Estimation of Dependent Competing Risks Model with Baseline Proportional Hazards Models under Minimum Ranked Set Sampling
Abstract
:1. Introduction
2. Model and Data Description
2.1. Marshall–Olkin Bivariate Proportional Hazard Rate Distribution
- follows the PHR distribution with parameter ;
- The SF and the hazard rate function (HRF) of T at mission time are given by
2.2. Data Description and Notation
- :
- failure time of ith unit under cause
- :
- observed lifetime of the i-th unit, i.e., .
- :
- indicator variable for the failure cause of ith unit with
- :
- set of indices of case and 3
- :
- cardinality of . It is assumed that
3. Classical Inference
3.1. Maximum Likelihood Estimation
3.2. Approximate Confidence Intervals
4. Bayesian Inference
4.1. Prior Information and Posterior Analysis
4.2. Bayesian Estimation under Symmetry and Asymmetry Losses
- (squared error loss): ,
- (Linex loss): ,
- The Bayes estimator of is given by
- The Bayes estimators of the SF and HRF can be expressed, respectively, aswith .
- The Bayes estimator of is given by
- The Bayes estimators of the SF and HRF can be expressed, respectively, asand
4.3. E-Bayesian Estimation
- For prior , the E-Bayesian estimator of are given by
- For prior , the E-Bayesian estimator of can be written as
- For prior , the E-Bayesian estimator of can be expressed as
- For prior , the E-Bayesian estimators of and are given byand
- For prior , the E-Bayesian estimators of and can be written asand
- For prior , the E-Bayesian estimators of and can be expressed asand
- For prior , the E-Bayesian estimator of are given by
- For prior , the E-Bayesian estimator of can be written as
- For prior , the E-Bayesian estimator of can be expressed as
- For prior , the E-Bayesian estimators of and are given byand
- For prior , the E-Bayesian estimators of and can be written asand
- For prior , the E-Bayesian estimators of and can be expressed asand
4.4. Some Results of Bayesian and E-Bayesian Estimation
- under squared error loss , the PR of can be expressed as
- under Linex loss , the PR of can be expressed as
- under SE loss, the EPR of with respect to priors can be expressed, respectively, as
- under Linex loss, the EPR of with respect to priors can be expressed, respectively, as
- ,
- .
- for , .
- .
Algorithm 1: E-Bayesian interval estimation based M-H algorithm via Gibbs sampling |
|
5. Numerical Illustration
5.1. Simulation Studies
Algorithm 2: Generation dependent MinRSSU competing risks samples |
|
- For point estimation, AB and MSEs of point estimates from E-Bayesian methods under and , as well as Bayesian and maximum likelihood methods, decrease with increase of the sample size n.
- For a given n, AB and MSEs of Bayes and E-Bayesian estimates under and are smaller than those of MLEs. In addition, three E-Bayesian estimates are superior to the Bayesian results, where estimates under prior perform best among all E-Bayesian estimates.
- For interval estimation, when sample size n increases, ALs of ACIs, HPDI and intervals from E-Bayesian scenario decrease in all cases.
- Under fixed sample size n, ALs of Bayesian HPDIs are smaller than those of ACIs, but slightly larger than those of credible intervals obtained from E-Bayesian approaches in general.
- The CPs of different interval estimates are all close to nominal significance level.
- The PRs of E-Bayesian are all smaller than those of Bayesian estimates, where the PRs under the prior seems to perform best among all estimates.
5.2. Real Data Illustrations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. The Proof of Theorem 1
Appendix B. The Proof of Theorem 2
Appendix C. The Proof of Theorem 3
Appendix D. The Proof of Theorem 6
Appendix E. The Proof of Theorem 7
Appendix F. The Proof of Theorem 10
Appendix G. The Proof of Theorem 11
Appendix H. The Proof of Theorem 12
Appendix I. The Proof of Theorem 13
References
- McIntyre, G.A. A method for unbiased selective sampling using ranked sets. Aust. J. Agric. Res. 1952, 3, 385–390. [Google Scholar] [CrossRef]
- Takahasi, K.; Wakimoto, K. On unbiased estimates of the population mean based on the sample stratified by means of ordering. Ann. Inst. Stat. Math. 1968, 20, 1–31. [Google Scholar] [CrossRef]
- Takahasi, K. Practical note on estimation of population means based on samples stratified by means of ordering. Ann. Inst. Stat. Math. 1970, 22, 421–428. [Google Scholar] [CrossRef]
- Dell, T.R.; Clutter, J.L. Ranked set sampling theory with order statistics background. Biometrics 1972, 28, 545–555. [Google Scholar] [CrossRef]
- Basikhasteh, M.; Lak, F.; Afshari, M. Bayesian estimation of stress-strength reliability for two-parameter bathtub-shaped lifetime distribution based on maximum ranked set sampling with unequal samples. J. Stat. Comput. Simul. 2020, 90, 1–16. [Google Scholar] [CrossRef]
- Esemen, M.; Gürler, S. Parameter estimation of generalized Rayleigh distribution based on ranked set sample. J. Stat. Comput. Simul. 2018, 88, 615–628. [Google Scholar] [CrossRef]
- Samawi, H.M.; Rochani, H.; Linder, D.; Chatterjee, A. More efficient logistic analysis using moving extreme ranked set sampling. J. Appl. Stat. 2015, 44, 753–766. [Google Scholar] [CrossRef]
- Zamanzade, E.; Mahdizadeh, M.; Samawi, H.M. Efficient estimation of cumulative distribution function using moving extreme ranked set sampling with application to reliability. AStA-Adv. Stat. Anal. 2020, 104, 485–502. [Google Scholar] [CrossRef]
- Muttlak, H.A. Median ranked set sampling. J. Appl. Stat. Sci. 1997, 6, 577–586. [Google Scholar]
- Samawi, H.M.; Ahmed, M.S.; Abu-Dayyeh, W. Estimating the population mean using extreme ranked set sampling. Biom. J. 1996, 38, 577–586. [Google Scholar] [CrossRef]
- Al-Saleh, M.F.; Al-Kadiri, M.A. Double-ranked set sampling. Stat. Probab. Lett. 2000, 48, 205–212. [Google Scholar] [CrossRef]
- Al-Saleh, M.F.; Al-Omari, A.I. Multistage ranked set sampling. J. Stat. Plan. Inference 2002, 102, 273–286. [Google Scholar] [CrossRef]
- Muttlak, H.A. Investigating the use of quartile ranked set samples for estimating the population mean. Appl. Math. Comput. 2003, 146, 437–443. [Google Scholar] [CrossRef]
- Al-Odat, M.; Al-Saleh, M.F. A variation of ranked set sampling. J. Appl. Stat. Sci. 2001, 10, 137–146. [Google Scholar]
- Biradar, B.S.; Santosha, C.D. Estimation of the mean of the exponential distribution using maximum ranked set sampling with unequal samples. Open J. Stat. 2014, 4, 641–649. [Google Scholar] [CrossRef] [Green Version]
- Yao, D.; Chen, W.; Yang, R.; Long, C. Fisher information in moving extreme ranked set sampling with application to parameter estimation. J. Syst. Sci. Complex. 2022, 35, 361–372. [Google Scholar] [CrossRef]
- Qiu, G.; Eftekharian, A. Extropy information of maximum and minimum ranked set sampling with unequal samples. Commun. Stat.-Theory Methods 2021, 50, 2979–2995. [Google Scholar] [CrossRef]
- Rahmani, H.; Razmkhah, M. Perfect ranking test in moving extreme ranked set sampling. Stat. Pap. 2017, 58, 855–875. [Google Scholar] [CrossRef]
- Ren, J.; Gui, W. Statistical analysis of adaptive type-II progressively censored competing risks for Weibull models. Appl. Math. Model. 2021, 98, 323–342. [Google Scholar] [CrossRef]
- Wang, L.; Tripathi, Y.M.; Lodhi, C. Inference for Weibull competing risks model with partially observed failure causes under generalized progressive hybrid censoring. J. Comput. Appl. Math. 2020, 368, 112537. [Google Scholar] [CrossRef]
- Sarhan, A.M.; Hamilton, D.C.; Smith, B. Statistical analysis of competing risks models. Reliab. Eng. Syst. Saf. 2010, 95, 953–962. [Google Scholar] [CrossRef]
- Mahto, A.K.; Lodhi, C.; Tripathi, Y.M.; Wang, L. Inference for partially observed competing risks model for Kumaraswamy distribution under generalized progressive hybrid censoring. J. Appl. Stat. 2021, 49, 2064–2092. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.C.; Emura, T.; Fan, T.H.; Lo, S.M.S.; Wilke, R.A. Likelihood-based inference for a frailty-copula model based on competing risks failure time data. Qual. Reliab. Eng. Int. 2020, 36, 1622–1638. [Google Scholar] [CrossRef]
- Gorfine, M.; Hsu, L. Frailty-based competing risks model for multivariate survival data. Biometrics 2011, 67, 415–426. [Google Scholar] [CrossRef]
- Lo, S.M.S.; Wilke, R.A. A copula model for dependent competing risks. J. R. Stat. Soc. C-Appl. 2010, 59, 359–376. [Google Scholar] [CrossRef] [Green Version]
- Fan, T.H.; Wang, Y.F.; Ju, S.K. A competing risks model with multiply censored reliability data under multivariate Weibull distributions. IEEE. Trans. Reliab. 2019, 68, 462–475. [Google Scholar] [CrossRef]
- Marshall, A.W.; Olkin, I. A multivariate exponential distribution. J. Am. Stat. Assoc. 1967, 62, 30–44. [Google Scholar] [CrossRef]
- Guan, Q.; Tang, Y.C.; Xu, A.C. Objective Bayesian analysis for bivariate Marshall-Olkin exponential distribution. Comput. Stat. Data Anal. 2013, 64, 299–313. [Google Scholar] [CrossRef]
- Feizjavadian, S.H.; Hashemi, R. Analysis of dependent competing risks in the presence of progressive hybrid censoring using Marshall-Olkin bivariate Weibull distribution. Comput. Stat. Data Anal. 2015, 82, 19–34. [Google Scholar] [CrossRef]
- Paul, B.; Dey, A.K.; Kundu, D. Bayesian analysis of three parameter absolute continuous Marshall-Olkin bivariate Pareto distribution. Commun. Stat. Case Stud. Data Anal. Appl. 2018, 4, 57–68. [Google Scholar] [CrossRef]
- Kundu, D.; Gupta, A.K. Bayes estimation for the Marshall-Olkin bivariate Weibull distribution. Comput. Stat. Data Anal. 2013, 57, 271–281. [Google Scholar] [CrossRef]
- Mulinacci, S. Archimedean-based Marshall-Olkin distributions and related dependence structures. Methodol. Comput. Appl. Probab. 2018, 20, 205–236. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Xu, A. On the dependent competing risks using Marshall-Olkin bivariate Weibull model: Parameter estimation with different methods. Commun. Stat.-Theory Methods 2018, 47, 5558–5572. [Google Scholar] [CrossRef]
- Lawless, J.F. Statistical Models and Methods for Lifetime Data; Wiley: New York, NY, USA, 2003. [Google Scholar]
- Contreras-Reyes, J.E.; Gallardo, D.I.; Kharazmi, O. Time-dependent residual Fisher information and distance for some special continuous distributions. Commun. Stat.-Simul. Comput. 2022, 1–21. [Google Scholar] [CrossRef]
- Chaturvedi, A.; Pathak, A.; Kumar, N. Statistical inferences for the reliability functions in the proportional hazard rate models based on progressive type-II right censoring. J. Stat. Comput. Simul. 2019, 89, 2187–2217. [Google Scholar] [CrossRef]
- Bai, X.; Shi, Y.; Liu, Y.; Liu, B. Reliability inference of stress-strength model for the truncated proportional hazard rate distribution under progressively type-II censored samples. Appl. Math. Model. 2018, 65, 377–389. [Google Scholar] [CrossRef]
- Kizilaslan, F. E-Bayesian estimation for the proportional hazard rate model based on record values. Commun. Stat.-Simul. Comput. 2019, 48, 350–371. [Google Scholar] [CrossRef]
- Popovicć, B.V.; Ristić, M.M.; Genc, A.I. Dependence properties of multivariate distributions with proportional hazard rate marginals. Appl. Math. Model. 2020, 77, 182–198. [Google Scholar] [CrossRef]
- Han, M. The structure of hierarchical prior distribution and its applications. Oper. Res. Manag. Sci. 1997, 63, 31–40. [Google Scholar]
- Han, M. E-Bayesian estimation of the reliability derived from Binomial distribution. Appl. Math. Model. 2011, 35, 2419–2424. [Google Scholar] [CrossRef]
- Han, M. The E-Bayesian and hierarchical Bayesian estimations of Pareto distribution parameter under different loss functions. J. Stat. Comput. Simul. 2017, 87, 577–593. [Google Scholar] [CrossRef]
- Basheer, A.M.; Okasha, H.M.; EI-Baz, A.H.; Tarabia, A.M.K. E-Bayesian and hierarchical Bayesian estimations for the inverse Weibull distribution. Ann. Data Sci. 2021, 1–13. [Google Scholar] [CrossRef]
- Wu, M.; Shi, Y.; Wang, Y. E-Bayesian estimation for competing risk model under progressively hybrid censoring. J. Syst. Eng. Elect. 2016, 27, 936–944. [Google Scholar]
- Okasha, H.M.; Wang, J. E-Bayesian estimation for the geometric model based on record statistics. Appl. Math. Model. 2016, 40, 658–670. [Google Scholar] [CrossRef]
- Han, M. E-Bayesian estimation and its E-posterior risk of the exponential distribution parameter based on complete and type-I censored samples. Commun. Stat.-Theory Methods 2020, 49, 1858–1872. [Google Scholar] [CrossRef]
- Putter, H.; Fiocco, M.; Geskus, R.B. Tutorial in biostatistics: Competing risks and multistate models. Stat. Med. 2007, 26, 2389–2430. [Google Scholar] [CrossRef] [PubMed]
- Geskus, R.B. Data Analysis with Competing Risks and Intermediate States; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
n | MLE | Bayesian | E-Bayesian | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Model | Exponential Case | |||||||||
20 | 0.220 | 0.242 | 0.219 | 0.242 | 0.203 | 0.227 | 0.197 | 0.221 | 0.210 | 0.234 |
[0.082] | [0.099] | [0.081] | [0.099] | [0.069] | [0.087] | [0.063] | [0.081] | [0.076] | [0.094] | |
35 | 0.158 | 0.174 | 0.157 | 0.174 | 0.151 | 0.168 | 0.148 | 0.166 | 0.154 | 0.171 |
[0.040] | [0.051] | [0.041] | [0.050] | [0.037] | [0.047] | [0.035] | [0.045] | [0.039] | [0.049] | |
50 | 0.135 | 0.146 | 0.135 | 0.146 | 0.131 | 0.143 | 0.129 | 0.141 | 0.133 | 0.145 |
[0.030] | [0.035] | [0.029] | [0.034] | [0.028] | [0.033] | [0.027] | [0.032] | [0.029] | [0.034] | |
Model | Pareto Case | |||||||||
20 | 0.220 | 0.244 | 0.219 | 0.244 | 0.203 | 0.229 | 0.197 | 0.223 | 0.210 | 0.236 |
[0.083] | [0.105] | [0.083] | [0.105] | [0.070] | [0.091] | [0.064] | [0.085] | [0.077] | [0.098] | |
35 | 0.164 | 0.182 | 0.164 | 0.181 | 0.157 | 0.175 | 0.154 | 0.172 | 0.160 | 0.178 |
[0.044] | [0.054] | [0.044] | [0.053] | [0.040] | [0.050] | [0.038] | [0.048] | [0.042] | [0.052] | |
50 | 0.128 | 0.150 | 0.127 | 0.149 | 0.124 | 0.146 | 0.123 | 0.144 | 0.126 | 0.148 |
[0.027] | [0.037] | [0.027] | [0.036] | [0.025] | [0.035] | [0.024] | [0.034] | [0.026] | [0.036] | |
Model | Rayleigh Case | |||||||||
20 | 0.216 | 0.234 | 0.215 | 0.234 | 0.200 | 0.220 | 0.193 | 0.214 | 0.206 | 0.227 |
[0.079] | [0.093] | [0.079] | [0.093] | [0.067] | [0.082] | [0.062] | [0.076] | [0.073] | [0.088] | |
35 | 0.161 | 0.175 | 0.161 | 0.174 | 0.154 | 0.168 | 0.151 | 0.166 | 0.157 | 0.171 |
[0.042] | [0.050] | [0.042] | [0.050] | [0.038] | [0.047] | [0.037] | [0.045] | [0.041] | [0.049] | |
50 | 0.133 | 0.147 | 0.133 | 0.146 | 0.129 | 0.143 | 0.127 | 0.142 | 0.131 | 0.145 |
[0.029] | [0.035] | [0.029] | [0.035] | [0.027] | [0.033] | [0.026] | [0.032] | [0.028] | [0.034] |
n | MLE | Bayesian | E-Bayesian | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Model | Exponential Case | |||||||||
20 | 1.167 | 2.806 | 1.071 | 1.330 | 0.971 | 1.101 | 0.947 | 1.081 | 0.995 | 1.122 |
[0.952] | [0.928] | [0.941] | [0.942] | [0.937] | [0.940] | [0.938] | [0.935] | [0.940] | [0.939] | |
35 | 1.034 | 1.399 | 0.825 | 1.317 | 0.741 | 0.839 | 0.731 | 0.830 | 0.752 | 0.847 |
[0.958] | [0.951] | [0.952] | [0.966] | [0.945] | [0.949] | [0.942] | [0.948] | [0.944] | [0.950] | |
50 | 0.675 | 1.068 | 1.021 | 1.239 | 0.624 | 0.704 | 0.619 | 0.699 | 0.631 | 0.709 |
[0.947] | [0.959] | [0.960] | [0.973] | [0.939] | [0.948] | [0.937] | [0.948] | [0.941] | [0.950] | |
Model | Pareto Case | |||||||||
20 | 1.168 | 2.798 | 1.077 | 1.321 | 0.971 | 1.099 | 0.948 | 1.079 | 0.996 | 1.119 |
[0.955] | [0.917] | [0.937] | [0.939] | [0.933] | [0.933] | [0.933] | [0.933] | [0.938] | [0.938] | |
35 | 0.826 | 1.466 | 1.035 | 1.317 | 0.742 | 0.839 | 0.732 | 0.831 | 0.753 | 0.848 |
[0.946] | [0.944] | [0.950] | [0.959] | [0.938] | [0.943] | [0.938] | [0.943] | [0.937] | [0.946] | |
50 | 0.674 | 1.082 | 1.016 | 1.241 | 0.623 | 0.705 | 0.617 | 0.700 | 0.630 | 0.710 |
[0.957] | [0.959] | [0.962] | [0.972] | [0.945] | [0.943] | [0.946] | [0.946] | [0.944] | [0.946] | |
Model | Rayleigh Case | |||||||||
20 | 1.160 | 2.920 | 1.065 | 1.320 | 0.965 | 1.095 | 0.941 | 1.076 | 0.990 | 1.116 |
[0.958] | [0.922] | [0.928] | [0.944] | [0.932] | [0.944] | [0.932] | [0.945] | [0.938] | [0.947] | |
35 | 0.824 | 1.389 | 1.038 | 1.308 | 0.740 | 0.833 | 0.730 | 0.825 | 0.751 | 0.842 |
[0.952] | [0.951] | [0.942] | [0.963] | [0.933] | [0.946] | [0.933] | [0.946] | [0.937] | [0.946] | |
50 | 0.673 | 1.065 | 1.017 | 1.236 | 0.623 | 0.702 | 0.617 | 0.697 | 0.630 | 0.707 |
[0.952] | [0.955] | [0.958] | [0.971] | [0.939] | [0.945] | [0.940] | [0.943] | [0.938] | [0.945] |
n | MLE | Bayesian | E-Bayesian | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Model | Exponential Case | |||||||||
20 | 0.066 | 0.386 | 0.064 | 0.386 | 0.060 | 0.357 | 0.059 | 0.337 | 0.061 | 0.380 |
[0.007] | [0.263] | [0.006] | [0.262] | [0.006] | [0.220] | [0.005] | [0.190] | [0.006] | [0.256] | |
35 | 0.049 | 0.276 | 0.048 | 0.275 | 0.046 | 0.264 | 0.046 | 0.256 | 0.047 | 0.273 |
[0.004] | [0.128] | [0.004] | [0.128] | [0.003] | [0.116] | [0.003] | [0.108] | [0.003] | [0.127] | |
50 | 0.042 | 0.232 | 0.041 | 0.232 | 0.040 | 0.225 | 0.040 | 0.220 | 0.040 | 0.231 |
[0.003] | [0.090] | [0.003] | [0.090] | [0.002] | [0.084] | [0.002] | [0.080] | [0.003] | [0.090] | |
Model | Pareto Case | |||||||||
20 | 0.062 | 0.196 | 0.061 | 0.196 | 0.057 | 0.181 | 0.057 | 0.172 | 0.057 | 0.193 |
[0.006] | [0.070] | [0.006] | [0.070] | [0.005] | [0.058] | [0.005] | [0.050] | [0.005] | [0.068] | |
35 | 0.046 | 0.140 | 0.046 | 0.140 | 0.044 | 0.134 | 0.044 | 0.130 | 0.044 | 0.139 |
[0.003] | [0.032] | [0.003] | [0.032] | [0.003] | [0.029] | [0.003] | [0.027] | [0.003] | [0.032] | |
50 | 0.038 | 0.114 | 0.038 | 0.114 | 0.037 | 0.111 | 0.037 | 0.108 | 0.037 | 0.114 |
[0.002] | [0.022] | [0.002] | [0.022] | [0.002] | [0.021] | [0.002] | [0.019] | [0.002] | [0.022] | |
Model | Rayleigh Case | |||||||||
20 | 0.066 | 0.381 | 0.064 | 0.381 | 0.059 | 0.353 | 0.059 | 0.333 | 0.061 | 0.376 |
[0.007] | [0.257] | [0.006] | [0.257] | [0.005] | [0.215] | [0.005] | [0.186] | [0.006] | [0.250] | |
35 | 0.049 | 0.274 | 0.048 | 0.274 | 0.046 | 0.262 | 0.046 | 0.256 | 0.047 | 0.271 |
[0.004] | [0.124] | [0.004] | [0.123] | [0.003] | [0.113] | [0.003] | [0.105] | [0.003] | [0.123] | |
50 | 0.041 | 0.231 | 0.041 | 0.230 | 0.040 | 0.224 | 0.039 | 0.219 | 0.040 | 0.229 |
[0.003] | [0.088] | [0.003] | [0.088] | [0.002] | [0.082] | [0.002] | [0.078] | [0.003] | [0.087] |
n | MLE | Bayesian | E-Bayesian | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Model | Exponential Case | |||||||||
20 | 0.326 | 1.913 | 0.302 | 1.800 | 0.295 | 1.758 | 0.295 | 1.714 | 0.294 | 1.794 |
[0.954] | [0.941] | [0.931] | [0.947] | [0.938] | [0.956] | [0.949] | [0.957] | [0.927] | [0.954] | |
35 | 0.245 | 1.387 | 0.233 | 1.336 | 0.231 | 1.316 | 0.230 | 1.298 | 0.231 | 1.326 |
[0.952] | [0.946] | [0.938] | [0.947] | [0.947] | [0.954] | [0.950] | [0.955] | [0.941] | [0.951] | |
50 | 0.205 | 1.144 | 0.197 | 1.104 | 0.196 | 1.101 | 0.196 | 1.090 | 0.196 | 1.112 |
[0.943] | [0.947] | [0.935] | [0.940] | [0.943] | [0.947] | [0.944] | [0.945] | [0.939] | [0.945] | |
Model | Pareto Case | |||||||||
20 | 0.311 | 0.958 | 0.280 | 0.898 | 0.273 | 0.879 | 0.276 | 0.857 | 0.270 | 0.901 |
[0.948] | [0.941] | [0.926] | [0.940] | [0.934] | [0.949] | [0.943] | [0.949] | [0.926] | [0.947] | |
35 | 0.233 | 0.696 | 0.218 | 0.666 | 0.215 | 0.660 | 0.216 | 0.651 | 0.214 | 0.670 |
[0.957] | [0.952] | [0.944] | [0.948] | [0.947] | [0.957] | [0.951] | [0.958] | [0.938] | [0.956] | |
50 | 0.194 | 0.573 | 0.184 | 0.557 | 0.183 | 0.551 | 0.184 | 0.546 | 0.182 | 0.553 |
[0.952] | [0.947] | [0.935] | [0.942] | [0.941] | [0.950] | [0.947] | [0.951] | [0.936] | [0.950] | |
Model | Rayleigh Case | |||||||||
20 | 0.326 | 1.904 | 0.302 | 1.791 | 0.296 | 1.749 | 0.295 | 1.706 | 0.295 | 1.784 |
[0.952] | [0.947] | [0.934] | [0.943] | [0.943] | [0.952] | [0.947] | [0.953] | [0.937] | [0.950] | |
35 | 0.245 | 1.381 | 0.233 | 1.329 | 0.231 | 1.311 | 0.231 | 1.294 | 0.231 | 1.321 |
[0.953] | [0.954] | [0.943] | [0.948] | [0.949] | [0.954] | [0.952] | [0.951] | [0.947] | [0.956] | |
50 | 0.205 | 1.142 | 0.197 | 1.109 | 0.196 | 1.098 | 0.196 | 1.088 | 0.196 | 1.101 |
[0.956] | [0.955] | [0.946] | [0.957] | [0.954] | [0.956] | [0.953] | [0.954] | [0.950] | [0.949] |
n | Bayesian | E-Bayesian | ||||||
---|---|---|---|---|---|---|---|---|
PR() | PR() | EPR() | EPR() | EPR() | EPR() | EPR() | EPR() | |
Model | Exponential Case | |||||||
20 | 0.079 | 0.097 | 0.072 | 0.091 | 0.068 | 0.087 | 0.076 | 0.095 |
35 | 0.041 | 0.052 | 0.039 | 0.050 | 0.038 | 0.049 | 0.041 | 0.051 |
50 | 0.028 | 0.035 | 0.027 | 0.034 | 0.027 | 0.034 | 0.028 | 0.035 |
Model | Pareto Case | |||||||
20 | 0.079 | 0.097 | 0.072 | 0.091 | 0.068 | 0.087 | 0.076 | 0.095 |
35 | 0.042 | 0.052 | 0.040 | 0.050 | 0.039 | 0.049 | 0.041 | 0.051 |
50 | 0.028 | 0.036 | 0.027 | 0.035 | 0.027 | 0.034 | 0.028 | 0.035 |
Model | Rayleigh Case | |||||||
20 | 0.078 | 0.096 | 0.071 | 0.090 | 0.067 | 0.086 | 0.075 | 0.093 |
35 | 0.041 | 0.051 | 0.039 | 0.049 | 0.038 | 0.048 | 0.040 | 0.050 |
50 | 0.028 | 0.035 | 0.027 | 0.034 | 0.027 | 0.034 | 0.028 | 0.035 |
n | MLE | Bayesian | E-Bayesian | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Model | Exponential Case | |||||||||
20 | 0.118 | 0.146 | 0.118 | 0.145 | 0.107 | 0.136 | 0.103 | 0.133 | 0.112 | 0.141 |
[0.023] | [0.037] | [0.023] | [0.037] | [0.019] | [0.032] | [0.017] | [0.030] | [0.021] | [0.035] | |
35 | 0.090 | 0.108 | 0.089 | 0.108 | 0.085 | 0.104 | 0.084 | 0.103 | 0.087 | 0.106 |
[0.013] | [0.020] | [0.013] | [0.019] | [0.012] | [0.018] | [0.011] | [0.017] | [0.012] | [0.019] | |
50 | 0.074 | 0.089 | 0.074 | 0.088 | 0.072 | 0.086 | 0.071 | 0.085 | 0.073 | 0.087 |
[0.009] | [0.013] | [0.009] | [0.013] | [0.008] | [0.012] | [0.008] | [0.012] | [0.009] | [0.013] | |
Model | Pareto Case | |||||||||
20 | 0.117 | 0.150 | 0.117 | 0.150 | 0.107 | 0.141 | 0.103 | 0.137 | 0.111 | 0.145 |
[0.023] | [0.038] | [0.023] | [0.038] | [0.019] | [0.033] | [0.017] | [0.031] | [0.021] | [0.036] | |
35 | 0.089 | 0.108 | 0.089 | 0.108 | 0.084 | 0.105 | 0.083 | 0.103 | 0.086 | 0.107 |
[0.013] | [0.020] | [0.013] | [0.019] | [0.012] | [0.018] | [0.011] | [0.017] | [0.012] | [0.019] | |
50 | 0.072 | 0.092 | 0.072 | 0.092 | 0.070 | 0.090 | 0.069 | 0.089 | 0.071 | 0.091 |
[0.008] | [0.014] | [0.009] | [0.014] | [0.008] | [0.013] | [0.007] | [0.013] | [0.008] | [0.014] | |
Model | Rayleigh Case | |||||||||
20 | 0.119 | 0.144 | 0.118 | 0.144 | 0.108 | 0.135 | 0.104 | 0.131 | 0.113 | 0.139 |
[0.024] | [0.035] | [0.024] | [0.035] | [0.020] | [0.031] | [0.018] | [0.028] | [0.022] | [0.033] | |
35 | 0.090 | 0.111 | 0.089 | 0.111 | 0.085 | 0.107 | 0.083 | 0.106 | 0.087 | 0.109 |
[0.013] | [0.021] | [0.013] | [0.021] | [0.012] | [0.019] | [0.011] | [0.019] | [0.013] | [0.020] | |
50 | 0.073 | 0.090 | 0.073 | 0.090 | 0.070 | 0.088 | 0.069 | 0.087 | 0.071 | 0.089 |
[0.009] | [0.013] | [0.008] | [0.013] | [0.008] | [0.013] | [0.008] | [0.012] | [0.008] | [0.013] |
n | MLE | Bayesian | E-Bayesian | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Model | Exponential Case | |||||||||
20 | 0.659 | 2.426 | 0.552 | 0.751 | 0.527 | 0.665 | 0.509 | 0.650 | 0.545 | 0.680 |
[0.960] | [0.945] | [0.937] | [0.946] | [0.947] | [0.941] | [0.940] | [0.943] | [0.951] | [0.943] | |
35 | 0.462 | 2.669 | 0.455 | 0.772 | 0.405 | 0.510 | 0.397 | 0.504 | 0.413 | 0.517 |
[0.950] | [0.965] | [0.936] | [0.959] | [0.930] | [0.946] | [0.932] | [0.946] | [0.936] | [0.947] | |
50 | 0.378 | 0.837 | 0.479 | 0.740 | 0.344 | 0.427 | 0.339 | 0.424 | 0.349 | 0.431 |
[0.951] | [0.967] | [0.950] | [0.968] | [0.936] | [0.945] | [0.936] | [0.945] | [0.938] | [0.948] | |
Model | Pareto Case | |||||||||
20 | 0.661 | 2.366 | 0.553 | 0.760 | 0.529 | 0.668 | 0.511 | 0.654 | 0.547 | 0.683 |
[0.964] | [0.942] | [0.932] | [0.944] | [0.940] | [0.941] | [0.938] | [0.937] | [0.947] | [0.945] | |
35 | 0.466 | 1.252 | 0.476 | 0.767 | 0.409 | 0.510 | 0.401 | 0.504 | 0.417 | 0.517 |
[0.955] | [0.964] | [0.952] | [0.958] | [0.945] | [0.947] | [0.945] | [0.945] | [0.947] | [0.947] | |
50 | 0.377 | 0.843 | 0.475 | 0.743 | 0.343 | 0.428 | 0.338 | 0.425 | 0.348 | 0.432 |
[0.957] | [0.971] | [0.954] | [0.968] | [0.941] | [0.941] | [0.940] | [0.941] | [0.944] | [0.940] | |
Model | Rayleigh Case | |||||||||
20 | 0.659 | 2.407 | 0.552 | 0.752 | 0.528 | 0.664 | 0.510 | 0.650 | 0.545 | 0.679 |
[0.955] | [0.948] | [0.936] | [0.950] | [0.942] | [0.948] | [0.940] | [0.946] | [0.948] | [0.947] | |
35 | 0.463 | 1.271 | 0.468 | 0.776 | 0.406 | 0.512 | 0.398 | 0.506 | 0.414 | 0.519 |
[0.952] | [0.963] | [0.937] | [0.955] | [0.931] | [0.939] | [0.927] | [0.937] | [0.934] | [0.937] | |
50 | 0.378 | 0.825 | 0.478 | 0.740 | 0.344 | 0.427 | 0.340 | 0.424 | 0.349 | 0.431 |
[0.951] | [0.972] | [0.948] | [0.965] | [0.934] | [0.940] | [0.938] | [0.940] | [0.937] | [0.945] |
n | MLE | Bayesian | E-Bayesian | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Model | Exponential Case | |||||||||
20 | 0.064 | 0.237 | 0.063 | 0.237 | 0.058 | 0.219 | 0.058 | 0.208 | 0.059 | 0.233 |
[0.006] | [0.102] | [0.006] | [0.102] | [0.005] | [0.085] | [0.005] | [0.074] | [0.005] | [0.099] | |
35 | 0.048 | 0.171 | 0.047 | 0.171 | 0.045 | 0.163 | 0.045 | 0.159 | 0.046 | 0.169 |
[0.004] | [0.049] | [0.003] | [0.049] | [0.003] | [0.044] | [0.003] | [0.041] | [0.003] | [0.048] | |
50 | 0.040 | 0.141 | 0.039 | 0.141 | 0.038 | 0.137 | 0.038 | 0.134 | 0.038 | 0.140 |
[0.003] | [0.033] | [0.002] | [0.033] | [0.002] | [0.031] | [0.002] | [0.030] | [0.002] | [0.033] | |
Model | Pareto Case | |||||||||
20 | 0.048 | 0.048 | 0.048 | 0.048 | 0.045 | 0.044 | 0.046 | 0.042 | 0.045 | 0.047 |
[0.004] | [0.004] | [0.003] | [0.004] | [0.003] | [0.003] | [0.004] | [0.003] | [0.003] | [0.004] | |
35 | 0.035 | 0.034 | 0.035 | 0.034 | 0.034 | 0.033 | 0.034 | 0.031 | 0.034 | 0.034 |
[0.002] | [0.002] | [0.002] | [0.002] | [0.002] | [0.002] | [0.002] | [0.001] | [0.002] | [0.002] | |
50 | 0.030 | 0.028 | 0.030 | 0.029 | 0.030 | 0.028 | 0.030 | 0.027 | 0.030 | 0.028 |
[0.001] | [0.001] | [0.001] | [0.001] | [0.001] | [0.001] | [0.001] | [0.001] | [0.001] | [0.001] | |
Model | Rayleigh Case | |||||||||
20 | 0.060 | 0.349 | 0.060 | 0.349 | 0.056 | 0.323 | 0.056 | 0.307 | 0.056 | 0.342 |
[0.006] | [0.212] | [0.005] | [0.213] | [0.005] | [0.178] | [0.005] | [0.156] | [0.005] | [0.207] | |
35 | 0.047 | 0.263 | 0.046 | 0.263 | 0.045 | 0.252 | 0.045 | 0.245 | 0.045 | 0.261 |
[0.004] | [0.117] | [0.003] | [0.117] | [0.003] | [0.107] | [0.003] | [0.098] | [0.003] | [0.116] | |
50 | 0.038 | 0.210 | 0.038 | 0.209 | 0.037 | 0.203 | 0.037 | 0.199 | 0.037 | 0.208 |
[0.002] | [0.074] | [0.002] | [0.073] | [0.002] | [0.069] | [0.002] | [0.065] | [0.002] | [0.073] |
n | MLE | Bayesian | E-Bayesian | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Model | Exponential Case | |||||||||
20 | 0.321 | 1.172 | 0.293 | 1.104 | 0.286 | 1.076 | 0.287 | 1.046 | 0.283 | 1.101 |
[0.951] | [0.946] | [0.931] | [0.944] | [0.941] | [0.954] | [0.949] | [0.953] | [0.931] | [0.954] | |
35 | 0.240 | 0.855 | 0.227 | 0.824 | 0.224 | 0.811 | 0.225 | 0.799 | 0.223 | 0.819 |
[0.953] | [0.946] | [0.940] | [0.940] | [0.940] | [0.953] | [0.948] | [0.955] | [0.936] | [0.950] | |
50 | 0.200 | 0.707 | 0.191 | 0.688 | 0.190 | 0.680 | 0.191 | 0.672 | 0.190 | 0.682 |
[0.956] | [0.948] | [0.941] | [0.946] | [0.944] | [0.953] | [0.949] | [0.952] | [0.941] | [0.951] | |
Model | Pareto Case | |||||||||
20 | 0.259 | 0.235 | 0.222 | 0.221 | 0.215 | 0.216 | 0.219 | 0.210 | 0.209 | 0.221 |
[0.945] | [0.941] | [0.925] | [0.938] | [0.934] | [0.944] | [0.940] | [0.948] | [0.923] | [0.945] | |
35 | 0.189 | 0.172 | 0.171 | 0.166 | 0.169 | 0.163 | 0.171 | 0.160 | 0.166 | 0.164 |
[0.956] | [0.949] | [0.940] | [0.954] | [0.941] | [0.958] | [0.948] | [0.956] | [0.934] | [0.954] | |
50 | 0.156 | 0.141 | 0.145 | 0.137 | 0.144 | 0.136 | 0.145 | 0.134 | 0.142 | 0.136 |
[0.951] | [0.946] | [0.932] | [0.941] | [0.938] | [0.951] | [0.945] | [0.950] | [0.933] | [0.950] | |
Model | Rayleigh Case | |||||||||
20 | 0.313 | 1.753 | 0.282 | 1.643 | 0.275 | 1.609 | 0.277 | 1.566 | 0.271 | 1.652 |
[0.953] | [0.944] | [0.932] | [0.945] | [0.938] | [0.951] | [0.948] | [0.957] | [0.929] | [0.950] | |
35 | 0.233 | 1.286 | 0.218 | 1.239 | 0.215 | 1.219 | 0.216 | 1.202 | 0.214 | 1.230 |
[0.949] | [0.943] | [0.933] | [0.946] | [0.935] | [0.944] | [0.943] | [0.951] | [0.931] | [0.941] | |
50 | 0.194 | 1.060 | 0.184 | 1.022 | 0.183 | 1.019 | 0.184 | 1.008 | 0.182 | 1.031 |
[0.954] | [0.951] | [0.942] | [0.948] | [0.948] | [0.954] | [0.951] | [0.952] | [0.942] | [0.951] |
n | Bayesian | E-Bayesian | ||||||
---|---|---|---|---|---|---|---|---|
PR() | PR() | EPR() | EPR() | EPR() | EPR() | EPR() | EPR() | |
Model | Exponential Case | |||||||
20 | 0.024 | 0.036 | 0.022 | 0.033 | 0.020 | 0.032 | 0.023 | 0.035 |
35 | 0.013 | 0.019 | 0.012 | 0.019 | 0.012 | 0.018 | 0.012 | 0.019 |
50 | 0.009 | 0.013 | 0.008 | 0.013 | 0.008 | 0.012 | 0.009 | 0.013 |
Model | Pareto Case | |||||||
20 | 0.024 | 0.036 | 0.022 | 0.034 | 0.020 | 0.032 | 0.023 | 0.035 |
35 | 0.013 | 0.019 | 0.012 | 0.019 | 0.012 | 0.018 | 0.013 | 0.019 |
50 | 0.009 | 0.013 | 0.008 | 0.013 | 0.008 | 0.012 | 0.009 | 0.013 |
Model | Rayleigh Case | |||||||
20 | 0.024 | 0.036 | 0.022 | 0.033 | 0.020 | 0.032 | 0.023 | 0.035 |
35 | 0.013 | 0.019 | 0.012 | 0.019 | 0.012 | 0.018 | 0.013 | 0.019 |
50 | 0.009 | 0.013 | 0.008 | 0.013 | 0.008 | 0.012 | 0.009 | 0.013 |
Baseline Model | MLE | Log-Likelihood | KS Distance | p-Value |
---|---|---|---|---|
Exponential | = 0.144644 | −965.115 | 0.19985 | < |
Pareto | = 0.585787 | −1066.587 | 0.32379 | < |
Rayleigh | = 0.032023 | −899.550 | 0.07186 | 0.1551 |
i | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
5.120 | 7.302 | 1.303 | 4.966 | 5.700 | 2.565 | 2.177 | 2.513 | 4.214 | 3.953 | 2.316 | 0.824 | 1.462 | |
2 | 1 | 3 | 2 | 2 | 2 | 1 | 2 | 3 | 1 | 3 | 2 | 2 | |
i | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | |
2.533 | 0.969 | 1.440 | 1.456 | 0.112 | 2.322 | 0.148 | 2.814 | 1.437 | 0.862 | 0.137 | 0.142 | ||
1 | 2 | 1 | 3 | 2 | 2 | 3 | 2 | 3 | 3 | 2 | 3 |
Parameter | MLE | Bayesian | E-Bayesian | |||
---|---|---|---|---|---|---|
Squared Error Loss | Linex Loss | Squared Error Loss | Linex Loss | |||
0.00694817 | 0.00832231 | 0.00831653 | 0.00764245 | 0.00763715 | ||
0.00764228 | 0.00763700 | |||||
0.00764263 | 0.00763729 | |||||
0.01667560 | 0.01722774 | 0.01721578 | 0.01736921 | 0.01735715 | ||
0.01736881 | 0.01735683 | |||||
0.01736961 | 0.01735748 | |||||
0.01111707 | 0.01127660 | 0.01126878 | 0.01181106 | 0.01180287 | ||
0.01181079 | 0.01180264 | |||||
0.01181134 | 0.01180309 |
Parameter | ACI | Bayesian-HPD | E-Bayesian HPD | |
---|---|---|---|---|
(0.00289202,0.01669318) | (0.00243423,0.01507565) | (0.00201062,0.01368888) | ||
[0.01380116] | [0.01264143] | [0.01167826] | ||
(0.00209560,0.01388392) | ||||
[0.01178832] | ||||
(0.00189844,0.01360728) | ||||
[0.01170883] | ||||
(0.00947024,0.02936312) | (0.00830230,0.02694340) | (0.00824659,0.02670847) | ||
[0.01989289] | [0.01864110] | [0.01846188] | ||
(0.008535855,0.02714980) | ||||
[0.01861395] | ||||
(0.00826488,0.02625957) | ||||
[0.01799469] | ||||
(0.00366841,0.03369012) | (0.00466253,0.01989804) | (0.00418741,0.01908602) | ||
[0.03002171] | [0.015235515] | [0.01489861] | ||
(0.00426602,0.01903927) | ||||
[0.01477325] | ||||
(0.00441722,0.01915059) | ||||
[0.01473338] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Wang, L.; Tsai, T.-R.; Tripathi, Y.M. Estimation of Dependent Competing Risks Model with Baseline Proportional Hazards Models under Minimum Ranked Set Sampling. Mathematics 2023, 11, 1461. https://doi.org/10.3390/math11061461
Zhou Y, Wang L, Tsai T-R, Tripathi YM. Estimation of Dependent Competing Risks Model with Baseline Proportional Hazards Models under Minimum Ranked Set Sampling. Mathematics. 2023; 11(6):1461. https://doi.org/10.3390/math11061461
Chicago/Turabian StyleZhou, Ying, Liang Wang, Tzong-Ru Tsai, and Yogesh Mani Tripathi. 2023. "Estimation of Dependent Competing Risks Model with Baseline Proportional Hazards Models under Minimum Ranked Set Sampling" Mathematics 11, no. 6: 1461. https://doi.org/10.3390/math11061461
APA StyleZhou, Y., Wang, L., Tsai, T. -R., & Tripathi, Y. M. (2023). Estimation of Dependent Competing Risks Model with Baseline Proportional Hazards Models under Minimum Ranked Set Sampling. Mathematics, 11(6), 1461. https://doi.org/10.3390/math11061461