A New Approach for Solving Nonlinear Fractional Ordinary Differential Equations
Abstract
:1. Introduction
- ;
- ;
- ;
- 1.
- 2.
- ;
- 3.
- ;
- 4.
- ;
- 5.
- ;
- 6.
- ;
- ;
- ;
- ;
2. Analysis of the New Method
3. Convergence of the New Method
- I.
- obtained by Equation (9) convergence to , if
- II.
- satisfies in
- We must prove that is a Cauchy sequence in the Banach space .
- II.
- Equation (11) can be written as
4. Illustrative Examples
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Singh, J.; Jassim, H.K.; Kumar, D. An efficient computational technique for local fractional Fokker-Planck equation. Phys. A Stat. Mech. Appl. 2020, 555, 124525. [Google Scholar] [CrossRef]
- Jassim, H.K.; Shareef, M.A. On approximate solutions for fractional system of differential equations with Caputo-Fabrizio fractional operator. J. Math. Comput. Sci. 2021, 23, 58–66. [Google Scholar] [CrossRef]
- Jassim, H.K.; Hussein, M.A. A Novel Formulation of the Fractional Derivative with the Order 𝛼 ≥ 0 and without the Singular Kernel. Mathematics 2022, 10, 4123. [Google Scholar]
- Adomian, G. A new approach to nonlinear partial differential equations. J. Math. Anal. Appl. 1984, 102, 420–434. [Google Scholar] [CrossRef] [Green Version]
- He, J.H. A new approach to nonlinear partial differential equations. Commun. Nonlinear Sci. Numer. Simul. 1997, 2, 203–205. [Google Scholar] [CrossRef]
- He, J.H. Homotopy perturbation method: A new nonlinear analytical technique. Appl. Math. Comput. 2003, 135, 73–79. [Google Scholar] [CrossRef]
- Liao, S.J. Beyond Perturbation: Introduction to the Homotopy Analysis Method; Chapman & Hall/CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Zhou, J.K. Differential Transformation and Its Application for Electrical Circuits; Huazhong University Press: Wuhan, China, 1986. [Google Scholar]
- Zhang, J.L.; Wang, M.L.; Wang, Y.M.; Fang, Z.D. The improved F-expansion method and its applications. Phys. Lett. A 2006, 350, 103–109. [Google Scholar] [CrossRef]
- He, J.H.; Wu, X.H. Exp-function method for nonlinear wave equations. Chaos Solitons Fract. 2006, 30, 700–708. [Google Scholar] [CrossRef]
- Wazwaz, A.M. A sine–cosine method for handling nonlinear wave equations. Math. Comput. Model. 2004, 40, 499–508. [Google Scholar] [CrossRef]
- Baleanu, D.; Jassim, H.K.; Khan, H. A modification fractional variational iteration method for solving nonlineargas dynamic and coupled KdV equations involving local fractional operators. Thermal Sci. 2018, 22, 165–175. [Google Scholar] [CrossRef]
- Alzaki, L.K.; Jassim, H.K. The approximate analytical solutions of nonlinear fractional ordinary differential equations. Int. J. Nonlinear Anal. Appl. 2021, 12, 527–535. [Google Scholar]
- Jassim, H.K.; Kadhim, H.A. Fractional Sumudu decomposition method for solving PDEs of fractional order. J. Appl. Comput. Mech. 2021, 7, 302–311. [Google Scholar]
- Jafari, H. A new general integral transform for solving integral equations. J. Adv. Res. 2021, 32, 133–138. [Google Scholar] [CrossRef]
- Zayir, M.Y.; Jassim, H.K. A unique approach for solving the fractional Navier–Stokes equation. J. Mult. Math. 2022, 25, 2611–2616. [Google Scholar] [CrossRef]
- Jafari, H.; Zayir, M.Y.; Jassim, H.K. Analysis of fractional Navier-Stokes equations. Heat Transfer 2023, 1–19. [Google Scholar] [CrossRef]
- Alzaki, L.K.; Jassim, H.K. Time-Fractional Differential Equations with an Approximate Solution. J. Niger. Soc. Phys. Sci. 2022, 4, 1–8. [Google Scholar] [CrossRef]
- Jassim, H.K.; Ahmad, H.; Shamaoon, A.; Cesarano, C. An efficient hybrid technique for the solution of fractional-order partial differential equations. Carpathian Math. Publ. 2021, 13, 790–804. [Google Scholar] [CrossRef]
- Fan, Z.P.; Jassim, H.K.; Raina, R.; Yang, X.J. Adomian decomposition method for three-dimensional diffusion model in fractal heat transfer involving local fractional derivatives. Thermal Sci. 2015, 19, 137–141. [Google Scholar] [CrossRef]
- Xu, S.; Ling, X.; Zhao, Y.; Jassim, H.K. A novel schedule for solving the two-dimensional diffusion problem in fractal heat transfer. Thermal Sci. 2015, 19, 99–103. [Google Scholar] [CrossRef]
- Jassim, H.K. Analytical Approximate Solutions for Local Fractional Wave Equations. Math. Methods Appl. Sci. 2020, 43, 939–947. [Google Scholar] [CrossRef]
- Jassim, H.K.; Vahidi, J.; Ariyan, V.M. Solving Laplace Equation within Local Fractional Operators by Using Local Fractional Differential Transform and Laplace Variational Iteration Methods. Nonlinear Dyn. Syst. Theory 2020, 20, 388–396. [Google Scholar]
- Baleanu, D.; Jassim, H.K. Exact Solution of Two-dimensional Fractional Partial Differential Equations. Fractal Fract. 2020, 4, 21. [Google Scholar] [CrossRef]
- Jassim, H.K.; Vahidi, J. A New Technique of Reduce Differential Transform Method to Solve Local Fractional PDEs in Mathematical Physics. Int. J. Nonlinear Anal. Appl. 2021, 12, 37–44. [Google Scholar]
- Jassim, H.K.; Khafif, S.A. SVIM for solving Burger’s and coupled Burger’s equations of fractional order. Prog. Fract. Differ. Appl. 2021, 7, 1–6. [Google Scholar]
- Kumar, D.; Agarwal, R.P.; Singh, J. A modified numerical scheme and convergence analysis for fractional model of Lienard’s equation. J. Comput. Appl. Math. 2018, 339, 405–413. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, D.; Baleanu, D.; Rathore, S. An efficient numerical algorithm for the fractional Drinfeld–Sokolov–Wilson equation. Appl. Math. Comput. 2018, 335, 12–24. [Google Scholar] [CrossRef]
- Jassim, H.K. New Approaches for Solving Fokker Planck Equation on Cantor Sets within Local Fractional Operators. J. Math. 2015, 2015, 684598. [Google Scholar] [CrossRef] [Green Version]
- Jafari, H.; Jassim, H.K.; Baleanu, D.; Chu, Y.M. On the approximate solutions for a system of coupled Korteweg-de Vries equations with local fractional derivative. Fractals 2021, 29, 2140012. [Google Scholar] [CrossRef]
- Jafari, H.; Jassim, H.K.; Vahidi, J. Reduced differential transform and variational iteration methods for 3D diffusion model in fractal heat transfer within local fractional operators. Thermal Sci. 2018, 22, 301–307. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.-J.; Shi, F. A New Perspective on the Exact Solutions of the Local Fractional Modified Benjamin-Bona-Mahony Equation on Cantor Sets. Fractal Fract. 2023, 7, 72. [Google Scholar] [CrossRef]
- Jassim, H.K.; Mohammed, M.G. Natural homotopy perturbation method for solving nonlinear fractional gas dynamics equations. Int. J. Nonlinear Anal. Appl. 2021, 12, 813–821. [Google Scholar]
- Mohammed, M.G.; Jassim, H.K. Numerical simulation of arterial pulse propagation using autonomous models. Int. J. Nonlinear Anal. Appl. 2021, 12, 841–849. [Google Scholar]
- Taher, H.G.; Jassim, H.K.; Hassan, N.J. Approximate analytical solutions of differential equations with Caputo-Fabrizio fractional derivative via new iterative method. AIP Conf. Proc. 2022, 2398, 060020. [Google Scholar]
- Sachit, S.A.; Jassim, H.K.; Hassan, N.J. Revised fractional homotopy analysis method for solving nonlinear fractional PDEs. AIP Conf. Proc. 2022, 2398, 060044. [Google Scholar]
- Mahdi, S.H.; Jassim, H.K.; Hassan, N.J. A new analytical method for solving nonlinear biological population model. AIP Conf. Proc. 2022, 2398, 060043. [Google Scholar]
- Wang, S.Q.; Yang, Y.J.; Jassim, H.K. Local Fractional Function Decomposition Method for Solving Inhomogeneous Wave Equations with Local Fractional Derivative. Abstr. Appl. Anal. 2014, 2014, 176395. [Google Scholar] [CrossRef] [Green Version]
- Yan, S.P.; Jafari, H.; Jassim, H.K. Local Fractional Adomian Decomposition and Function Decomposition Methods for Solving Laplace Equation within Local Fractional Operators. Adv. Math. Phys. 2014, 2014, 161580. [Google Scholar] [CrossRef]
- Abbas, S.M.; Saïd, M.B.; Gaston, M.N. Topics in Fractional Differential Equations; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 27. [Google Scholar]
- Shantanu, D. Functional Fractional Calculus; Springer: Berlin, Germany, 2011; Volume 1. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
0.1039 | 1.1818 | 1.1415 | 1.1095 | 1.1095 | 0.0723 | 0.0320 | 0.0000 |
0.2034 | 1.3258 | 1.2721 | 1.2255 | 1.2256 | 0.1002 | 0.0465 | 0.0001 |
0.3030 | 1.4719 | 1.4103 | 1.3536 | 1.3539 | 0.1180 | 0.0564 | 0.0004 |
0.4026 | 1.6267 | 1.5595 | 1.4945 | 1.4957 | 0.1310 | 0.0639 | 0.0012 |
0.5021 | 1.7939 | 1.7220 | 1.6493 | 1.6523 | 0.1416 | 0.0698 | 0.0029 |
0.6017 | 1.9762 | 1.8996 | 1.8191 | 1.8253 | 0.1509 | 0.0744 | 0.0062 |
0.7013 | 2.1761 | 2.0940 | 2.0047 | 2.0164 | 0.1597 | 0.0776 | 0.0117 |
0.8009 | 2.3957 | 2.3066 | 2.2072 | 2.2275 | 0.1682 | 0.0791 | 0.0203 |
0.9004 | 2.6369 | 2.5389 | 2.4275 | 2.4607 | 0.1762 | 0.0782 | 0.0332 |
1.0000 | 2.9016 | 2.7924 | 2.6667 | 2.7183 | 0.1833 | 0.0741 | 0.0516 |
0.1000 | 0.1697 | 0.1305 | 0.0997 | 0.0997 | 0.0701 | 0.0308 | 0.0000 |
0.2000 | 0.2927 | 0.2411 | 0.1973 | 0.1974 | 0.0954 | 0.0438 | 0.0000 |
0.3000 | 0.3979 | 0.3413 | 0.2910 | 0.2913 | 0.1065 | 0.0500 | 0.0003 |
0.4000 | 0.4875 | 0.4308 | 0.3787 | 0.3799 | 0.1076 | 0.0508 | 0.0013 |
0.5000 | 0.5614 | 0.5083 | 0.4583 | 0.4621 | 0.0993 | 0.0462 | 0.0038 |
0.6000 | 0.6180 | 0.5721 | 0.5280 | 0.5370 | 0.0809 | 0.0350 | 0.0090 |
0.7000 | 0.6555 | 0.6201 | 0.5857 | 0.6044 | 0.0511 | 0.0157 | 0.0187 |
0.8000 | 0.6717 | 0.6503 | 0.6293 | 0.6640 | 0.0077 | 0.0137 | 0.0347 |
0.9000 | 0.6645 | 0.6606 | 0.6570 | 0.7163 | 0.0518 | 0.0557 | 0.0593 |
1.0000 | 0.6314 | 0.6486 | 0.6667 | 0.7616 | 0.1302 | 0.1130 | 0.0949 |
0.1180 | 1.0073 | 1.0073 | 1.0070 | 1.0070 | 0.0003 | 0.0002 | 0.0000 |
0.2160 | 1.0252 | 1.0248 | 1.0239 | 1.0239 | 0.0013 | 0.0009 | 0.0000 |
0.3140 | 1.0553 | 1.0540 | 1.0517 | 1.0519 | 0.0034 | 0.0022 | 0.0001 |
0.4120 | 1.1000 | 1.0969 | 1.0921 | 1.0927 | 0.0073 | 0.0042 | 0.0007 |
0.5100 | 1.1627 | 1.1561 | 1.1470 | 1.1495 | 0.0132 | 0.0066 | 0.0025 |
0.6080 | 1.2474 | 1.2348 | 1.2190 | 1.2267 | 0.0207 | 0.0081 | 0.0077 |
0.7060 | 1.3593 | 1.3373 | 1.3113 | 1.3319 | 0.0274 | 0.0054 | 0.0206 |
0.8040 | 1.5043 | 1.4682 | 1.4277 | 1.4776 | 0.0268 | 0.0093 | 0.0499 |
0.9020 | 1.6892 | 1.6331 | 1.5723 | 1.6858 | 0.0035 | 0.0527 | 0.1135 |
1.0000 | 1.9218 | 1.8382 | 1.7500 | 2.0000 | 0.0782 | 0.1618 | 0.2500 |
0.1180 | 1.1867 | 1.1446 | 1.1110 | 1.1114 | 0.0753 | 0.0332 | 0.0004 |
0.2160 | 1.2899 | 1.2372 | 1.1927 | 1.1948 | 0.0950 | 0.0424 | 0.0022 |
0.3140 | 1.3717 | 1.3147 | 1.2647 | 1.2710 | 0.1008 | 0.0437 | 0.0063 |
0.4120 | 1.4365 | 1.3787 | 1.3271 | 1.3406 | 0.0959 | 0.0381 | 0.0134 |
0.5100 | 1.4860 | 1.4302 | 1.3800 | 1.4041 | 0.0818 | 0.0261 | 0.0242 |
0.6080 | 1.5213 | 1.4698 | 1.4232 | 1.4622 | 0.0592 | 0.0076 | 0.0390 |
0.7060 | 1.5433 | 1.4976 | 1.4568 | 1.5151 | 0.0283 | 0.0175 | 0.0583 |
0.8040 | 1.5524 | 1.5140 | 1.4808 | 1.5631 | 0.0107 | 0.0491 | 0.0823 |
0.9020 | 1.5490 | 1.5192 | 1.4952 | 1.6066 | 0.0576 | 0.0874 | 0.1114 |
1.0000 | 1.5333 | 1.5132 | 1.5000 | 1.6458 | 0.1125 | 0.1326 | 0.1458 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jassim, H.K.; Abdulshareef Hussein, M. A New Approach for Solving Nonlinear Fractional Ordinary Differential Equations. Mathematics 2023, 11, 1565. https://doi.org/10.3390/math11071565
Jassim HK, Abdulshareef Hussein M. A New Approach for Solving Nonlinear Fractional Ordinary Differential Equations. Mathematics. 2023; 11(7):1565. https://doi.org/10.3390/math11071565
Chicago/Turabian StyleJassim, Hassan Kamil, and Mohammed Abdulshareef Hussein. 2023. "A New Approach for Solving Nonlinear Fractional Ordinary Differential Equations" Mathematics 11, no. 7: 1565. https://doi.org/10.3390/math11071565
APA StyleJassim, H. K., & Abdulshareef Hussein, M. (2023). A New Approach for Solving Nonlinear Fractional Ordinary Differential Equations. Mathematics, 11(7), 1565. https://doi.org/10.3390/math11071565