Advanced Numerical Methods in Computational Solid Mechanics
Conflicts of Interest
References
- Belgrand, L.; Ramière, I.; Largenton, R.; Lebon, F. Proximity Effects in Matrix-Inclusion Composites: Elastic Effective Behavior, Phase Moments, and Full-Field Computational Analysis. Mathematics 2022, 10, 4437. [Google Scholar] [CrossRef]
- Wilhayn, J.; Heß, M. Frictional Energy Dissipation in Partial Slip Contacts of Axisymmetric Power-Law Graded Elastic Solids under Oscillating Tangential Loads: Effect of the Geometry and the In-Depth Grading. Mathematics 2022, 10, 3641. [Google Scholar] [CrossRef]
- Le Berre, S.; Ramière, I.; Fauque, J.; Ryckelynck, D. Condition Number and Clustering-Based Efficiency Improvement of Reduced-Order Solvers for Contact Problems Using Lagrange Multipliers. Mathematics 2022, 10, 1495. [Google Scholar] [CrossRef]
- Gomez, Q.; Goument, B.; Ionescu, I.R. A Lagrangian DG-Method for Wave Propagation in a Cracked Solid with Frictional Contact Interfaces. Mathematics 2022, 10, 871. [Google Scholar] [CrossRef]
- Negrello, C.; Gosselet, P.; Rey, C. Nonlinearly Preconditioned FETI Solver for Substructured Formulations of Nonlinear problems. Mathematics 2021, 9, 3165. [Google Scholar] [CrossRef]
- Musa, A.E.S.; Al-Shugaa, M.A.; Al-Fakih, A. Free–Free Beam Resting on Tensionless Elastic Foundation Subjected to Patch Load. Mathematics 2022, 10, 3271. [Google Scholar] [CrossRef]
- Saadatmorad, M.; Talookolaei, R.-A.J.; Pashaei, M.-H.; Khatir, S.; Wahab, M.A. Pearson Correlation and Discrete Wavelet Transform for Crack Identification in Steel Beams. Mathematics 2022, 10, 2689. [Google Scholar] [CrossRef]
- Ge, R.; Liu, F.; Wang, C.; Ma, L.; Wang, J. Calculation of Critical Load of Axially Functionally Graded and Variable Cross-Section Timoshenko Beams by Using Interpolating Matrix Method. Mathematics 2022, 10, 2350. [Google Scholar] [CrossRef]
- Salha, L.; Bleyer, J.; Sab, K.; Bodgi, J. A Hybridized Mixed Approach for Efficient Stress Prediction in a Layerwise Plate Model. Mathematics 2022, 10, 1711. [Google Scholar] [CrossRef]
- Verrelli, C.; Romagnoli, C.; Jackson, R.; Ferretti, I.; Annino, G.; Bonaiuto, V. Phi-Bonacci Butterfly Stroke Numbers to Assess Self-Similarity in Elite Swimmers. Mathematics 2021, 9, 1545. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lebon, F.; Ramière, I. Advanced Numerical Methods in Computational Solid Mechanics. Mathematics 2023, 11, 1512. https://doi.org/10.3390/math11061512
Lebon F, Ramière I. Advanced Numerical Methods in Computational Solid Mechanics. Mathematics. 2023; 11(6):1512. https://doi.org/10.3390/math11061512
Chicago/Turabian StyleLebon, Frédéric, and Isabelle Ramière. 2023. "Advanced Numerical Methods in Computational Solid Mechanics" Mathematics 11, no. 6: 1512. https://doi.org/10.3390/math11061512
APA StyleLebon, F., & Ramière, I. (2023). Advanced Numerical Methods in Computational Solid Mechanics. Mathematics, 11(6), 1512. https://doi.org/10.3390/math11061512