Model Predictive Control of Parabolic PDE Systems under Chance Constraints
Abstract
:1. Introduction
2. Problem Statement and Assumptions
2.1. Problem Statement
- the probability function
- feasible set
2.2. Assumptions
- Let be the space of square-integrable functions over Q, then define
- Let be the space of square-integrable functions over , then define
- Using the Sobolev space and the Hilbert space
- A1:
- Uniform ellipticity condition. There are positive constants with , such that the random coefficient satisfies
- A2:
- For each fixed , the forcing term f has the property that .
- A3:
- For each fixed , the boundary function has the property that .
3. Solution Approach to CCMPC
3.1. Finite Dimensional Representation
3.2. Inner-Outer Approximation Strategy
3.2.1. The Smoothing Approximation Problems
3.2.2. Properties of the Approximations
- Properties of the Approximation Functions
- (a)
- Uniform limit. Property 2 of Theorem 3.6 in [47] implies that both functions and closely resemble the function , as the parameter moves closer to zero from above. This uniform approximation property has two important consequences.
- Note that and hold true irrespective of the differentiability of the probability function . Therefore, a gradient-based optimization algorithm can be used to solve the smooth approximation problems and , respectively, to obtain approximate optimal solutions to the (generally non-smooth) CCOPT problem.
- (b)
- Properties of the inner–outer approximation problemsRecall that the feasible set of CCOPT is given by
- (a)
- Inner–outer approximation. The feasible set is always a subset (inner approximation) of the feasible set of CCOPT, while the feasible set is a superset (outer approximation) of the feasible set of CCOPT; i.e.,
- (b)
- Monotonicity of the inner–outer approximations to ensure the enclosure of the feasible set:
- (c)
- Convergence of the feasible sets of the approximations:
- (d)
- Obviously, of is an upper bound to the objective function of and converge to each other as moves closer to 0 from above.
- The algorithm for computationThe following algorithm presents the computation scheme of the inner–outer approximation approach for solving a CCOPT problem.
Algorithm 1: Computation scheme for the inner–outer approximation method. |
1: Choose an initial parameter ; 2: Solve the optimization problems and ; 3: Select the termination tolerance tol; 4: Set k←0; 5: while ( > tol) do 6: Reduce the parameter τk (e.g., τk+1 = ρτk, for ρ ∈ (0, 1)); 7: Set k ← k + 1; 8: Solve the optimization problems and ; 9: end while |
4. Numerical Implementation
5. Case Study
5.1. Mathematical Model
5.2. Source of Uncertainty
5.3. Optimization Problem
5.4. Parameters and Coefficients
6. Results and Discussions
6.1. Results of Optimal Control
6.2. Results of MPC
7. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MPC | model predictive contro |
PDE | partial differential equation |
UQ | uncertainty quantification |
CCMPC | chance constrained model predictive control |
CCPDE | chance constrained optimal control |
CCOPT | chance constrained optimization |
IA | inner-approximation |
OA | outer-approximation |
NLP | nonlinear programming |
RNLP | regularized nonlinear programming |
IPOPT | Interior Point OPTimizer |
HT | hyperthermia treatment |
CCHTMPC | chance constrained hyperthermia treatment model predictive control |
Appendix A
References
- Farlow, S. Partial Differential Equations for Scientists and Engineers; Dover Publications: New York, NY, USA, 1993; pp. 1–32. [Google Scholar]
- Ockendon, J.; Howison, S.; Lacey, A.; Movchan, A. Applied Partial Differential Equations; Oxford University Press: Oxford, UK, 2003; pp. 1–5. [Google Scholar]
- Strauss, W. Partial Differential Equations: An Introduction; Wiley: Danvers, MA, USA, 2007; pp. 6–54. [Google Scholar]
- Babuska, I.; Nobile, F.; Tempone, R. A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data. SIAM J. Numer. Anal. 2007, 45, 1005–1034. [Google Scholar] [CrossRef]
- Barth, A.; Lang, A.; Schwab, C. Multilevel Monte Carlo method for parabolic stochastic partial differential equations. BIT Numer. Math. 2013, 53, 3–27. [Google Scholar] [CrossRef] [Green Version]
- Deb, M.; Babuška, I.; Oden, J. Solution of stochastic partial differential equations using Galerkin finite element techniques. Comput. Methods Appl. Mech. Eng. 2001, 190, 6359–6372. [Google Scholar] [CrossRef]
- Frauenfelder, P.; Schwab, C.; Todor, R.A. Finite elements for elliptic problems with stochastic coefficients. Comput. Methods Appl. Mech. Eng. 2005, 194, 205–228. [Google Scholar] [CrossRef]
- Ghanem, R.; Spanos, P. Stochastic Finite Elements: A Spectral Approach; Civil, Mechanical and Other Engineering Series; Dover Publications: New York, NY, USA, 2003; pp. 15–65. [Google Scholar]
- Gittelson, C.J. Stochastic Galerkin discretization of the log-normal isotropic diffusion problem. Math. Model. Methods Appl. Sci. 2010, 20, 237–263. [Google Scholar] [CrossRef]
- Kornhuber, R.; Schwab, C.; Wolf, M.W. Multilevel Monte Carlo Finite Element Methods for Stochastic Elliptic Variational Inequalities. SIAM J. Numer. Anal. 2014, 52, 1243–1268. [Google Scholar] [CrossRef] [Green Version]
- Kunoth, A.; Schwab, C. Sparse Adaptive Tensor Galerkin Approximations of Stochastic PDE-Constrained Control Problems. SIAM/ASA J. Uncertain. Quantif. 2016, 4, 1034–1059. [Google Scholar] [CrossRef]
- Kuo, F.; Scheichl, R.; Schwab, C.; Sloan, I.; Ullmann, E. Multilevel Quasi-Monte Carlo Methods for Lognormal Diffusion Problems. Math. Comput. 2015, 86. [Google Scholar] [CrossRef]
- Kuo, F.Y.; Schwab, C.; Sloan, I.H. Quasi-Monte Carlo Finite Element Methods for a Class of Elliptic Partial Differential Equations with Random Coefficients. SIAM J. Numer. Anal. 2012, 50, 3351–3374. [Google Scholar] [CrossRef]
- Matthies, H.; Keese, A. Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations. Comput. Methods Appl. Mech. Eng. 2005, 194, 1295–1331. [Google Scholar] [CrossRef] [Green Version]
- Mugler, A.; Starkloff, H.J. On Elliptic Partial Differential Equations with Random Coefficients. Stud. Univ.-Babeș-Bolyain Math. 2011, 56, 473–487. [Google Scholar]
- Nobile, F.; Tempone, R. Analysis and implementation issues for the numerical approximation of parabolic equations with random coefficients. Int. J. Numer. Methods Eng. 2009, 80, 979–1006. [Google Scholar] [CrossRef]
- Wan, X.; Karniadakis, G.E. Solving elliptic problems with non-Gaussian spatially-dependent random coefficients. Comput. Methods Appl. Mech. Eng. 2009, 198, 1985–1995. [Google Scholar] [CrossRef]
- Borzi, A.; Schulz, V.; Schillings, C.; Winckel, G. On the treatment of distributed uncertainties in PDE-constrained optimization. GAMM-Mitteilungen 2010, 33, 230–246. [Google Scholar] [CrossRef]
- Farshbaf-Shaker, M.; Henrion, R.; Hoemberg, D. Chance Constraints in PDE Constrained Optimization; Preprint; Weierstraß-Institut für Angewandte Analysis und Stochastik: Berlin, Germany, 2017. [Google Scholar] [CrossRef]
- Geletu, A.; Hoffmann, A.; Schmidt, P.; Li, P. Chance constrained optimization of elliptic PDE systems with a smoothing convex approximation. ESAIM Control Optim. Calc. Var. 2020, 26, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Göttlich, S.; Kolb, O.; Lux, K. Chance-constrained optimal inflow control in hyperbolic supply systems with uncertain demand. Optim. Control Appl. Methods 2021, 42, 566–589. [Google Scholar] [CrossRef]
- Hou, L.; Lee, J.; Manouzi, H. Finite element approximations of stochastic optimal control problems constrained by stochastic elliptic PDEs. J. Math. Anal. Appl. 2011, 384, 87–103. [Google Scholar] [CrossRef] [Green Version]
- Kouri, D.; Surowiec, T. Risk-Averse PDE-Constrained Optimization Using the Conditional Value-At-Risk. SIAM J. Optim. 2016, 26, 365–396. [Google Scholar] [CrossRef]
- Kouri, D.P. A Multilevel Stochastic Collocation Algorithm for Optimization of PDEs with Uncertain Coefficients. SIAM/ASA J. Uncertain. Quantif. 2014, 2, 55–81. [Google Scholar] [CrossRef]
- Kouri, D.P.; Heinkenschloss, M.; Ridzal, D.; van Bloemen Waanders, B.G. Inexact Objective Function Evaluations in a Trust-Region Algorithm for PDE-Constrained Optimization under Uncertainty. SIAM J. Sci. Comput. 2014, 36, A3011–A3029. [Google Scholar] [CrossRef]
- Lee, H.C.; Lee, J. A Stochastic Galerkin Method for Stochastic Control Problems. Commun. Comput. Phys. 2013, 14. [Google Scholar] [CrossRef]
- Martinez-Frutos, J.; Kessler, M.; Munch, A.; Periago, F. Robust optimal Robin boundary control for the transient heat equation with random input data. Int. J. Numer. Methods Eng. 2016, 108, 116–135. [Google Scholar] [CrossRef]
- Martinez-Frutos, J.; Kessler, M.; Periago, F. Robust Optimal shape design for an elliptic PDE with uncertainty in its input data. ESAIM Control Optim. Calc. Var. 2015, 21, 901–923. [Google Scholar] [CrossRef]
- Mordukhovich, B. Optimal control and feedback design of state-constrained parabolic systems in uncertainty conditions. Appl. Anal. 2011, 90, 1075–1109. [Google Scholar] [CrossRef]
- Schmidt, P.; Geletu, A.; Li, P. Stochastische Optimierung parabolischer PDE-Systeme unter Wahrscheinlichkeitsrestriktionen am Beispiel der Temperaturregelung eines Stabes. Automatisierungstechnik 2018, 66, 975–985. [Google Scholar] [CrossRef]
- Ridzal, D.; Waanders, B.; Kouri, D.; Heinkenschloss, M. A Trust-Region Algorithm with Adaptive Stochastic Collocation for PDE Optimization under Uncertainty. SIAM J. Sci. Comput. 2012, 35. [Google Scholar] [CrossRef] [Green Version]
- Tiesler, H.; Kirby, R.M.; Xiu, D.; Preußer, T. Stochastic Collocation for Optimal Control Problems with Stochastic PDE Constraints. SIAM J. Control Optim. 2012, 50, 2659–2682. [Google Scholar] [CrossRef] [Green Version]
- van Ackooij, W.; Pérez-Aros, P. Generalized Differentiation of Probability Functions Acting on an Infinite System of Constraints. SIAM J. Optim. 2019, 29, 2179–2210. [Google Scholar] [CrossRef]
- Alla, A.; Volkwein, S. Asymptotic stability of POD based model preditive control for a semilinear parabolic PDE. Adv. Comput. Math. 2015, 41, 1073–1102. [Google Scholar] [CrossRef] [Green Version]
- Altmüller, N.; Grüne, L. Distributed and boundary model predictive control for the heat equation. GAMM-Mitteilungen 2012, 32, 131–145. [Google Scholar] [CrossRef]
- Mechelli, L.; Volkwein, S. POD-based economic model predictive control for heat-convection phenomena. In Numerical Mathematics and Advanced Applications ENUMATH 2017; Adrian, F., KumarInga, R., Martin, J., Pop, I., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 663–671. [Google Scholar] [CrossRef] [Green Version]
- Dubljevic, S.; Mhaskar, P.; El-Farra, N.H.; Christofides, P. Predictive Control of Transport-Reaction Processes. Comput. Chem. Eng. 2005, 29, 2335–2345. [Google Scholar] [CrossRef]
- Dubljevic, S.; Christofides, P. Predictive output feedback control of parabolic partial differential equations (PDEs). Ind. Eng. Chem. Res. 2006, 45, 8421–8429. [Google Scholar] [CrossRef]
- Dubljevic, S.; El-Fara, N.; Mhaskar, P.; Christofides, P. Predictive control of parabolic PDEs with state and control constraints. Int. J. Robust Nonlinear Control 2006, 16, 749–772. [Google Scholar] [CrossRef]
- Lao, L.; Ellis, M.; Christofides, P. Economic model predictive control of parabolic PDE systems: Addressing state estimation and computational efficiency. J. Process. Control 2014, 24, 448–462. [Google Scholar] [CrossRef]
- Lao, L.; Ellis, M.; Christofides, P. Economic Model Predictive Control of Transport-Reaction Processes. Ind. Eng. Chem. Res. 2014, 53, 7382–7396. [Google Scholar] [CrossRef]
- Shang, H.; Forbes, J.; Guay, M. Computationally efficient model predictive control for convection dominated parabolic systems. J. Process. Control 2007, 17, 379–386. [Google Scholar] [CrossRef]
- Li, P.; Arellano-Garcia, H.; Wozny, G. Chance Constrained Programming Approach to Process Optimization Under Uncertainty. Comput. Chem. Eng. 2008, 32, 25–45. [Google Scholar] [CrossRef]
- Wendt, M.; Li, P.; Wozny, G. Nonlinear Chance-Constrained Process Optimization under Uncertainty. Ind. Eng. Chem. Res. 2002, 41, 3621–3629. [Google Scholar] [CrossRef]
- Flemming, T.; Bartl, M.; Li, P. Set-Point Optimization for Closed-Loop Control Systems under Uncertainty. Ind. Eng. Chem. Res. 2007, 46, 4930–4942. [Google Scholar] [CrossRef]
- Klöppel, M.; Geletu, A.; Hoffmann, A.; Li, P. Using Sparse-Grid Methods to Improve Computation Efficiency in Solving Dynamic Nonlinear Chance-Constrained Optimization Problems. Ind. Eng. Chem. Res. 2011, 50, 5693–5704. [Google Scholar] [CrossRef]
- Geletu, A.; Hoffmann, A.; Klöppel, M.; Li, P. An Inner-Outer Approximation Approach to Chance Constrained Optimization. SIAM J. Optim. 2017, 27, 1834–1857. [Google Scholar] [CrossRef]
- Geletu, A.; Klöppel-Gersdorf, M.; Hoffmann, A.; Li, P. A tractable approximation of non-convex chance constrained optimization with non-Gaussian uncertainties. Eng. Optim. 2015, 47, 495–520. [Google Scholar] [CrossRef]
- Cannon, M.; Buerger, J.; Kouvaritakis, B.; Raković, S. Robust tubes in nonlinear model predctive control. IEEE Trans. Autom. Control 2011, 56, 1942–1947. [Google Scholar] [CrossRef]
- Cannon, M.; Kouvaritakis, B.; Raković, S.; Cheng, Q. Stochastic tubes in model predictive control with probabilistic constraint. IEEE Trans. Autom. Control 2011, 56, 194–200. [Google Scholar] [CrossRef]
- Langson, W.; Chryssochoos, I.; Rakovic, S.; Mayne, D. Robust model predictive control using tubes. Automatica 2004, 40, 125–133. [Google Scholar] [CrossRef]
- Mayne, D.; Kerrigan, E.; van Wyk, E.; Falugi, P. Tube-based robust nonlinear model predictive control. Robust Nonlinear Control 2011, 21, 1341–1353. [Google Scholar] [CrossRef]
- Raković, S.; Kouvaritakis, B.; Cannon, M.; Panos, C.; Findeisen, R. Parameterized tube model predictive control. IEEE Trans. Autom. Control 2010, 57, 2746–2758. [Google Scholar] [CrossRef]
- Raković, S.; Kouvaritakis, B.; Findeisen, R.; Cannon, M. Homothetic Tube Model Predictive Control. Automatica 2012, 48, 1631–1638. [Google Scholar] [CrossRef]
- Boger, E.; Wigström, O. A Partial Differential Equation Approach to Inhalation Physiologically Based Pharmacokinetic Modeling. CPT Pharmacometrics Syst. Pharmacol. 2018, 7. [Google Scholar] [CrossRef] [Green Version]
- Deuflhard, P.; Seebass, M.; Stalling, D.; Beck, R.; Hege, H.C. Hyperthermia Treatment Planning in Clinical Cancer Therapy: Modelling, Simulation, and Visualization. Sci. Comput. Model. Appl. Math. 1997, 3, 9–17. [Google Scholar]
- Deuflhard, P.; Schiela, A.; Weiser, M. Mathematical Cancer Therapy Planning in Deep Regional Hyperthermia. Acta Numer. 2012, 21, 307–378. [Google Scholar] [CrossRef]
- Quintero, M.; Cordovez, J. Looking for an Efficient and Safe Hyperthermia Therapy: Insights from a Partial Differential Equations Based Model. Differ. Equ. Dyn. Syst. 2015, 25, 137–150. [Google Scholar] [CrossRef]
- Weickert, J.; Schnörr, C. PDE–Based Preprocessing of Medical Images Optimization. University of Mannheim. Working Paper. 2000. Available online: http://ub-madoc.bib.uni-mannheim.de/1840 (accessed on 12 February 2023).
- Mang, A.; Gholami, A.; Davatzikos, C.; Biros, G. PDE-constrained optimization in medical image analysis. Optim. Eng. 2018, 19, 765–812. [Google Scholar] [CrossRef] [Green Version]
- Evans, L. Partial Differential Equations, 2nd ed.; American Mathematical Society: Providence, RI, USA, 2010; pp. 311–320. [Google Scholar]
- Uryasev, S. Derivatives of probability functions and some applications. Ann. Oper. Res. 1995, 56, 287–311. [Google Scholar] [CrossRef]
- Logg, A.; Wells, G.; Mardal, K.A. Automated Solution of Differential Equations by the Finite Element Method. The FEniCS Book; Springer: Berlin/Heidelberg, Germany, 2012; Volume 84, pp. 175–224. [Google Scholar] [CrossRef]
- Alnaes, M.; Blechta, J.; Hake, J.; Johansson, A.; Kehlet, B.; Logg, A.; Richardson, C.; Ring, J.; Rognes, M.; Wells, G. The FEniCS project version 1.5. Arch. Numer. Softw. 2015, 3, 9–23. [Google Scholar] [CrossRef]
- Mitusch, S.; Funke, S.; Dokken, J.S. dolfin-adjoint 2018.1: Automated adjoints for FEniCS and Firedrake. J. Open Source Softw. 2019, 4, 1292. [Google Scholar] [CrossRef]
- Hintermüller, M.; Hinze, M. Moreau-Yosida Regularization in State Constrained Elliptic Control Problems: Error Estimates and Parameter Adjustment. SIAM J. Numer. Anal. 2009, 47, 1666–1683. [Google Scholar] [CrossRef] [Green Version]
- Krumbiegel, K.; Ira, N.; Arnd, R. Sufficient Optimality Conditions for the Moreau–Yosida-Type Regularization Concept Applied to the Semilinear Elliptic Optmimal Control Problems with Pointwise State Constraints; Weierstraß-Institut für Angewandte Analysis und Stochastik: Berlin, Germany, 2011; Volume 2. [Google Scholar]
- Wächter, A.; Biegler, L. On the Implementation of an Interior-Point Filter Line-Search Algorithm for Large-Scale Nonlinear Programming. Math. Program. 2006, 106, 25–57. [Google Scholar] [CrossRef]
- Cheng, Y.; Weng, S.; Yu, L.; Zhu, N.; Yang, M.; Yuan, Y. The Role of Hyperthermia in the Multidisciplinary Treatment of Malignant Tumors. Integr. Cancer Ther. 2019, 18, 153473541987634. [Google Scholar] [CrossRef] [Green Version]
- Pennes, H. Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol. 1948, 1, 93–122. [Google Scholar] [CrossRef]
- Cheng, K.; Stakhursky, V.; Stauffer, P.; Dewhirst, M.; Das, S. Online feedback focusing algorithm for hyperthermia cancer treatment. Int. J. Hyperth. 2007, 23, 539–554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, Z.S.; Liu, J. Blood perfusion-based model for characterizing the temperature fluctuation in living tissues. Phys. A Stat. Mech. Its Appl. 2001, 300, 521–530. [Google Scholar] [CrossRef]
- Liu, J. Uncertainty analysis for temperature prediction of biological bodies subject to randomly spatial heating. J. Biomech. 2002, 34, 1637–1642. [Google Scholar] [CrossRef] [PubMed]
- Neufeld, E. High Resolution Hyperthermia Treatment Planning. Ph.D. Thesis, ETH Zürich, Zürich, Switzerland, 2008. [Google Scholar]
- Greef, M.; Kok, H.; Correia, D.; Borsboom, P.P.; Bel, A.; Crezee, H. Uncertainty in hyperthermia treatment planning: The need for robust system design. Phys. Med. Biol. 2011, 56, 3233–3250. [Google Scholar] [CrossRef]
- Canters, R.; Franckena, M.; Zee, J.; Rhoon, G. Optimizing deep hyperthermia treatments: Are locations of patient pain complaints correlated with modelled SAR peak locations? Phys. Med. Biol. 2011, 56, 439–451. [Google Scholar] [CrossRef]
- Voyer, D.; Musy, F.; Nicolas, L.; Perrussel, R. Comparison of Methods for Modeling Uncertainties in a 2D Hyperthermia Problem. Prog. Electromagn. Res. B 2009, 11, 189–204. [Google Scholar] [CrossRef] [Green Version]
- Clegg, S.; Samulski, T.; Murphy, K.; Rosner, G.; Dewhirst, M. Inverse techniques in hyperthermia: A sensitivity study. IEEE Trans. Biomed. Eng. 1994, 41, 373–382. [Google Scholar] [CrossRef]
- Köhler, T.; Maass, P.; Wust, P.; Virchow, R.; Berlin, K. Efficient Methods in Hyperthermia Treatment Planning. In Surveys on Solution Methods for Inverse Problems; Springer: Vienna, Austria, 2001; pp. 155–167. [Google Scholar] [CrossRef]
- Schiela, A.; Weiser, M. Barrier methods for a control problem from hyperthermia treatment planning. In Proceedings of the Recent Advances in Optimization and its Applications in Engineering; Springer: Heidelberg, Germany, 2010; pp. 419–428. [Google Scholar] [CrossRef]
Inner-approximation problem | Outer-approximation problem |
Parameter | Value | |
---|---|---|
Maximum admissible control | 30 | |
Minimum admissible control | 0 | |
Control regularization parameter | ||
Moreau–Yosida regularization smoothing parameter | ||
Moreau–Yosida regularization penalization parameter | ||
Reliability level | 0.95 | |
, | Geletu–Hoffmann function constants | 1.0, 0.4 |
Problem | |||||
---|---|---|---|---|---|
OA | 1.25 | 3.67 | 10.31 | 10.65 | 10.18 |
IA | 1.14 | 9.29 | 15.32 | 15.04 | 15.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voropai, R.; Geletu, A.; Li, P. Model Predictive Control of Parabolic PDE Systems under Chance Constraints. Mathematics 2023, 11, 1372. https://doi.org/10.3390/math11061372
Voropai R, Geletu A, Li P. Model Predictive Control of Parabolic PDE Systems under Chance Constraints. Mathematics. 2023; 11(6):1372. https://doi.org/10.3390/math11061372
Chicago/Turabian StyleVoropai, Ruslan, Abebe Geletu, and Pu Li. 2023. "Model Predictive Control of Parabolic PDE Systems under Chance Constraints" Mathematics 11, no. 6: 1372. https://doi.org/10.3390/math11061372
APA StyleVoropai, R., Geletu, A., & Li, P. (2023). Model Predictive Control of Parabolic PDE Systems under Chance Constraints. Mathematics, 11(6), 1372. https://doi.org/10.3390/math11061372