ 0 , 1 . Υ is U D - X 1 , X 2 -concave on  K  if inequality (19) is reversed Υ ~  is known as  U D - X 1 , X 2 -affine mapping on   K  if
Υ μ ϰ + 1 μ y = X 1 μ X 2 1 μ Υ ϰ X 1 1 μ X 2 μ Υ y ,
for all ϰ , y K , μ 0 , 1 .
 Remark 2. 
If  Υ  is  U D - X 1 , X 2 -convex  F N V M , then  g Υ  is also  U D - X 1 , X 2 -convex  F N V M for g 0 .
  • If  Υ and T  are both  U D - X 1 , X 2 -convex  F N V M s, then   m a x Υ ( ϰ ) , T ( ϰ )  is also a  U D - X 1 , X 2 -convex  F N V M .
  • If   X 2 μ 1 , then   U D  - X 1 , X 2  -convex   F N V M becomes   U D  - X 1  -convex   F N V M [81]:
    Υ μ ϰ + 1 μ y F X 1 μ Υ ϰ X 1 1 μ Υ y , ϰ , y K , μ 0 , 1 .
    If   X 1 μ = μ s  ,   X 2 μ 1 , then   U D  - X 1 , X 2  -convex   F N V M becomes   U D  - s  -convex   F N V M [81]:
    Υ μ ϰ + 1 μ y F μ s Υ ϰ 1 μ s Υ y , ϰ , y K , μ 0 , 1 .
    If   X 1 μ = μ , X 2 μ 1 , then   U D  - X 1 , X 2  -convex   F N V M becomes   U D  -convex   F N V M [85]:
    Υ μ ϰ + 1 μ y F μ Υ ϰ 1 μ Υ y , ϰ , y K , μ 0 , 1 .
    If   X 1 μ = X 2 μ 1 , then   U D  - X 1 , X 2  -convex   F N V M becomes   U D  - P  -convex   F N V [81]:
    Υ μ ϰ + 1 μ y F Υ ϰ Υ y , ϰ , y K , μ 0 , 1 .
 Theorem 4. 
Let  K  be a convex set, X 1 , X 2 : [ 0 , 1 ] K R +  such that  X 1 , X 2 0 , and let  Υ : K F R  be a  F N V M  whose parametrized form is given by  Υ i : [ ϛ , ] R K C  and defined as
Υ i ϰ = Υ * ϰ , i , Υ * ϰ , i , ϰ K .
for all  ϰ [ ϛ , ]  and for all  i 0 , 1 . Then  Υ is U D - X 1 , X 2 -convex on  K ,  if, and only if, for all  i 0 , 1 , Υ * ϰ , i  and  Υ * ϰ , i  are  X 1 , X 2 -convex and concave mappings, respectively.
 Proof. 
Assume that for each i 0 , 1 , Υ * ϰ , i and Υ * ϰ , i are X 1 , X 2 -convex mappings on K . Then from (11), we have
Υ * μ ϰ + 1 μ y , i X 1 μ X 2 1 μ Υ * ϰ , i + X 1 1 μ X 2 μ Υ * y , i
ϰ , y K , μ 0 , 1 ,
and
Υ * μ ϰ + 1 μ y , i X 1 μ X 2 1 μ Υ * ϰ , i + X 1 1 μ X 2 μ Υ * y , i ,
ϰ , y K , μ 0 , 1 .
Then by (25), (4) and (5), we obtain
Υ i μ ϰ + 1 μ y = Υ * μ ϰ + 1 μ y , i , Υ * μ ϰ + 1 μ y , i ,
I X 1 μ X 2 1 μ Υ * ϰ , i , X 1 μ X 2 1 μ Υ * ϰ , i
+ X 1 1 μ X 2 μ Υ * y , i , X 1 1 μ X 2 μ Υ * y , i ,
that is
Υ μ ϰ + 1 μ y F X 1 μ X 2 1 μ Υ ϰ X 1 1 μ X 2 μ Υ y ,
ϰ , y K , μ 0 , 1 . Hence, Υ is U D - X 1 , X 2 -convex F N V M on K .
  • Conversely, let Υ be U D - X 1 , X 2 -convex F N V M on K . Then for all ϰ , y K and μ 0 , 1 , we have Υ μ ϰ + 1 μ y F X 1 μ X 2 1 μ Υ ϰ X 1 1 μ X 2 μ Υ y . Therefore, from (25), we have
    Υ i μ ϰ + 1 μ y = Υ * μ ϰ + 1 μ y , i , Υ * μ ϰ + 1 μ y , i .
    Again, from (25), (4) and (5), we obtain
    X 1 μ X 2 1 μ Υ i ϰ + X 1 1 μ X 2 μ Υ i ϰ
    = X 1 μ X 2 1 μ Υ * ϰ , i , X 1 μ X 2 1 μ Υ * ϰ , i
    + X 1 1 μ X 2 μ Υ * y , i , X 1 1 μ X 2 μ Υ * y , i ,
    for all ϰ , y K and μ 0 , 1 . Then by U D - X 1 , X 2 -convexity of Υ , we have for all ϰ , y K and μ 0 , 1 such that
    Υ * μ ϰ + 1 μ y , i X 1 μ X 2 1 μ Υ * ϰ , i + X 1 1 μ X 2 μ Υ * y , i ,
    and
    Υ * μ ϰ + 1 μ y , i X 1 μ X 2 1 μ Υ * ϰ , i + X 1 1 μ X 2 μ Υ * y , i ,
    for each i 0 , 1 . Hence, the result follows. □
 Example 1. 
We consider   X 1 μ = μ , X 2 μ 1 , for   μ 0 , 1 and the   F N V M  s   Υ : [ 0 , 1 ] F R defined by
Υ ϰ σ = σ 2 ϰ 2   σ   0 , 2 ϰ 4 ϰ 2 σ 2 ϰ 2   σ   ( 2 ϰ , 4 ϰ ] 0   o t h e r w i s e ,
Then, for each   i 0 , 1 , we have   Υ i ϰ = 2 i ϰ , ( 4 2 i ) ϰ  . Since end point functions   Υ * ϰ , i , Υ * ϰ , i are   X 1 , X 2  -convex functions for each   i [ 0 , 1 ]  . Hence   Υ ϰ is   U D  - X 1 , X 2  -convex   F N V M .
 Definition 7. 
Let   K be convex set,   X 1 , X 2 : [ 0 , 1 ] K R + such that   X 1 , X 2 0 and let   Υ : K F R be a   F N V M whose parametrized form is given by   Υ i : [ ϛ , ] R K C and defined as
Υ i ϰ = Υ * ϰ , i , Υ * ϰ , i , ϰ K ,
for all   ϰ [ ϛ , ] and for all   i 0 , 1  . Then   Υ is lower   U D  - X 1 , X 2  -convex (concave) on   K , if, and only if, for all   i 0 , 1 ,
Υ * μ ϰ + 1 μ y , i X 1 μ X 2 1 μ Υ * ϰ , i + X 1 1 μ X 2 μ Υ * y , i ,
and
Υ * μ ϰ + 1 μ y , i = X 1 μ X 2 1 μ Υ * ϰ , i + X 1 1 μ X 2 μ Υ * y , i .
 Definition 8. 
Let   K be convex set,   X 1 , X 2 : [ 0 , 1 ] K R + such that   X 1 , X 2 0 and let   Υ : K F R be a   F N V M whose parametrized form is given by   Υ i : [ ϛ , ] R K C and defined as
Υ i ϰ = Υ * ϰ , i , Υ * ϰ , i , ϰ K .
for all   ϰ [ ϛ , ] and for all   i 0 , 1  . Then   Υ is upper   U D  - X 1 , X 2  -convex (concave) on   K , if, and only if, for all   i 0 , 1 ,
Υ * μ ϰ + 1 μ y , i = X 1 μ X 2 1 μ Υ * ϰ , i + X 1 1 μ X 2 μ Υ * y , i ,
and
Υ * μ ϰ + 1 μ y , i X 1 μ X 2 1 μ Υ * ϰ , i + X 1 1 μ X 2 μ Υ * y , i .
Now, we present some new estimates of fuzzy Annum integral inequalities over   U D  - X 1 , X 2  -convex   F N V M with   X 1 , X 2 : [ 0 , 1 ] R + .
 Remark 3. 
Now we obtain some special results, applying mild restrictions over the definition of   U D  - X 1 , X 2  -convex   F N V M  s, such that [74]:
  • If   X 2 μ 1 , then lower   U D  - X 1 , X 2  -convex   F N V M becomes lower   X 1  -convex   F N V M  , that is
    Υ μ ϰ + 1 μ y F X 1 μ Υ ϰ X 1 1 μ Υ y , ϰ , y K , μ 0 , 1 .
    If   X 1 μ = μ s  ,   X 2 μ 1 , then lower   U D  - X 1 , X 2  -convex   F N V M becomes lower   s  -convex   F N V M  , that is
    Υ μ ϰ + 1 μ y F μ s Υ ϰ 1 μ s Υ y , ϰ , y K , μ 0 , 1 .
    If   X 1 μ = μ , X 2 μ 1 , then lower   U D  - X 1 , X 2  -convex   F N V M becomes lower convex   F N V M  , that is
    Υ μ ϰ + 1 μ y F μ Υ ϰ 1 μ Υ y , ϰ , y K , μ 0 , 1 .
    If   X 1 μ = X 2 μ 1 , then lower   U D  - X 1 , X 2  -convex   F N V M becomes lower   P  -convex   F N V M  , that is
    Υ μ ϰ + 1 μ y F Υ ϰ Υ y , ϰ , y K , μ 0 , 1 .
    Here is our first main result, which depends upon the fuzzy Auman integral and   U D  - X 1 , X 2  -convex   F N V M with   X 1 , X 2 : [ 0 , 1 ] R + .
 Theorem 5. 
Let   Υ : ϛ , F R be a   U D  - X 1 , X 2  -convex   F N V M with   X 1 , X 2 : [ 0 , 1 ] R + and   X 1 1 2 X 2 1 2 0 , whose parametrized form is given by   Υ i : [ ϛ , ] R K C and defined as   Υ i ϰ = Υ * ϰ , i , Υ * ϰ , i for all   ϰ ϛ , and for all   i 0 , 1  . If   Υ I A ϛ , , i  , then
1 2 X 1 1 2 X 2 1 2 Υ ϛ + 2 F 1 ϛ F A ϛ Υ ϰ d ϰ F Υ ϛ Υ 0 1 X 1 μ X 2 1 μ d μ .
 Proof. 
Let Υ : ϛ , F R be a U D - X 1 , X 2 -convex F N V M . Then, by hypothesis, we have
1 X 1 1 2 X 2 1 2 Υ ϛ + 2 F Υ μ ϛ + 1 μ Υ 1 μ ϛ + μ .
Therefore, for every i [ 0 , 1 ] , we have
1 X 1 1 2 X 2 1 2 Υ * ϛ + 2 , i Υ * μ ϛ + 1 μ , i + Υ * 1 μ ϛ + μ , i , 1 X 1 1 2 X 2 1 2 Υ * ϛ + 2 , i Υ * μ ϛ + 1 μ , i + Υ * 1 μ ϛ + μ , i .
Then
1 X 1 1 2 X 2 1 2 0 1 Υ * ϛ + 2 , i d μ 0 1 Υ * μ ϛ + 1 μ , i d μ + 0 1 Υ * 1 μ ϛ + μ , i d μ , 1 X 1 1 2 X 2 1 2 0 1 Υ * ϛ + 2 , i d μ 0 1 Υ * μ ϛ + 1 μ , i d μ + 0 1 Υ * 1 μ ϛ + μ , i d μ .
It follows that
1 X 1 1 2 X 2 1 2 Υ * ϛ + 2 , i 2 ϛ ϛ Υ * ϰ , i d ϰ , 1 X 1 1 2 X 2 1 2 Υ * ϛ + 2 , i 2 ϛ ϛ Υ * ϰ , i d ϰ .
That is
1 X 1 1 2 X 2 1 2 Υ * ϛ + 2 , i , Υ * ϛ + 2 , i I 2 ϛ ϛ Υ * ϰ , i d ϰ , ϛ Υ * ϰ , i d ϰ .
Thus,
1 2 X 1 1 2 X 2 1 2 Υ ϛ + 2 F 1 ϛ F A ϛ Υ ϰ d ϰ .
In a similar way as the above, we have
1 ϛ F A ϛ Υ ϰ d ϰ F Υ ϛ Υ 0 1 X 1 μ X 2 1 μ d μ .
Combining (32) and (33), we have
1 2 X 1 1 2 X 2 1 2 Υ ϛ + 2 F 1 ϛ F A ϛ Υ ϰ d ϰ F Υ ϛ Υ 0 1 X 1 μ X 2 1 μ d μ
hence, the result follows. □
 Remark 4. 
If   X 2 μ 1 , then Theorem 5 reduces to the result for   U D  - X 1  -convex   F N V [81]:
1 2 X 1 1 2 Υ ϛ + 2 F 1 ϛ F A ϛ Υ ϰ d ϰ F Υ ϛ Υ 0 1 X 1 μ d μ .
If   X 1 μ = μ s and   X 2 μ 1  , then Theorem 5 reduces to the result for   U D  - s  -convex   F N V M  :
2 s 1 Υ ϛ + 2 F 1 ϛ F A ϛ Υ ϰ d ϰ F 1 s + 1 Υ ϛ Υ .
If   X 1 μ = μ and   X 2 μ 1 , then Theorem 5 reduces to the result for   U D  -convex   F N V M [76]:
Υ ϛ + 2 F 1 ϛ F A ϛ Υ ϰ d ϰ F Υ ϛ Υ 2 .
If   X 1 μ = X 2 μ 1 , then Theorem 5 reduces to the result for   U D  - P  -convex   F N V  M [81]:
1 2 Υ ϛ + 2 F 1 ϛ F A ϛ Υ ϰ d ϰ F Υ ϛ Υ .
If   Υ * ϛ , i = Υ * , i then Theorem 5 reduces to the result for the classical   X 1 , X 2  -convex function,
1 2 X 1 1 2 X 2 1 2 Υ ϛ + 2 1 ϛ ϛ Υ ϰ d ϰ Υ ϛ + Υ 0 1 X 1 μ X 2 1 μ d μ .
 Example 2: 
We consider the fuzzy-number valued mapping   Υ : ϛ , = [ 2 , 3 ] F R defined by
Υ ϰ θ = θ 2 + ϰ 1 2 1 ϰ 1 2 θ 2 ϰ 1 2 , 3 2 + ϰ 1 2 θ ϰ 1 2 1 θ ( 3 , 2 + ϰ 1 2 ] 0   o t h e r w i s e .
Then, for each   i 0 , 1 , we have   Υ i ϰ = 1 i 2 ϰ 1 2 + 3 i , 1 i 2 + ϰ 1 2 + 3 i  . Since left and right end point mappings   Υ * ϰ , i = 1 i 2 ϰ 1 2 + 3 i , Υ * ϰ , i = 1 i 2 + ϰ 1 2 + 3 i  , are   X 1 , X 2  -convex and concave mappings with   X 1 μ = μ , X 2 μ 1 , for μ 0 , 1 and for each   i [ 0 , 1 ]  , then   Υ ϰ is   U D  - X 1 , X 2  -convex   F N V M with   X 1 μ = μ , X 2 μ 1 , for  μ 0 , 1  . We clearly see that   Υ ~ L ϛ , , F R  . Now, computing the following
1 2 X 1 1 2 X 2 1 2 Υ * ϛ + 2 , i 1 ϛ ϛ Υ * ϰ , i d ϰ Υ * ϛ , i + Υ * , i 0 1 X 1 μ X 2 1 μ d μ . 1 2 X 1 1 2 X 2 1 2 Υ * ϛ + 2 , i = Υ * 5 2 , i = 4 10 2 1 i + 3 i , 1 ϛ ϛ Υ * ϰ , i d ϰ = 2 3 1 i 2 ϰ 1 2 + 3 i d ϰ = 6 + 4 2 6 3 3 1 i + 3 i , Υ * ϛ , i + Υ * , i 0 1 X 1 μ X 2 1 μ d μ = 4 2 3 2 1 i + 3 i ,
for all   i 0 , 1 . That means
4 10 2 1 i + 3 i 6 + 4 2 6 3 3 1 i + 3 i 4 2 3 2 1 i + 3 i .
Similarly, it can be easily shown that
1 2 X 1 1 2 X 2 1 2 Υ * ϛ + 2 , i 1 ϛ ϛ Υ * ϰ , i d ϰ Υ * ϛ , i + Υ * , i 0 1 X 1 μ X 2 1 μ d μ
for all   i 0 , 1 , such that
1 2 X 1 1 2 X 2 1 2 Υ * ϛ + 2 , i = Υ * 5 2 , i = 4 + 10 2 1 i + 3 i , 1 ϛ ϛ Υ * ϰ , i d ϰ = 2 3 1 i 2 + ϰ 1 2 + 3 i d ϰ = 6 4 2 + 6 3 3 1 i + 3 i , Υ * ϛ , i + Υ * , i Υ * ϛ , i + Υ * , i 0 1 X 1 μ X 2 1 μ d μ = 4 + 2 + 3 2 1 i + 3 i .
From which, we have
4 + 10 2 1 i + 3 i 6 4 2 + 6 3 3 1 i + 3 i 4 + 2 + 3 2 1 i + 3 i ,
that is
4 10 2 1 i + 3 i , 4 + 10 2 1 i + 3 i I 6 + 4 2 6 3 3 1 i + 3 i , 6 4 2 + 6 3 3 1 i + 3 i I 4 2 3 2 1 i , 4 + 2 + 3 2 1 i + 3 i
for all   i 0 , 1 .
  • Hence,
    1 2 X 1 1 2 X 2 1 2 Υ ϛ + 2 F 1 ϛ F A ϛ Υ ϰ d ϰ F Υ ϛ Υ 0 1 X 1 μ X 2 1 μ d μ .
 Theorem 6. 
Let   Υ : ϛ , F R be a   U D  - X 1 , X 2  -convex   F N V M with   X 1 , X 2 : [ 0 , 1 ] R + and   X 1 1 2 X 2 1 2 0 , whose parametrized form is given by   Υ i : [ ϛ , ] R K C and defined as   Υ i ϰ = Υ * ϰ , i , Υ * ϰ , i for all   ϰ ϛ , and for all   i 0 , 1  . If   Υ I A ϛ , , i  , then
1 4 X 1 1 2 X 2 1 2 2 Υ ϛ + 2 F 2 F 1 ϛ F A ϛ Υ ϰ d ϰ F 1
F Υ ϛ Υ 1 2 + X 1 1 2 X 2 1 2 0 1 X 1 μ X 2 1 μ d μ ,
where
1 = Υ ϛ Υ 2 Υ ϛ + 2 0 1 X 1 μ X 2 1 μ d μ , 2 = 1 4 X 1 1 2 X 2 1 2 Υ 3 ϛ + 4 Υ ϛ + 3 4 ,
and 1 = 1 * , 1 * , 2 = 2 * , 2 * .
 Proof. 
Take ϛ , ϛ + 2 , we have
1 X 1 1 2 X 2 1 2 Υ μ ϛ + 1 μ ϛ + 2 2 + μ ϛ + 1 μ ϛ + 2 2 F Υ μ ϛ + 1 μ ϛ + 2 Υ 1 μ ϛ + μ ϛ + 2 .
Therefore, for every i [ 0 , 1 ] , we have
1 X 1 1 2 X 2 1 2 Υ * μ ϛ + 1 μ ϛ + 2 2 + 1 μ ϛ + μ ϛ + 2 2 , i Υ * μ ϛ + 1 μ ϛ + 2 , i + Υ * 1 μ ϛ + μ ϛ + 2 , i , 1 X 1 1 2 X 2 1 2 Υ * μ ϛ + 1 μ ϛ + 2 2 + 1 μ ϛ + μ ϛ + 2 2 , i Υ * μ ϛ + 1 μ ϛ + 2 , i + Υ * 1 μ ϛ + μ ϛ + 2 , i .
In consequence, we obtain
1 4 X 1 1 2 X 2 1 2 Υ * 3 ϛ + 4 , i 1 ϛ ϛ ϛ + 2 Υ * ϰ , i d ϰ , 1 4 X 1 1 2 X 2 1 2 Υ * 3 ϛ + 4 , i 1 ϛ ϛ ϛ + 2 Υ * ϰ , i d ϰ .
That is
1 4 X 1 1 2 X 2 1 2 Υ * 3 ϛ + 4 , i , Υ * 3 ϛ + 4 , i I 1 ϛ ϛ ϛ + 2 Υ * ϰ , i d ϰ , ϛ ϛ + 2 Υ * ϰ , i d ϰ .
It follows that
1 4 X 1 1 2 X 2 1 2 Υ 3 ϛ + 4 F 1 ϛ ϛ ϛ + 2 Υ ϰ d ϰ .
In a similar way as above, we have
1 4 X 1 1 2 X 2 1 2 Υ ϛ + 3 4 F 1 ϛ ϛ + 2 Υ ϰ d ϰ .
Combining (41) and (42), we have
1 4 X 1 1 2 X 2 1 2 Υ 3 ϛ + 4 Υ ϛ + 3 4 F 1 ϛ ϛ Υ ϰ d ϰ .
By using Theorem 5, we have
1 4 X 1 1 2 X 2 1 2 2 Υ ϛ + 2 = 1 4 X 1 1 2 X 2 1 2 2 Υ 1 2 . 3 ϛ + 4 + 1 2 . ϛ + 3 4 .
Therefore, for every i [ 0 , 1 ] , we have
1 4 X 1 1 2 X 2 1 2 2 Υ * ϛ + 2 , i = 1 4 X 1 1 2 X 2 1 2 2 Υ * 1 2 . 3 ϛ + 4 + 1 2 . ϛ + 3 4 , i , 1 4 X 1 1 2 X 2 1 2 2 Υ * ϛ + 2 , i = 1 4 X 1 1 2 X 2 1 2 2 Υ * 1 2 . 3 ϛ + 4 + 1 2 . ϛ + 3 4 , i ,
1 4 X 1 1 2 X 2 1 2 2 X 1 1 2 X 2 1 2 Υ * 3 ϛ + 4 , i + X 1 1 2 X 2 1 2 Υ * ϛ + 3 4 , i , 1 4 X 1 1 2 X 2 1 2 2 X 1 1 2 X 2 1 2 Υ * 3 ϛ + 4 , i + X 1 1 2 X 2 1 2 Υ * ϛ + 3 4 , i ,
= 2 * , = 2 * ,
1 ϛ ϛ Υ * ϰ , i d ϰ , 1 ϛ ϛ Υ * ϰ , i d ϰ ,
Υ * ϛ , i + Υ * , i 2 + Υ * ϛ + 2 , i 0 1 X 1 μ X 2 1 μ d μ , Υ * ϛ , i + Υ * , i 2 + Υ * ϛ + 2 , i 0 1 X 1 μ X 2 1 μ d μ ,
= 1 * , = 1 * ,
Υ * ϛ , i + Υ * , i 2 + X 1 μ X 2 1 μ Υ * ϛ , i + Υ * , i . 0 1 X 1 μ X 2 1 μ d μ , Υ * ϛ , i + Υ * , i 2 + X 1 μ X 2 1 μ Υ * ϛ , i + Υ * , i . 0 1 X 1 μ X 2 1 μ d μ ,
= Υ * ϛ , i + Υ * , i 1 2 + X 1 1 2 X 2 1 2 0 1 X 1 μ X 2 1 μ d μ , = Υ * ϛ , i + Υ * , i 1 2 + X 1 1 2 X 2 1 2 0 1 X 1 μ X 2 1 μ d μ ,
which implies that
1 4 X 1 1 2 X 2 1 2 2 Υ ϛ + 2 , i I 2 I 1 ϛ T A ϛ Υ ϰ , i d ϰ I 1
I Υ ϛ , i + Υ , i 1 2 + X 1 1 2 X 2 1 2 0 1 X 1 μ X 2 1 μ d μ ,
that is
1 4 X 1 1 2 X 2 1 2 2 Υ ϛ + 2 F 2 F 1 ϛ F A ϛ Υ ϰ d ϰ F 1
F Υ ϛ Υ 1 2 + X 1 1 2 X 2 1 2 0 1 X 1 μ X 2 1 μ d μ ,
hence, the result follows. □
 Example 3. 
We consider   X 1 μ = μ , X 2 μ 1 , for   μ 0 , 1  , and the   F N V M Υ : ϛ , = [ 2 , 3 ] F R defined by,   Υ i ϰ = 1 i 2 ϰ 1 2 + 3 i , 1 i 2 + ϰ 1 2 + 3 i , as in Example 2, then   Υ ( ϰ ) is   U D  - X 1 , X 2  -convex   F N V M  . We have   Υ * ϰ , i = 1 i 2 ϰ 1 2 + 3 i and   Υ * ϰ , i = 1 i 2 + ϰ 1 2 + 3 i  . We now compute the following:
1 4 X 1 1 2 X 2 1 2 2 Υ * ϛ + 2 , i = Υ * 5 2 , i = 4 10 2 1 i + 3 i , 1 4 X 1 1 2 X 2 1 2 2 Υ * ϛ + 2 , i = Υ * 5 2 , i = 4 + 10 2 1 i + 3 i ,
2 * = 1 4 X 1 1 2 X 2 1 2 2 X 1 1 2 X 2 1 2 Υ * 3 ϛ + 4 , i + X 1 1 2 X 2 1 2 Υ * ϛ + 3 4 , i = 5 11 4 1 i + 3 i , 2 * = 1 4 X 1 1 2 X 2 1 2 2 X 1 1 2 X 2 1 2 Υ * 3 ϛ + 4 , i + X 1 1 2 X 2 1 2 Υ * ϛ + 3 4 , i = 7 + 11 4 1 i + 3 i .
1 * = Υ * ϛ , i + Υ * , i 2 + Υ * ϛ + 2 , i 0 1 X 1 μ X 2 1 μ d μ = 8 2 3 10 4 1 i + 3 i , 1 * = Υ * ϛ , i + Υ * , i 2 + Υ * ϛ + 2 , i 0 1 X 1 μ X 2 1 μ d μ = 8 + 2 + 3 + 10 4 1 i + 3 i ,
Υ * ϛ , i + Υ * , i 1 2 + X 1 1 2 X 2 1 2 0 1 X 1 μ X 2 1 μ d μ = 4 2 3 2 1 i + 3 i , Υ * ϛ , i + Υ * , i 1 2 + X 1 1 2 X 2 1 2 0 1 X 1 μ X 2 1 μ d μ = 4 + 2 + 3 2 1 i + 3 i ,
then we obtain that
1 i 4 10 2 + 3 i 5 11 4 1 i + 3 i 6 + 4 2 6 3 3 1 i + 3 i 8 2 3 10 4 1 i + 3 i 1 i 4 2 3 2 + 3 i 1 i 4 + 10 2 + 3 i 7 + 11 4 1 i + 3 i 6 4 2 + 6 3 3 1 i + 3 i 8 + 2 + 3 + 10 4 1 i + 3 i 1 i 4 + 2 + 3 2 + 3 i .
Hence, Theorem 6 is verified.
 Theorem 7. 
Let   Υ , S : ϛ , F R be two   U D  - X 1 , X 2  -convex   F N V M  s with   X 1 , X 2 : [ 0 , 1 ] R + and   X 1 1 2 X 2 1 2 0 , whose parametrized form is given by   Υ i , S i : ϛ , R K C + and defined as   Υ i ϰ = Υ * ϰ , i , Υ * ϰ , i and   S i ϰ = S * ϰ , i , S * ϰ , i for all   ϰ ϛ , and for all   i 0 , 1  . If   Υ S I A ϛ , , i  , then
1 ϛ F A ϛ Υ ϰ S ϰ d ϰ F Y ϛ , 0 1 X 1 μ X 2 1 μ 2 d μ H ϛ , 0 1 X 1 μ X 2 μ X 1 1 μ X 2 1 μ d μ ,
where   Y ϛ , = Υ ϛ S ϛ Υ S , H ϛ , = Υ ϛ S Υ S ϛ , and   Y i ϛ , = Y * ϛ , , i , Y * ϛ , , i and   H i ϛ , = H * ϛ , , i , H * ϛ , , i .
 Example 4. 
We consider   X 1 μ = μ , X 2 μ 1 , for μ 0 , 1  , and the fuzzy-number valued mappings   Υ , S : ϛ , = [ 0 , 2 ] E C defined by
Υ ϰ σ = θ ϰ θ 0 , ϰ 2 ϰ θ ϰ θ ( ϰ , 2 ϰ ] 0   o t h e r w i s e ,
S ϰ σ = θ ϰ 2 ϰ θ ϰ , 2 8 e ϰ θ 8 e ϰ 2 θ ( 2 , 8 e ϰ ] 0   o t h e r w i s e .
Then, for each   i 0 , 1 , we have   Υ i ϰ = i ϰ , ( 2 i ) ϰ  and   S i ϰ = 1 i ϰ + 2 i , 1 i 8 e ϰ + 2 i . Since end point functions   Υ * ϰ , i = i ϰ , S * ϰ , i = 1 i ϰ + 2 i  , and   Υ * ϰ , i = ( 2 i ) ϰ  ,   S * ϰ , i = 1 i 8 e ϰ + 2 i X 1 , X 2  -convex and concave functions for each   i [ 0 , 1 ]  , respectively. Hence   Υ , S both are   U D  - X 1 , X 2  -convex   F N V M . We now compute the following
1 ϛ ϛ Υ * ϰ , i × S * ϰ , i d ϰ = 1 2 0 2 i 1 i ϰ 2 + 2 i 2 ϰ d ϰ = 2 3 i 2 + i 1 ϛ ϛ Υ * ϰ , i × S * ϰ , i d ϰ = 1 2 0 2 1 i 2 i ϰ 8 e ϰ + 2 i 2 i ϰ d ϰ = 2 i 2 15 11 i + i 1 e 2 ,
Y * ϛ , , i 0 1 X 1 μ X 2 1 μ 2 d μ = 4 i 3 Y * ϛ , , i 0 1 X 1 μ X 2 1 μ 2 d μ = 2 2 i 1 i 8 e 2 + 2 i 3 ,
H * ϛ , , i 0 1 X 1 μ X 2 μ X 1 1 μ X 2 1 μ d μ = 2 i 2 3 H * ϛ , , i 0 1 X 1 μ X 2 μ X 1 1 μ X 2 1 μ d μ = 2 i 7 5 i 3 ,
for each   i 0 , 1 , that means
[ 2 3 i 1 + 2 i , 2 i 2 15 11 i + i 1 e 2 ] I 1 3 2 i 2 + i , 2 i 2 1 i 8 e 2 i + 7
hence, Theorem 7 is illustrated.
 Theorem 8. 
Let   Υ , S : ϛ , F R be two   U D  - X 1 , X 2  -convex   F N V M  s with   X 1 , X 2 : [ 0 , 1 ] R + and   X 1 1 2 X 2 1 2 0 , whose parametrized form is given by   Υ i , S i : ϛ , R K C + and defined as   Υ i ϰ = Υ * ϰ , i , Υ * ϰ , i and   S i ϰ = S * ϰ , i , S * ϰ , i for all   ϰ ϛ , and for all   i 0 , 1  . If Υ S I A ϛ , , i  , then
1 2 X 1 1 2 X 2 1 2 2 Υ ϛ + 2 S ϛ + 2
F 1 ϛ F A ϛ Υ ϰ S ϰ d ϰ H ϛ , 0 1 X 1 μ X 2 1 μ 2 d μ
Y ϛ , 0 1 X 1 μ X 2 μ X 1 1 μ X 2 1 μ d μ ,
where Y ϛ , = Υ ϛ S ϛ Υ S , H ϛ , = Υ ϛ S Υ S ϛ , and   Y i ϛ , = Y * ϛ , , i , Y * ϛ , , i and   H i ϛ , = H * ϛ , , i , H * ϛ , , i .
 Proof. 
By hypothesis, for each i 0 , 1 , we have
Υ * ϛ + 2 , i × S * ϛ + 2 , i Υ * ϛ + 2 , i × S * ϛ + 2 , i
X 1 1 2 X 2 1 2 2 Υ * μ ϛ + 1 μ , i × S * μ ϛ + 1 μ , i + Υ * μ ϛ + 1 μ , i × S * 1 μ ϛ + μ , i + X 1 1 2 X 2 1 2 2 Υ * 1 μ ϛ + μ , i × S * μ ϛ + 1 μ , i + Υ * 1 μ ϛ + μ , i × S * 1 μ ϛ + μ , i , X 1 1 2 X 2 1 2 2 Υ * μ ϛ + 1 μ , i × S * μ ϛ + 1 μ , i + Υ * μ ϛ + 1 μ , i × S * 1 μ ϛ + μ , i + X 1 1 2 X 2 1 2 2 Υ * 1 μ ϛ + μ , i × S * μ ϛ + 1 μ , i + Υ * 1 μ ϛ + μ , i × S * 1 μ ϛ + μ , i ,
X 1 1 2 X 2 1 2 2 Υ * μ ϛ + 1 μ , i × S * μ ϛ + 1 μ , i + Υ * 1 μ ϛ + μ , i × S * 1 μ ϛ + μ , i + X 1 1 2 X 2 1 2 2 X 1 μ X 2 1 μ Υ * ϛ , i + X 1 1 μ X 2 μ Υ * , i X 1 1 μ X 2 μ S * ϛ , i + X 1 μ X 2 1 μ S * , i + X 1 1 μ X 2 μ Υ * ϛ , i + X 1 μ X 2 1 μ Υ * , i X 1 μ X 2 1 μ S * ϛ , i + X 1 1 μ X 2 μ S * , i , X 1 1 2 X 2 1 2 2 Υ * μ ϛ + 1 μ , i × S * μ ϛ + 1 μ , i + Υ * 1 μ ϛ + μ , i × S * 1 μ ϛ + μ , i + X 1 1 2 X 2 1 2 2 X 1 μ X 2 1 μ Υ * ϛ , i + X 1 1 μ X 2 μ Υ * , i X 1 1 μ X 2 μ S * ϛ , i + X 1 μ X 2 1 μ S * , i + X 1 1 μ X 2 μ Υ * ϛ , i + X 1 μ X 2 1 μ Υ * , i X 1 μ X 2 1 μ S * ϛ , i + X 1 1 μ X 2 μ S * , i ,
= X 1 1 2 X 2 1 2 2 Υ * μ ϛ + 1 μ , i × S * μ ϛ + 1 μ , i + Υ * 1 μ ϛ + μ , i × S * 1 μ ϛ + μ , i + 2 X 1 1 2 X 2 1 2 2 X 1 μ X 2 μ X 1 1 μ X 2 1 μ Y * ϛ , , i + X 1 μ X 2 1 μ 2 H * ϛ , , i , = X 1 1 2 X 2 1 2 2 Υ * μ ϛ + 1 μ , i × S * μ ϛ + 1 μ , i + Υ * 1 μ ϛ + μ , i × S * 1 μ ϛ + μ , i + 2 X 1 1 2 X 2 1 2 2 X 1 μ X 2 μ X 1 1 μ X 2 1 μ Y * ϛ , , i + X 1 μ X 2 1 μ 2 H * ϛ , , i ,
that is
= X 1 1 2 X 2 1 2 2 Υ μ ϛ + 1 μ × S μ ϛ + 1 μ + Υ 1 μ ϛ + μ × S 1 μ ϛ + μ
+ 2 X 1 1 2 X 2 1 2 2 X 1 μ X 2 μ X 1 1 μ X 2 1 μ Y ϛ , + X 1 μ X 2 1 μ 2 H ϛ , ,
F A -Integrating over 0 , 1 , we have
1 2 X 1 1 2 X 2 1 2 2 Υ ϛ + 2 S ϛ + 2
F 1 ϛ F A ϛ Υ ϰ S ϰ d ϰ H ϛ , 0 1 X 1 μ X 2 1 μ 2 d μ
Y ϛ , 0 1 X 1 μ X 2 μ X 1 1 μ X 2 1 μ d μ ,
hence, the required result. □
 Example 5. 
We consider   X 1 μ = μ , X 2 μ 1 , for   μ 0 , 1  , and the   F N V M s Υ , S : ϛ , = 0 , 2 E C , as in Example 4. Then, for each   i 0 , 1 , we have   Υ i ϰ = i ϰ , ( 2 i ) ϰ and   S i ϰ = 1 i ϰ + 2 i , 1 i 8 e ϰ + 2 i and,   Υ ϰ , S ( ϰ ) are   U D  - ( X 1 , X 2 )  -convex   F N V M  s, respectively. We have   Υ * ϰ , i = i ϰ , Υ * ϰ , i = ( 2 i ) ϰ and   S * ϰ , i = 1 i ϰ + 2 i  ,   S * ϰ , i = 1 i 8 e ϰ + 2 i  . We now compute the following
1 2 X 1 1 2 X 2 1 2 2 Υ * ϛ + 2 , i × S * ϛ + 2 , i = 2 i 1 + i , 1 2 X 1 1 2 X 2 1 2 2 Υ * ϛ + 2 , i × S * ϛ + 2 , i = 2 2 i 8 6 i + i 1 e .
1 ϛ ϛ Υ * ϰ , i × S * ϰ , i d ϰ = 1 2 0 2 i 1 i ϰ 2 + 2 i 2 ϰ d ϰ = 2 3 i 2 + i , 1 ϛ ϛ Υ * ϰ , i × S * ϰ , i d ϰ = 1 2 0 2 2 i ϰ 1 i 8 e ϰ + 2 i d ϰ = 2 i 2 15 11 i + i 1 e 2 .
Y * ϛ , , i 0 1 X 1 μ X 2 1 μ 2 d μ = 2 i 3 , Y * ϛ , , i 0 1 X 1 μ X 2 1 μ 2 d μ = 2 i 8 6 i + i 1 e 2 3 ,
H * ϛ , , i 0 1 X 1 μ X 2 μ X 1 1 μ X 2 1 μ d μ = 4 i 2 3 , H * ϛ , , i 0 1 X 1 μ X 2 μ X 1 1 μ X 2 1 μ d μ = 2 2 i 7 5 i 3 ,
for each   i 0 , 1 , that means
2 i 1 + i , 2 2 i 8 6 i + i 1 e I 2 3 i 2 + i , 2 i 2 15 11 i + i 1 e 2
+ 1 3 2 i 1 + 2 i , 2 i 2 7 5 i + 1 i 8 e 2 8 i + 14
hence, Theorem 8 is illustrated.

4. Conclusions

The discovery of the Hermite-Hadamard type inequality is the primary topic of this paper. We keep a U D - X 1 , X 2 -convex F N V M as the starting point for our analysis. We are also able to obtain new generalized inequalities. In order to evaluate the efficacy and accuracy of our results, we make some pertinent parameter choices. The particular choices change our main results and give new bounds for the recently found fuzzy Hermite-Hadamard inequality. In remarks, we present the new exceptional instances. The results of the aforementioned remarks provide the inequality’s lower and upper bounds. We provide compelling examples to back up our conclusions. We believe that the present results have implications for various domains of the pure and practical sciences, including optimization and convex analysis. Regardless, we think that these discoveries add to our knowledge of the behavior, traits, and numerous real-world uses of fuzzy calculus. In later works, we will employ the Hermite-Hadamard-type and Iscan-Holder-type inequality to create a variety of novel, fascinating inequalities for various classes of convex and pre-invex functions.

Author Contributions

Conceptualization, M.B.K.; methodology, M.B.K.; validation, M.B.K. and M.S.S.; formal analysis, H.A.O.; investigation, M.B.K.; resources, M.B.K. and A.R.; data curation, M.B.K. and A.M.A.; writing—original draft preparation, M.B.K.; writing—review and editing, M.B.K.; visualization, M.S.S., H.A.O., A.R. and A.M.A.; supervision, M.B.K.; project administration, M.S.S.; funding acquisition, M.B.K. and H.A.O. All authors have read and agreed to the published version of the manuscript.

Funding

The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code: 22UQU4390021DSR05.

Data Availability Statement

Not applicable.

Acknowledgments

The authors would like to thank the Rector, COMSATS University Islamabad, Islamabad, Pakistan, for providing excellent research. The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code: 22UQU4390021DSR05.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Niculescu, C.P.; Persson, L.-E. (Eds.) Convex Functions and Their Applications; Springer: New York, NY, USA, 2006; ISBN 978-0-387-24300-9. [Google Scholar]
  2. Khan, M.B.; Santos-García, G.; Budak, H.; Treanțǎ, S.; Soliman, M.S. Some new versions of Jensen, Schur and Hermite-Hadamard type inequalities for (𝒑, 𝕵)-convex fuzzy-interval-valued functions. AIMS Math. 2023, 8, 7437–7470. [Google Scholar] [CrossRef]
  3. Khan, M.B.; Othman, H.A.; Voskoglou, M.G.; Abdullah, L.; Alzubaidi, A.M. Some Certain Fuzzy Aumann Integral Inequalities for Generalized Convexity via Fuzzy Number Valued Mappings. Mathematics 2023, 11, 550. [Google Scholar] [CrossRef]
  4. Khan, M.B.; Rakhmangulov, A.; Aloraini, N.; Noor, M.A.; Soliman, M.S. Generalized Harmonically Convex Fuzzy-Number-ValuedMappings and Fuzzy Riemann–Liouville Fractional Integral Inequalities. Mathematics 2023, 11, 656. [Google Scholar] [CrossRef]
  5. Khan, M.B.; Catas, A.; Aloraini, N.; Soliman, M.S. Some Certain Fuzzy Fractional Inequalities for Up and Down ℏ-Pre-Invex via Fuzzy-Number Valued Mappings. Fractal Fract. 2023, 7, 171. [Google Scholar] [CrossRef]
  6. Ibrahim, M.; Saeed, T.; Hekmatifar, M.; Sabetvand, R.; Chu, Y.M.; Toghraie, D. Investigation of dynamical behavior of 3LPT protein-water molecules interactions in atomic structures using molecular dynamics simulation. J. Mol. Liq. 2021, 329, 115615. [Google Scholar] [CrossRef]
  7. Xiong, P.Y.; Almarashi, A.; Dhahad, H.A.; Alawee, W.H.; Abusorrah, A.M.; Issakhov, A.; Abu-Hamhed, N.H.; Shafee, A.; Chu, Y.M. Nanomaterial transportation and exergy loss modeling incorporating CVFEM. J. Mol. Liq. 2021, 330, 115591. [Google Scholar] [CrossRef]
  8. Wang, T.; Almarashi, A.; Al-Turki, Y.A.; Abu-Hamdeh, N.H.; Hajizadeh, M.R.; Chu, Y.M. Approaches for expedition of discharging of PCM involving nanoparticles and radial fins. J. Mol. Liq. 2021, 329, 115052. [Google Scholar] [CrossRef]
  9. Xiong, P.Y.; Almarashi, A.; Dhahad, H.A.; Alawee, W.H.; Issakhov, A.; Chu, Y.M. Nanoparticles for phase change process of water utilizing FEM. J. Mol. Liq. 2021, 334, 116096. [Google Scholar] [CrossRef]
  10. Chu, Y.M.; Abu-Hamdeh, N.H.; Ben-Beya, B.; Hajizadeh, M.R.; Li, Z.; Bach, Q.V. Nanoparticle enhanced PCM exergy loss and thermal behavior by means of FVM. J. Mol. Liq. 2020, 320 Pt B, 114457. [Google Scholar] [CrossRef]
  11. Hadamard, J. Étude sur les propriétés des fonctions entiéres en particulier d’une fonction considéréé par Riemann. J. Math. Pures Appl. 1893, 58, 171–215. [Google Scholar]
  12. Moore, R.E. Interval Analysis; Prentice-Hall: Hoboken, NJ, USA, 1966. [Google Scholar]
  13. Snyder, J. Interval analysis for computer graphics. SIGGRAPH Comput. Graph. 1992, 26, 121–130. [Google Scholar] [CrossRef]
  14. Gasilov, N.A.; Emrah Amrahov, S. Solving a nonhomogeneous linear system of interval differential equations. Soft Comput. 2018, 22, 3817–3828. [Google Scholar] [CrossRef]
  15. De Weerdt, E.; Chu, Q.P.; Mulder, J.A. Neural network output optimization using interval analysis. IEEE Trans. Neural Netw. 2009, 20, 638–653. [Google Scholar] [CrossRef]
  16. Rothwell, E.J.; Cloud, M.J. Automatic error analysis using intervals. IEEE Trans. Edu 2011, 55, 9–15. [Google Scholar] [CrossRef]
  17. Chalco-Cano, Y.; Rufián-Lizana, A.; Román-Flores, H.; Jiménez-Gamero, M.D. Calculus for interval-valued functions using generalized Hukuhara derivative and applications. Fuzzy Sets Syst. 2013, 219, 49–67. [Google Scholar] [CrossRef]
  18. Chalco-Cano, Y.; Silva, G.N.; Rufián-Lizana, A. On the Newton method for solving fuzzy optimization problems. Fuzzy Sets Syst. 2015, 272, 60–69. [Google Scholar] [CrossRef]
  19. Entani, T.; Inuiguchi, M. Pairwise comparison based interval analysis for group decision aiding with multiple criteria. Fuzzy Sets Syst. 2015, 274, 79–96. [Google Scholar] [CrossRef]
  20. Osuna-Gómez, R.; Chalco-Cano, Y.; Hernández-Jiménez, B.; Ruiz-Garzón, G. Optimality conditions for generalized differentiable interval-valued functions. Information 2015, 321, 136–146. [Google Scholar] [CrossRef]
  21. Moore, R.E.; Kearfott, R.B.; Cloud, M.J. Introduction to Interval Analysis; Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, USA, 2009. [Google Scholar]
  22. Zhao, T.H.; Castillo, O.; Jahanshahi, H.; Yusuf, A.; Alassafi, M.O.; Alsaadi, F.E.; Chu, Y.M. A fuzzy-based strategy to suppress the novel coronavirus (2019-NCOV) massive outbreak. Appl. Comput Math. 2021, 20, 160–176. [Google Scholar]
  23. Zhao, T.H.; Wang, M.K.; Chu, Y.M. On the bounds of the perimeter of an ellipse. Acta Math. Sci. 2022, 42B, 491–501. [Google Scholar] [CrossRef]
  24. Zhao, T.H.; Wang, M.K.; Hai, G.J.; Chu, Y.M. Landen inequalities for Gaussian hypergeometric function. RACSAM Rev. R Acad. A 2022, 116, 1–23. [Google Scholar] [CrossRef]
  25. Wang, M.K.; Hong, M.Y.; Xu, Y.F.; Shen, Z.H.; Chu, Y.M. Inequalities for generalized trigonometric and hyperbolic functions with one parameter. J. Math. Inequal 2020, 14, 1–21. [Google Scholar] [CrossRef]
  26. Zhao, T.H.; Qian, W.M.; Chu, Y.M. Sharp power mean bounds for the tangent and hyperbolic sine means. J. Math. Inequal 2021, 15, 1459–1472. [Google Scholar] [CrossRef]
  27. Chu, Y.M.; Wang, G.D.; Zhang, X.H. The Schur multiplicative and harmonic convexities of the complete symmetric function. Math Nachr. 2011, 284, 53–663. [Google Scholar] [CrossRef]
  28. Kalsoom, H.; Latif, M.A.; Khan, Z.A.; Vivas-Cortez, M. Some New Hermite-Hadamard-Fejér fractional type inequalities for h-convex and harmonically h-Convex interval-valued Functions. Mathematics 2021, 10, 74. [Google Scholar] [CrossRef]
  29. Dragomir, S.S.; Pecaric, J.; Persson, L.E. Some inequalities of Hadamard type. Soochow J. Math. 1995, 21, 335–341. [Google Scholar]
  30. Dragomir, S.S. Inequalities of Hermite-Hadamard type for functions of self adjoint operators and matrices. J. Math. Inequal 2017, 11, 241–259. [Google Scholar] [CrossRef]
  31. Latif, M. On Some New Inequalities of Hermite-Hadamard Type for Functions Whose Derivatives are s-convex in the Second Sense in the Absolute Value. Ukr. Math. J. 2016, 67, 1552–1571. [Google Scholar] [CrossRef]
  32. Chu, Y.M.; Xia, W.F.; Zhang, X.H. The Schur concavity, Schur multiplicative and harmonic convexities of the second dual form of the Hamy symmetric function with applications. J. Multivariate Anal. 2012, 105, 412–442. [Google Scholar] [CrossRef]
  33. Hajiseyedazizi, S.N.; Samei, M.E.; Alzabut, J.; Chu, Y.M. On multi-step methods for singular fractional q-integro-differential equations. Open Math. 2021, 19, 1378–1405. [Google Scholar] [CrossRef]
  34. Jin, F.; Qian, Z.S.; Chu, Y.M.; Rahman, M. On nonlinear evolution model for drinking behavior under Caputo-Fabrizio derivative. J. Appl. Anal. Comput. 2022, 12, 790–806. [Google Scholar] [CrossRef] [PubMed]
  35. Wang, F.Z.; Khan, M.N.; Ahmad, I.; Ahmad, H.; Abu-Zinadah, H.; Chu, Y.M. Numerical solution of traveling waves in chemical kinetics: Time-fractional fisher’s equations. Fractals 2022, 30, 2240051. [Google Scholar] [CrossRef]
  36. Chu, Y.M.; Siddiqui, M.K.; Nasir, M. On topological co-indices of polycyclic tetrathiafulvalene and polycyclic oragano silicon dendrimers. Polycycl. Aromat. Compd. 2022, 42, 2179–2197. [Google Scholar] [CrossRef]
  37. Chu, Y.M.; Rauf, A.; Ishtiaq, M.; Siddiqui, M.K.; Muhammad, M.H. Topological properties of polycyclic aromatic nanostars dendrimers. Polycycl. Aromat. Compd. 2022, 42, 1891–1908. [Google Scholar] [CrossRef]
  38. Chu, Y.M.; Numan, M.; Butt, S.I.; Siddiqui, M.K.; Ullah, R.; Cancan, M.; Ali, U. Degree-based topological aspects of polyphenylene nanostructures. Polycycl. Aromat. Compd. 2022, 42, 2591–2606. [Google Scholar] [CrossRef]
  39. Chu, Y.M.; Muhammad, M.H.; Rauf, A.; Ishtiaq, M.; Siddiqui, M.K. Topological study of polycyclic graphite carbon nitride. Polycycl. Aromat. Compd. 2022, 42, 3203–3215. [Google Scholar] [CrossRef]
  40. Khan, M.B.; Santos-García, G.; Noor, M.A.; Soliman, M.S. New Class of Preinvex Fuzzy Mappings and Related Inequalities. Mathematics 2022, 10, 3753. [Google Scholar] [CrossRef]
  41. Khan, M.B.; Macías-Díaz, J.E.; Treanțǎ, S.; Soliman, M.S. Some Fejér-Type Inequalities for Generalized Interval-Valued Convex Functions. Mathematics 2022, 10, 3851. [Google Scholar] [CrossRef]
  42. Khan, M.B.; Santos-García, G.; Treanțǎ, S.; Soliman, M.S. New Class Up and Down Pre-Invex Fuzzy Number Valued Mappings and Related Inequalities via Fuzzy Riemann Integrals. Symmetry 2022, 14, 2322. [Google Scholar] [CrossRef]
  43. Khan, M.B.; Macías-Díaz, J.E.; Soliman, M.S.; Noor, M.A. Some New Integral Inequalities for Generalized Preinvex Functions in Interval-Valued Settings. Axioms 2022, 11, 622. [Google Scholar] [CrossRef]
  44. İşcan, İ. Hermite-Hadamard type inequalities for harmonically convex functions. Hacet. J. Math. Stat. 2014, 43, 935–942. [Google Scholar] [CrossRef]
  45. Noor, M.A.; Noor, K.I.; Awan, M.U.; Costache, S. Some integral inequalities for harmonically h-convex functions. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 2015, 77, 5–16. [Google Scholar]
  46. Román-Flores, H.; Chalco-Cano, Y.; Lodwick, W.A. Some integral inequalities for interval-valued functions. Comput. Appl. Math. 2018, 37, 1306–1318. [Google Scholar] [CrossRef]
  47. Chalco-Cano, Y.; Lodwick, W.A. Condori-Equice. Ostrowski type inequalities and applications in numerical integration for interval-valued functions. Soft Comput. 2015, 19, 3293–3300. [Google Scholar] [CrossRef]
  48. Costa, T.M.; Román-Flores, H.; Chalco-Cano, Y. Opial-type inequalities for interval-valued functions. Fuzzy Set. Syst. 2019, 358, 48–63. [Google Scholar] [CrossRef]
  49. Zhao, D.; Ali, M.A.; Murtaza, G.; Zhang, Z. On the Hermite-Hadamard inequalities for interval-valued coordinated convex functions. Adv. Differ. Equ. 2020, 2020, 1–14. [Google Scholar] [CrossRef]
  50. Sharma, N.; Singh, S.K.; Mishra, S.K.; Hamdi, A. Hermite-Hadamard type inequalities for interval-valued preinvex functions via Riemann-Liouville fractional integrals. J. Inequal. Appl. 2021, 2021, 98. [Google Scholar] [CrossRef]
  51. Nwaeze, E.R.; Khan, M.A.; Chu, Y.M. Fractional inclusions of the Hermite-Hadamard type for m-polynomial convex interval valued functions. Adv. Differ. Equ. 2020, 2020, 507. [Google Scholar] [CrossRef]
  52. Lai, K.K.; Bisht, J.; Sharma, N.; Mishra, S.K. Hermite-Hadamard-Type Fractional Inclusions for Interval-Valued Preinvex Functions. Mathematics 2022, 10, 264. [Google Scholar] [CrossRef]
  53. Zhao, T.H.; Bhayo, B.A.; Chu, Y.M. Inequalities for generalized Grötzsch ring function. Comput. Meth. Funct. Theory 2022, 22, 559–574. [Google Scholar] [CrossRef]
  54. Zhao, T.H.; He, Z.Y.; Chu, Y.M. Sharp bounds for the weighted Hölder mean of the zero-balanced generalized complete elliptic integrals. Comput. Meth. Funct. Theory 2021, 21, 413–426. [Google Scholar] [CrossRef]
  55. Zhao, T.H.; Wang, M.K.; Chu, Y.M. Concavity and bounds involving generalized elliptic integral of the first kind. J. Math Inequal 2021, 15, 701–724. [Google Scholar] [CrossRef]
  56. Zhao, T.H.; Wang, M.K.; Chu, Y.M. Monotonicity and convexity involving generalized elliptic integral of the first kind. RACSAM Rev. R Acad. A. 2021, 115, 46. [Google Scholar] [CrossRef]
  57. Chu, H.H.; Zhao, T.H.; Chu, Y.M. Sharp bounds for the Toader mean of order 3 in terms of arithmetic, quadratic and contra harmonic means. Math Slov. 2020, 70, 1097–1112. [Google Scholar] [CrossRef]
  58. Zhao, T.H.; He, Z.Y.; Chu, Y.M. On some refinements for inequalities involving zero-balanced hyper geometric function. AIMS Math. 2020, 5, 6479–6495. [Google Scholar] [CrossRef]
  59. Zhao, T.H.; Wang, M.K.; Chu, Y.M. A sharp double inequality involving generalized complete elliptic integral of the first kind. AIMS Math. 2020, 5, 4512–4528. [Google Scholar] [CrossRef]
  60. Khan, M.B.; Zaini, H.G.; Santos-García, G.; Noor, M.A.; Soliman, M.S. New Class Up and Down λ-Convex Fuzzy-Number Valued Mappings and Related Fuzzy Fractional Inequalities. Fractal Fract. 2022, 6, 679. [Google Scholar] [CrossRef]
  61. Khan, M.B.; Santos-García, G.; Treanțǎ, S.; Noor, M.A.; Soliman, M.S. Perturbed Mixed Variational-Like Inequalities and Auxiliary Principle Pertaining to a Fuzzy Environment. Symmetry 2022, 14, 2503. [Google Scholar] [CrossRef]
  62. Khan, M.B.; Zaini, H.G.; Macías-Díaz, J.E.; Soliman, M.S. Up and Down -Pre-Invex Fuzzy-Number Valued Mappings and Some Certain Fuzzy Integral Inequalities. Axioms 2023, 12, 1. [Google Scholar] [CrossRef]
  63. Zhao, D.; Chu, Y.M.; Siddiqui, M.K.; Ali, K.; Nasir, M.; Younas, M.T.; Cancan, M. On reverse degree based topological indices of polycyclic metal organic network. Polycycl. Aromat. Compd. 2022, 42, 4386–4403. [Google Scholar] [CrossRef]
  64. Ibrahim, M.; Saeed, T.; Algehyne, E.A.; Alsulami, H.; Chu, Y.M. Optimization and effect of wall conduction on natural convection in a cavity with constant temperature heat source: Using lattice Boltzmann method and neural network algorithm. J. Therm. Anal. Calorim. 2021, 144, 2449–2463. [Google Scholar] [CrossRef]
  65. Ibrahim, M.; Berrouk, A.S.; Algehyne, E.A.; Saeed, T.; Chu, Y.M. Numerical evaluation of exergy efficiency of innovative turbulators in solar collector filled with hybrid nanofluid. J. Therm. Anal. Calorim. 2021, 145, 1559–1574. [Google Scholar] [CrossRef]
  66. Ibrahim, M.; Berrouk, A.S.; Algehyne, E.A.; Saeed, T.; Chu, Y.M. Energetic and exergetic analysis of a new circular micro-heat sink containing nanofluid: Applicable for cooling electronic equipment. J. Therm. Anal. Calorim. 2021, 145, 1547–1557. [Google Scholar] [CrossRef]
  67. Ibrahim, M.; Saeed, T.; Algehyne, E.A.; Khan, M.; Chu, Y.M. The effects of L-shaped heat source in a quarter-tube enclosure filled with MHD nanofluid on heat transfer and irreversibilities, using LBM: Numerical data, optimization using neural network algorithm (ANN). J. Therm. Anal. Calorim. 2021, 144, 2435–2448. [Google Scholar] [CrossRef]
  68. Ibrahim, M.; Saleem, S.; Chu, Y.M.; Ullah, M.; Heidarshenas, B. An investigation of the exergy and first and second laws by two-phase numerical simulation of various nanopowders with different diameter on the performance of zigzag-wall micro-heat sink (ZZW-MHS). J. Therm. Anal. Calorim. 2021, 144, 1611–1621. [Google Scholar] [CrossRef]
  69. Madhukesh, J.K.; Kumar, R.N.; Gowda, R.P.; Prasannakumara, B.C.; Ramesh, G.K.; Khan, M.I.; Khan, S.U.; Chu, Y.M. Numerical simulation of AA7072-AA7075/ water-based hybrid nanofluid flow over a curved stretching sheet with Newtonian heating: A non-Fourier heat flux model approach. J. Mol. Liq. 2021, 335, 116103. [Google Scholar] [CrossRef]
  70. Li, J.; Alawee, W.H.; Rawa, M.J.; Dhahad, H.A.; Chu, Y.M.; Issakhov, A.; Abu-Hamdeh, N.H.; Hajizadeh, M.R. Heat recovery application of nanomaterial with existence of turbulator. J. Mol. Liq. 2021, 326, 115268. [Google Scholar] [CrossRef]
  71. Chu, Y.M.; Hajizadeh, M.R.; Li, Z.; Bach, Q.V. Investigation of nano powders influence on melting process within a storage unit. J. Mol. Liq. 2020, 318, 114321. [Google Scholar] [CrossRef]
  72. Chu, Y.M.; Yadav, D.; Shafee, A.; Li, Z.; Bach, Q.V. Influence of wavy enclosure and nanoparticles on heat release rate of PCM considering numerical study. J. Mol. Liq. 2020, 319, 114121. [Google Scholar] [CrossRef]
  73. Chu, Y.M.; Ibrahim, M.; Saeed, T.; Berrouk, A.S.; Algehyne, E.A.; Kalbasi, R. Examining rheological behavior of MWCNT-TiO2/5W40 hybrid nanofluid based on experiments and RSM/ANN modeling. J. Mol. Liq. 2021, 333, 115969. [Google Scholar] [CrossRef]
  74. Khan, M.B.; Noor, M.A.; Noor, K.I.; Chu, Y.M. New Hermite-Hadamard type inequalities for -convex fuzzy-interval-valued functions. Adv. Differ. Equ. 2021, 2021, 6–20. [Google Scholar] [CrossRef]
  75. Khan, M.B.; Noor, M.A.; Abdullah, L.; Chu, Y.M. Some new classes of preinvex fuzzy-interval-valued mappings and inequalities. Int. J. Comput. Intell. Syst. 2021, 14, 1403–1418. [Google Scholar] [CrossRef]
  76. Khan, M.B.; Santos-García, G.; Noor, M.A.; Soliman, M.S. Some new concepts related to fuzzy fractional calculus for up and down convex fuzzy-number valued mappings and inequalities. Chaos Solitons Fractals 2022, 164, 112692. [Google Scholar] [CrossRef]
  77. Zhao, D.; An, T.; Ye, G.; Liu, W. New Jensen and Hermite-Hadamard type inequalities for h-convex interval-valued functions. J. Inequal. Appl. 2018, 2018, 302. [Google Scholar] [CrossRef]
  78. Zhao, D.; An, T.; Ye, G.; Torres, D.F. On Hermite-Hadamard type inequalities for harmonical h-convex interval-valued functions. arXiv 2019, arXiv:1911.06900. [Google Scholar]
  79. An, Y.; Ye, G.; Zhao, D.; Liu, W. Hermite-Hadamard type inequalities for interval (h1, h2)-convex functions. Mathematics 2019, 7, 436. [Google Scholar] [CrossRef]
  80. Liu, R.; Xu, R. Hermite-Hadamard type inequalities for harmonical (h1, h2) convex interval-valued functions. Math. Found. Comput. 2021, 4, 89. [Google Scholar] [CrossRef]
  81. Almutairi, O.; Kiliçman, A.A.A. Some integral inequalities for h-Godunova-Levin preinvexity. Symmetry 2019, 11, 1500. [Google Scholar] [CrossRef]
  82. Diamond, P.; Kloeden, P.E. Metric Spaces of Fuzzy Sets: Theory and Applications; World Scientific: Singapore, 1994. [Google Scholar]
  83. Bede, B. Mathematics of Fuzzy Sets and Fuzzy Logic, Volume 295 of Studies in Fuzziness and Soft Computing; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
  84. Kaleva, O. Fuzzy differential equations. Fuzzy Sets Syst. 1987, 24, 301–317. [Google Scholar] [CrossRef]
  85. Aubin, J.P.; Cellina, A. Differential Inclusions: Set-Valued Maps and Viability Theory, Grundlehren der Mathematischen Wissenschaften; Springer-Verlag: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
  86. Aubin, J.P.; Frankowska, H. Set-Valued Analysis; Birkhäuser: Boston, MA, USA, 1990. [Google Scholar]
  87. Costa, T.M.; Roman-Flores, H. Some integral inequalities for fuzzy-interval-valued functions. Inform Sci. 2017, 420, 110–125. [Google Scholar] [CrossRef]
  88. Costa, T.M. Jensen’s inequality type integral for fuzzy-interval-valued functions. Fuzzy Sets Syst. 2017, 327, 31–47. [Google Scholar] [CrossRef]
  89. Zhang, D.; Guo, C.; Chen, D.; Wang, G. Jensen’s inequalities for set-valued and fuzzy set-valued functions. Fuzzy Sets Syst. 2020, 2020, 178–204. [Google Scholar] [CrossRef]
  90. Nanda, N.; Kar, K. Convex fuzzy mappings. Fuzzy Sets Syst. 1992, 48, 129–132. [Google Scholar] [CrossRef]
  91. Khan, M.B.; Othman, H.A.; Santos-García, G.; Noor, M.A.; Soliman., M.S. Some new concepts in fuzzy calculus for up and down λ-convex fuzzy-number valued mappings and related inequalities. AIMS Math. 2023, 8, 6777–6803. [Google Scholar] [CrossRef]
  92. Khan, M.B.; Santos-García, G.; Noor, M.A.; Soliman, M.S. New Hermite–Hadamard Inequalities for Convex Fuzzy-Number-Valued Mappings via Fuzzy Riemann Integrals. Mathematics 2022, 10, 3251. [Google Scholar] [CrossRef]
  93. Chu, Y.M.; Zhao, T.H. Concavity of the error function with respect to Hölder means. Math. Inequal. Appl. 2016, 19, 589–595. [Google Scholar] [CrossRef]
  94. Zhao, T.H.; Shi, L.; Chu, Y.M. Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means. RACSAM Rev. R Acad. A. 2020, 114, 96. [Google Scholar] [CrossRef]
  95. Zhao, T.H.; Zhou, B.C.; Wang, M.K.; Chu, Y.M. On approximating the quasi-arithmetic mean. J. Inequal. Appl. 2019, 2019, 42. [Google Scholar] [CrossRef]
  96. Zhao, T.H.; Wang, M.K.; Zhang, W.; Chu, Y.M. Quadratic transformation inequalities for Gaussian hyper geometric function. J. Inequal. Appl. 2018, 2018, 251. [Google Scholar] [CrossRef]
  97. Qian, W.M.; Chu, H.H.; Wang, M.K.; Chu, Y.M. Sharp inequalities for the Toader mean of order –1 in terms of other bivariate means. J. Math Inequal 2022, 16, 127–141. [Google Scholar] [CrossRef]
  98. Zhao, T.H.; Chu, H.H.; Chu, Y.M. Optimal Lehmer mean bounds for the nth power-type Toader mean of n = −1, 1, 3. J Math. Inequal 2022, 16, 157–168. [Google Scholar] [CrossRef]
  99. Khan, M.B.; Noor, M.A.; Abdeljawad, T.; Mousa, A.A.A.; Abdalla, B.; Alghamdi, S.M. LR-Preinvex Interval-Valued Functions and Riemann–Liouville Fractional Integral Inequalities. Fractal Fract. 2021, 5, 243. [Google Scholar] [CrossRef]
  100. Khan, M.B.; Noor, M.A.; Shah, N.A.; Abualnaja, K.M.; Botmart, T. Some New Versions of Hermite–Hadamard Integral Inequalities in Fuzzy Fractional Calculus for Generalized Pre-Invex Functions via Fuzzy-Interval-Valued Settings. Fractal Fract. 2022, 6, 83. [Google Scholar] [CrossRef]
  101. Khan, M.B.; Treanțǎ, S.; Soliman, M.S. Generalized Preinvex Interval-Valued Functions and Related Hermite–Hadamard Type Inequalities. Symmetry 2022, 14, 1901. [Google Scholar] [CrossRef]
  102. Saeed, T.; Khan, M.B.; Treanțǎ, S.; Alsulami, H.H.; Alhodaly, M.S. Interval Fejér-Type Inequalities for Left and Right-λ-Preinvex Functions in Interval-Valued Settings. Axioms 2022, 11, 368. [Google Scholar] [CrossRef]
  103. Khan, M.B.; Cătaş, A.; Alsalami, O.M. Some New Estimates on Coordinates of Generalized Convex Interval-Valued Functions. Fractal Fract. 2022, 6, 415. [Google Scholar] [CrossRef]
  104. Ibrahim, M.; Saeed, T.; Alshehri, A.M.; Chu, Y.M. Using artificial neural networks to predict the rheological behavior of non-Newtonian grapheme-ethylene glycol nanofluid. J. Therm. Anal. Calorim. 2021, 145, 1925–1934. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Khan, M.B.; Othman, H.A.; Rakhmangulov, A.; Soliman, M.S.; Alzubaidi, A.M. Discussion on Fuzzy Integral Inequalities via Aumann Integrable Convex Fuzzy-Number Valued Mappings over Fuzzy Inclusion Relation. Mathematics 2023, 11, 1356. https://doi.org/10.3390/math11061356

AMA Style

Khan MB, Othman HA, Rakhmangulov A, Soliman MS, Alzubaidi AM. Discussion on Fuzzy Integral Inequalities via Aumann Integrable Convex Fuzzy-Number Valued Mappings over Fuzzy Inclusion Relation. Mathematics. 2023; 11(6):1356. https://doi.org/10.3390/math11061356

Chicago/Turabian Style

Khan, Muhammad Bilal, Hakeem A. Othman, Aleksandr Rakhmangulov, Mohamed S. Soliman, and Alia M. Alzubaidi. 2023. "Discussion on Fuzzy Integral Inequalities via Aumann Integrable Convex Fuzzy-Number Valued Mappings over Fuzzy Inclusion Relation" Mathematics 11, no. 6: 1356. https://doi.org/10.3390/math11061356

APA Style

Khan, M. B., Othman, H. A., Rakhmangulov, A., Soliman, M. S., & Alzubaidi, A. M. (2023). Discussion on Fuzzy Integral Inequalities via Aumann Integrable Convex Fuzzy-Number Valued Mappings over Fuzzy Inclusion Relation. Mathematics, 11(6), 1356. https://doi.org/10.3390/math11061356

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop